
Copyright © 2011 Tech Science Press CMES, vol.78, no.4, pp.225-245, 2011
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Materials with Functionally-Graded Effective Thermal
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Abstract: This paper introduces a numerical methodology for the design of ran-
dom micro-heterogeneous materials with functionally graded effective thermal con-
ductivities (ETC). The optimization is carried out using representative volume el-
ements (RVEs), a parallel Genetic Algorithm (GA) as optimization method, and a
Fast Multipole Boundary Element Method (FMBEM) for the evaluation of the cost
function. The methodology is applied for the design of foam-like microstructures
consisting of random distributions of circular insulated holes. The temperature field
along a material sample is used as objective function, while the spatial distribution
of the holes is the design variable. There are presented details of the FMBEM and
the GA implementations, their customizations and tune up, and the analysis for the
sizing of the RVE. The effectiveness of the proposed methodology is demonstrated
for two examples. Computed results are experimentally validated using ad-hoc
devised experiments.
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1 Introduction

Effective thermal conductivity (ETC) of micro-heterogeneous materials is an ac-
tive research field as it has been for over a century. The importance of micro-
heterogeneous materials like granular metal and ceramics, or polymeric open-cell
foams lies in their applications in high performance insulation, packed beds, het-
erogeneous catalysts, composite materials and powder metallurgy. The size, shape,
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physical properties and spatial distribution of the micro-structural constituents largely
determine the macroscopic, overall behavior of these multi-phase materials. From
the point of view of materials design, it would be highly attractive to tailor the ma-
terial microstructure in order to obtain the desired set of macroscopic properties.
One remarkable example of this concept can be found in the so-called Functionally
Graded Materials (FGM). FGMs are composite materials formed of two or more
constituent phases with a continuously variable composition. They are usually as-
sociated with particulate composites where the volume fraction of particles varies
in one or several directions [Birman and Byrd, 2007].

In general, homogenized models based on the Mori–Tanaka and the self-consistent
methods, i.e., the locally heterogeneous nature of FGM is disregarded [Birman and
Byrd, 2007]. Homogenized models allow for the solution of heat transfer in FGMs.
In particular, boundary element formulations for the solution of transfer in FGMs
have been proposed, among others, by Chen et al [2002], Sladek et al [2003] and
Sutradahar and Paulino [2003] and Paulino et al [2005].

Optimization problems are natural for FGM design, due to the possibility they offer
to combine dissimilar materials throughout the structure [Birman and Byrd, 2007].
Computational modeling of the material microstructure together with homogeniza-
tion techniques are widely used to predict the macroscopic behavior of random
heterogeneous materials [Zohdi and Wriggers, 2005]. The homogenization of mi-
crostructures with randomly distributed components uses statistically representa-
tive volume elements (RVE). In order to make the material simulated data reliable,
the RVE must be small enough to be considered as a material point with respect to
the size of the domain under analysis, but large enough to be a sample statistically
representative for the microstructure. Thus, a RVE usually contains a large number
of heterogeneities, and therefore the computations could be expensive.

It is presented in this paper a numerical procedure for the design of random micro-
heterogeneous materials with functionally-graded effective thermal conductivities.
The methodology is devised for the design of foam-like microstructures consisting
of random distributions of circular insulated holes. The temperature field along
a material sample is used as objective function, while the spatial distribution of
the holes is the design variable. Optimization is performed using a Genetic Al-
gorithm (GA). GAs have the ability to overcome the difficulties due to objective
function nonconvexity and lack of regularity characterizing the constrained design
of random particulate media [Zohdi and Wriggers, 2005]. GAs simulate the nat-
ural evolution of species making use of the genetic operators. These are natural
selection, pairing and mutation. Individuals live in an environment determined by
the objective (or fitness) function, where they compete for survival and only the
best ones success. The components of individuals are the chromosomes, the ge-
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netic material that dictates unique properties of the individuals [Goldberg 1999].
Genetic Algorithms are robust global optimizers but they have high computational
cost due to the repetitive evaluation of the fitness function. Moreover, and as it will
be shown in the following sections, the evaluation of the fitness function for this
work requires the solution of the temperature field for computationally expensive
models containing large number of voids.

The Boundary Element Method (BEM) was selected as the analysis tool for this
work due to simplicity in the generation of the model data (the model discretiza-
tion is restricted only to the boundaries) and its superior accuracy when compared
to other methods [Aliabadi and Wrobel 2002]. Moreover, bearing in mind the high
computational demands of the genetic algorithm, the BEM was implemented using
a fast multipole approach, the so-called Fast Multipole Boundary Element Method
(FMBEM). The FMBEM reduces the computational cost of the direct BEM, from
an order of O(N3) to a quasi-linear, where N is the number of degrees of freedom of
the model. This reduction is achieved by multilevel clustering of the boundary ele-
ments into cells, the use of the multipole series expansion for the evaluation of the
fundamental solutions in the far field, and the use of an efficient iterative solver. Ad-
ditionally, the multipole algorithm leads to a matrix-free calculation scheme what
results in a drastic reduction in the memory storage requirements.

The paper presents the details of the FMBEM and the GA implementations, their
customizations and tuning-ups to deal with foam-like microstructures, and the anal-
ysis for the sizing of the RVE. The effectiveness of the proposed methodology is
demonstrated for two examples. Computed results are experimentally validated
using ad-hoc devised experiments.

2 The Fast Multipole Boundary Element Method and Modeling Considera-
tions

The FMBEM implemented for this work follows that introduced by Liu and Nishi-
mura [2006]. The FMBEM was tailored to solve the steady-state heat conduc-
tion problem governed by the Laplace equation in two-dimensional foam-like mi-
crostructures. These microstructures were idealized to an isotropic continuous ma-
trix containing insulated circular voids. A typical model is illustrated in Figure 1a.
A detail of the discretization strategy is depicted in Figure 1b. The model bound-
ary is discretized using constant elements, which are clustered into a hierarchical
multilevel quad-tree. The gray squares in Figure 1b are the leaves of a three-level
quad-tree with at least 4 elements per leaf. The determination of the optimum num-
ber of elements per leaf will be discussed later in this section. Twelve expansion
terms are used for the multipole expansion. The evaluations of all the integrals for
the FMBEM matrix assembly are carried out analytically. The system of equations
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is solved using a preconditioned GMRES algorithm from the public library Slatec
[2011] with a convergence tolerance equal to 10−7.

The FMBEM algorithm was calibrated for optimum performance and accuracy. To
this end, the optimum element size for the model discretization and the number of
elements per cell were investigated. This last parameter determines the extent of
the near and far fields in the FMBEM collocation procedure [Liu and Nishimura,
2006]. The optimum element size was determined via a convergence analysis for
a reference problem which was solved using a standard direct BEM solver. This
reference problem was similar to that in Figure 1a. It consisted in a microstructure
containing 100 holes of radius r=L/31 (L being the specimen dimension) arranged
on a regular square-array with a void volume fraction f =0.327 (the ratio of the
void volume to the total sample volume) . Boundary conditions were specified in
order to induce a one-dimensional heat flux in the y-direction (see Figure 1a). The
independency of the BEM solution with respect to the element size was explored
in terms of the normalized flux Q/Q0 through the sample. This was computed from
the boundary solution using

Q
Q0

∼=
∫ P

i=1
qi li, (1)

where qi and li are the heat fluxes and the element lengths of the P element, located
along the top edge of the model (segment CD in Figure 1a). The symbol Q0 stands
for the flux for a void-free specimen. The number of elements was progressively
increased and the results compared. Obtained results are plotted in Figure 2 using
dark symbols. It was concluded from this analysis that a discretization using 4400
elements (40 elements per hole perimeter, 100 elements along the sample side)
provides mesh-independent results.

The 4400-element mesh was used to tune-up the number of elements per cell. The
number of elements per cell affects both, the quality of the solution and the effi-
ciency of the algorithm. Figure 3 illustrates the error of the FMBEM results and
the algorithm speed up with respect to the converged direct BEM solution as a
function of the number of elements per cell. The error is presented in terms of the
mean value and the standard deviation (error bars in the figure) of the element-by-
element difference between the FMBEM and the direct BEM results. Results in
Figure 3 show that if the number of elements per cell is greater than 10, the rel-
ative error reduces noticeably and its dispersion vanishes. The same trend can be
observed in Figure 2, where the hollow symbols illustrate the convergence of the
FMBEM results towards the direct BEM ones as the number of elements per cell
increases. Similarly, the algorithm speed-up improves with the increment of the
number of elements per cell, but it dramatically diminishes when this number is



Numerical Design of Random Micro-Heterogeneous Materials 229

beyond 200. This change in the tendency occurs when the size of the near field is
too big, and thus the algorithm ends up with a configuration similar to that of the
direct BEM (one may imagine, as the extreme case, a picture consisting in a single
cell enclosing the complete model in the near field). Based on the above results
and prioritizing accuracy over performance, the number of elements per cell was
selected equal to 200. Furthermore, the algorithm performance using 200 elements
per cell was investigated in terms of the model size. Obtained results are plotted
in Figure 4. It can be observed that the speed up monotonously increases with the
model size, performing, for the model sizes explored, up to 14 times faster than the
standard BEM.

 

Figure 1: (a) FMBEM model of a representative volume element with a void vol-
ume fraction f = 0.3 (344 holes). (b) Detail of the FMBEM discretization depicting
the hierarchical quad-tree clustering of the boundary elements.

3 Determination of the representative volume element size

In order to size the RVE a series of FMBEM analysis were performed for sets of
samples with void volume fractions in the range 0≤f≤0.5 and random distribution
of the holes. The boundary conditions were set the same to those used in Section
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Figure 2: Normalized Flux as a function of the number of elements.
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Figure 3: Relative error and FMBEM speed up vs. elements per cell.
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Figure 4: FMBEM speed-up as a function of the number of elements.

2 (see Figure 1a). The normalized ETC of the micro heterogeneous material was
defined as α = k/k0, where k is the ETC of the micro heterogeneous material and k0
is the thermal conductivity of a geometrically similar specimen without the holes.
In this way, the normalized ETC can be computed using α = Q/Q0 , this is, the
same procedure introduced in equation 1.

The following number of holes per sample sequence was used to study the depen-
dence of the effective responses on the sample size: 10, 30, 60, 100, 150, 200 and
300. Every computation was performed 20 times using models with different ran-
dom distributions of the holes. In every case, the models were discretized using 40
elements along the hole perimeter (see Section 2). The resulting model sizes ranged
from 504 to 13024 elements. It is interesting to mention that the solution of a sin-
gle model like the one illustrated in Figure 1 using a laptop with a 3Ghz Pentium4
processor and 1Gb of RAM took around 53 seconds using the direct BEM formula-
tion, whereas the FMBEM needed only of 13 seconds. This speed-up justified the
implementation of the FMBEM for solving the 4×7×20=560 models employed to
size the RVE.

The mean and the standard deviation of the ETC results were calculated for each
set of samples. The results are illustrated in Figure 5. It can be seen that the result
dispersion diminishes as the number of holes per sample increases. Justified by
the somewhat ad-hoc fact that for two successive enlargements of the number of
holes the responses differed from one another, on average, by less than 0.5%, the
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200-hole samples were selected as RVE for further analysis.

Further details and a comparison of the above ETC results with those of analytical
and semi-empirical models can be found in Dondero et al (2011).
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Figure 5: Effective thermal conductivity, α =k/k0, as function of the number of
holes for a set of void volume fractions, f. Error bars indicate the standard deviation
of the results computed for 20 different random distributions of the holes.

4 Optimization Using Genetic Algorithms

The GA code used in this work is a customization of PIKAIA, a self-contained,
genetic-algorithm-based optimization subroutine developed by Charbonneau and
Knapp.

The GA is used to optimize the spatial distribution of the void volume fraction
along the y-direction in order to obtain an objective temperature field, T(y), see
Figure 6. To this end, the model domain is divided into n zones (parallel bands in
Figure 6a) of equal length and over which the void volume fraction, f (y), is lin-
early interpolated. The interpolation of the f (y) is done in terms of m=n+1 discrete
values, fi , at the positions of the zone limits, see Figure 6c. The f i are selected as
design variables for the GA and they are codified into chromosomes

chromosome = f1, f2, . . . , fm. (2)
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Figure 6: (a) Geometry with domain division, boundary conditions and dimen-
sions; (b) objective temperature field; (c) piecewise linear interpolation of the void
fraction along the RVE.

The chromosome representation is done in binary format.

The cost of the individuals (the cost function) is the deviation of the actual tem-
perature field from the objective temperature field, T(y). This is assessed using a
least-squares scheme for the differences between the objective temperature field,
T(y), and the temperatures t j computed for the set of the M internal points evenly
distributed over the complete model domain:

cost (individual i) =

√∫M
j=1 [T (y j)− t j]

2

M
. (3)

The internal point arrangement is depicted in Figure 1a. Note that the number of
evaluation points cannot be guaranteed to remain constant during the optimization
process due to change in the void volume fraction and the random distribution of
the voids. So, the definition of the cost function in equation (3) implies an average.

The random distributions for the void positions are generated automatically using
the rejection method with the distribution function given by the piece-wise defini-
tion for f (y) [Press et al, 1992]. The models dimensions are always chosen bigger
than the RVE size discussed in Section 3.

The critical issue in the implementation of the GA is the computational cost of the
evaluation of the fitness function, which must be performed hundreds of even thou-
sands of times for the solution of a single problem. In order to accelerate the com-
putations a parallel version of the GA was developed. The GA was implemented to
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run in parallel in a Beowulf PC cluster by incorporating MPI routines into PIKAIA.
The parallel implementation of the GA is relatively simple due to natural indepen-
dence of the cost function for each individual. The developed algorithm uses a
master-slave scheme where the master node is in charge of the management of the
GA (creating and populating each generation) and the slave nodes are dedicated to
the evaluation of the cost of the individuals using the FMBEM solver. The scheme
of the implementation is shown in Figure 7. The implementation was set up to run
on a Debian-based GNU/Linux diskless cluster consisting of eight Intel Pentium 4
CPUs with 2 gigabytes of RAM each.

 

1. Creates generation  G.
2. Distributes individuals for evaluation in the 

Slave nodes.
3. Receives cost results of individuals from the 

Slave nodes.
4. Selects, crosses and mutates generation  G.
5. Creates generation  G+1.

Evaluate cost of each individual using FM-BEM

Master
(node 0)

Slave
(node 1)

Slave
(node 2)

Slave
(node k)

.  .  . 

Figure 7: Parallel GA master/slave parallel implementation: master (broken lines)
and slave (continuous lines) tasks and communication scheme (messages through
MPI).

5 Material Designs

There are presented in this section the design of two materials with piece-wise con-
stant and smooth continuous spatial variations of their normalized effective thermal
conductivities, α[ f (y)], respectively. The void volume fraction is allowed to vary
within the range 0 ≤ f (y) ≤ 0.5. The upper limit for f (y) is the maximum value
attainable using the sequential addition process for circular randomly-distributed
holes of radius r separated by a minimum distance of 0.005r [Torquato, 2002].

Besides, and in order to guarantee that a solution for the optimization problem al-
ways exists, it is necessary to verify that the temperature field specified as objective
function is feasible for the thermal conductivity values that can be attained within
the void volume fraction 0≤ f (y)≤ 0.5. To this end, the Maxwell–Eucken 1 equa-
tion (ME1) [Wang et al, 2006] is used. The ME1 formula for the normalized ETC
of a material consisting of a continuous matrix with a random dispersion of circular
inclusions is

α ( f ) =
k0 + kd− (k0− kd) f
k0 + kd +(k0− kd) f

, (4)
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where k0 and kd are the conductivities of the matrix and the inclusions respectively.
Thus, by setting the conductivity for the matrix as k0=1 and the conductivity of
the inclusions (the voids) as kd=0, it results from equation (4) that the range of
normalized thermal conductivities associated to the void volume fraction 0 ≤ f ≤
0.5 is 1≥ α ( f )≥ 0.333.

5.1 Example 1: Material with piece-wise constant effective thermal conductiv-
ity

This first study case was designed as a benchmark problem. The goal is to test the
ability of the optimization procedure to find the piece-wise constant solution of the
void volume fraction, f(y), that results in a bilinear piece-wise temperature field,
T(y). The problem set-up is depicted in Figure 6a, with the dimension L=60mm.
The boundary conditions are T2 = 100◦C along the top edge of the specimen, and
the flux q1 = -1.4 W/mm2 prescribed along the bottom edge. The lateral edges
are insulated, this is, q = 0. Assuming that the bottom half of the specimen, 0 ≤
y ≤ 30mm, has a void volume fraction f = 0.5, and that the void volume fraction
in the top half, 30mm ≤ y ≤ 60mm, is f = 0, the corresponding piece-wise linear
temperature field for the objective function is

T (y) = 4.2
◦C

mm
y−62◦C 0mm≤ y≤ 30mm (5)

T (y) = 1.2
◦C
mm

y+28◦C 30mm≤ y≤ 60mm.

It is easy to verify that the above objective function are the temperature solution
for the problem consisting in a two-zone sample with normalized ETCs α1 = 1
and α2 = 0.333, the limiting values for the void volume fractions f =0 and f =0.5,
respectively.

The optimization domain is divided into 8 zones, resulting in 9 design variables fi.
The chromosome is codified using 6 significant digits per design variable, what re-
sults in a chromosome length 9×6=54 genes (the number of design variables times
the number of digits). The parameters for the GA are set as follows: population
size 24 individuals, 50 generations, crossover probability 0.85, one point muta-
tion mode with adjustable rate, initial mutation rate 0.005, minimum mutation rate
0.001, maximum mutation rate 0.0185, and full generational replacement reproduc-
tion plan with elitism. The setup of the GA follows the directions and suggestion
in [Goldberg, 1999].

Figure 8 illustrates the evolution of the cost function in terms of the generation
number for a typical GA solution. Results are plotted for the best individual (the
most fitted) and the average cost for all the individuals in each generation. The
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minimum is achieved after approximately 30 generations. It is worth noting that
the convergence is not monotonous, but there are small fluctuations in the cost
function as the optimization procedure progresses. These fluctuations are a conse-
quence of the random nature of the microestructure geometry. The randomness in
the microestructure geometry makes that two individuals generated using the same
values for the design variables fi will not be identical, and so, their costs will be
different. This means that, even for the case when no improvement is made by
the GA and the best fitted individual is kept for the next generation, the cost result
could be improved or degraded. This behavior could be diminished by setting a
tighter criterion when sizing the RVE, what would result in a bigger RVE (see Sec-
tion 3). However, it must be noted that for the actual RVE size, the fluctuations in
the fitness function are negligible with respect to the characteristic temperature of
the example. Note that the maximum fluctuations in Figure 8 are of approximately
0.05◦C, while the overall temperature difference along the sample 162 ◦C. This is,
the fluctuation in the fitness function is only 0.04% the average mean temperature
of the sample.
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Figure 8: Fitness evolution for the first example: best-of-generation and average
results.

The resultant optimized microstructure is shown in Figure 9a together with the
contour plot of the temperature field. The void volume fraction solution, fi = 0.445,
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 (a)                                                  (b)                                     (c) 
 

Figure 9: First example: (a) optimized microstructure with temperature contour
plot, (b) void fraction solution, and (c) objective and resultant temperature fields.

0.465, 0.458, 0.486, 0.405, 0.022, 0.032, 0.023, 0.009, is plot in Figure 9b as a
function of the y-position. Besides, the final temperature field is plotted in Figure
9c. The symbols in Figure 9c indicate the average value of the temperature results
computed at the internal points located at the corresponding y-coordinate (see dot-
ted line in Figure 9). The error bars indicate the dispersion of the results. It can
be seen that the maximum difference between the objective function and the opti-
mized result occurs in the neighborhood of y = L/2 = 30 mm, the position of the
discontinuity in the ETC. As it was expected, the optimization procedure fails to
exactly reproduce this abrupt variation of the ETC because it has been designed to
produce continuous void volume fraction fields. However, it is worth noting that
the transition from f ∼= 0.50 to f ∼= 0 occurs into a single design zone.

5.2 Example 2: Material with continuous variation in the thermal conductivity

It is proposed in this example to design a material with a smooth variation in the
thermal conductivity in the y-direction. The specified temperature field for the
objective function is

T (y) = 0.3133+1.989 · y−16.41 · tan−1 (0.0857 · y−2.56690) [◦C] . (6)

This objective function was devised to have a minimum gradient in the central
portion of the optimization domain, and a maximum one at its ends, see Figure 10c.
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The boundary conditions are similar to those of the Figure 6, with T1=20◦C and
T2=100◦C are specified along the bottom and top edges of the sample respectively.
The optimization procedure is used to obtain the void volume fraction f (y) using an
identical set-up to that of the first example.

Figure 10a depicts the resulting microstructure with the corresponding contour plot
for the temperature field for one the best fitted individuals. Figure 10b presents
the optimal void volume fraction solution, fi = [0.477, 0.383, 0.319, 0.143, 0.059,
0.079, 0.295, 0.492, 0.292], and Figure 10c illustrates the comparison between the
objective and the resultant temperature fields. It can be observed that there is an
excellent agreement between the objective function and the resultant temperature
field. This result was achieved after 20 generations.

The above result was further assessed by means of an analytical solution calculated
using the comparison to Maxwell-Eucken 1 model [Wang et al, 2006]. The flux for
the objective temperature field,

Q =−k(y)
dT
dy

, (7)

is first computed for the temperature field in expression (6) assuming the minimum
ETC at the bottom edge of the specimen

Q =−k(y)
dT
dy

∣∣∣∣
y=0

=−0.333
W

◦C ·mm
·1.804

◦C
mm

=−0.601
W

mm2 . (8)

Then, since the flux must remain constant for every cross-section

α ( f ) =
k (y)
k0

=
Q

dT/dy
=−0.601

[
1.406

(0.0857 y−2.569)2 +1
−1.989

]−1

. (9)

The above analytical estimation is plotted in Figure 11 together with that for the
optimization analysis. It can be seen that both solutions exhibit the same behav-
ior, with a maximum in the central zone of the sample, and minimum values at the
sample ends. The optimized solution presents an increment in the conductivity at
the position y=60 mm which is attributed to the random nature of the microstruc-
ture. However, the result in Figure 10c shows that this anomalous behavior does
not affect the resultant temperature field.

6 Experimental validation

The numerical results obtained in the previous section were experimentally vali-
dated using ad-hoc designed experiments.
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Figure 10: Second example: (a) optimized microstructure with temperature contour
plot, (b) void fraction solution, and (c) objective and resultant temperature fields.
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Figure 11: Analytical estimation and computed conductivity result for the second
example.
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Macroscopic specimens of the functionally-graded heat-conducting materials were
constructed by machining circular holes in two highly-conductive 1100 AA-Grade
aluminum 8mm thick plates. These designs are intended to approach the theoreti-
cal case of a highly-conductive continuous phase with non-conductive inclusions.
Figure 12 illustrates the experimental setup. Temperatures labeled in the simulation
as “T = T2” and “T = T1” were imposed in the physical experiment by means of
a large-capacity heat source and a heat sink. The heat source was powered by a
400W electric resistance, while the sink consisted in a water cooling system and an
electric resistance used to control the temperature. A 1/2” thick layer of alumina
wool was placed beneath the bottom face and along the sides of the specimens in
order to minimize convection and radiation heat losses. The holes in the speci-
mens were plugged using alumina wool caps. Temperature maps were measured
via thermal images taken using an infrared thermographic camera (Fluke Ti-30).
The top face of the plate was painted matte black to maximize and homogenize the
infrared specimen emittance. Figure 12 shows a typical infrared thermal image.
Further details about the experiment setup can be found in the work by Dondero et
al [2011].

 

  

 Figure 12: Left: Experimental setup. Right: thermal image showing the tempera-
ture map of the specimen.

Figures 13 and 14 depict the comparison between the experimental (gray-filled
areas) and the FMBEM results. Error bars for the FMBEM results indicate the
dispersion of the temperature results computed at the internal points located at the
corresponding y-coordinate. It can be seen that with the only exception of the top
and bottom edges of the specimen where the temperature values are boundary con-
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ditions, the temperatures measured in the experiments are consistently lower than
those computed using the FMBEM. This difference was attributed to the heat losses
due to convection and radiation occurring in the experiment but not considered in
the numerical model.

To ponder the heat-loss effects, a one-dimensional heat transfer problem was setup
as follows:

k0 α ( f (y))A0
dT
dy
−h A(y)(Tsur f −Tenvr)−hr A(y)(Tsur f −Tenvr) = 0 (10)

where the first term accounts for the conduction heat transfer, and the second and
third terms for the convection and radiation heat losses respectively. For the con-
duction term the ETC, α ( f (y)), is computed using the Maxwell-Eucken 1 model
with the void volume fraction data of the optimized materials, and k0 = 237 W m−1

K−1 is the conductivity of the aluminum. The convection heat transfer coefficient
is assumed constant along the specimen and set h = 4.35 W K−1 m−2 following the
estimation formula h = 0.38(∆T )0.25, where [h] = BTU ft−2 ◦C−1 hr−1, and [∆T]
= ◦C as proposed for the design of cooling air fins [Mc. Adams, 1942]. The radi-
ation transfer coefficient is calculated using hr = eσ (Tsur f +Tenvr)

(
Tsur f

2 +Tenvr
2
)

where σ is the Stefan–Boltzmann constant, Tsur f stands for the temperature on the
specimen surface and Tenvr is the environment temperature, which is set Tenvr =
20◦C. The value of the emittance is set e = 0.95 following Kreith and Kreider
(1978).

Equation (10) was solved for both materials using a one-dimensional implicit finite
differences iterative scheme with the plate length discretized into 100 elements.
The effective area for the heat convection and radiation, A(y), was computed for
each element using A(y) = A0 (1− f (y)), where A0 is the transverse area of the
aluminum plate A0 = 150mm × 8mm = 1200mm2.

The temperature results considering the heat losses are plotted along the other re-
sults in Figures 13 and 14. It can be observed that their agreement with the exper-
imental data is very good. The results for the temperature fields considering the
effect of the heat losses lay within the dispersion of the experimental data for both
materials. It is worth to remark that heat transfer and the emittance coefficients for
the computation of the heat losses were retrieved from the literature, i.e. no data
fitting was made to compute these values.

7 Conclusions

It has been introduced in this work an efficient numerical tool for the design of ran-
dom micro-heterogeneous materials with functional-graded effective thermal con-
ductivities (ETC). The optimization is carried using a parallel Genetic Algorithm
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Figure 13: Temperature distribution along the plate for the first example.
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Figure 14: Temperature distribution along the plate for the second example.
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(GA) and a Fast Multipole Boundary Element Method (FMBEM) for the evaluation
of the cost function over representative volume elements (RVE).

The devised tool was tuned-up for the design of two-phase micro-heterogeneous
functionally graded materials (FGM) consisting in a continuum matrix with non-
conductive circular inclusions (insulated voids). It was found that in order to obtain
mesh independent results, it is necessary to use at least 40 constant boundary ele-
ments for the discretization of each inclusion. A number of elements per cell equal
to two hundred ensures a quality of the FMBEM results equal to that of a direct
BEM. Speed-ups of up to 14 times with respect to a standard BEM solver were
achieved for models using 8,800 elements.

Convergence and statistical analysis were performed in order to size the RVE. It
was found that a sample containing at least 200 voids can be assimilated to RVEs
for materials with a void volume fractions of up to f =0.5.

The effectiveness of the methodology has been demonstrated for two examples: a
material with a piece-wise constant ETC, and a material with a smooth continu-
ous spatial variation of the ETC. The optimization procedure succeeded to provide
feasible microstructure topologies for both cases. The numerical predictions were
experimentally validated by means of ad-hoc designed experiments, in which the
temperature fields were measured by means of a thermographic camera. Very good
agreement was found between the numerical and the experimental results.

It can be concluded that the proposed numerical procedure is effective for the de-
sign micro-heterogeneous functionally-graded thermal materials. Based on robust
genetic and BEM algorithms, it is capable to account for the topological details of
the material microstructure. Although the methodology was illustrated in this work
to optimize the distribution of circular inclusions in one direction, it can be easily
extended to deal with inclusions of arbitrary shape and orientation and multidimen-
sional objective functions, this is, materials with graded properties in both the x-
and y-directions.
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