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Coupled Evolution of Damage and Fluid Flow in a
Mandel-type Problem

Eduardo T Lima Junior1, Wilson S Venturini2 and Ahmed Benallal3

Abstract: Some considerations on the numerical analysis of brittle rocks are pre-
sented in this paper. The rock is taken as a poro-elastic domain, in full-saturated
condition, based on the Biot’s Theory. The solid matrix of this porous medium is
considered to be susceptible to isotropic damage occurrence. An implicit boundary
element method (BEM) formulation, based on time-independent fundamental solu-
tions, is developed and implemented to couple the fluid flow and two-dimensional
elastostatics problems. The integration over boundary elements is evaluated by
using a numerical Gauss procedure. A semi-analytical scheme for the case of tri-
angular domain cells is followed to carry out the relevant domain integrals. The
non-linear problem is solved by a Newton-Raphson procedure. A geomechanical
problem is analyzed in order to illustrate the efficiency of the implemented formu-
lation.

Keywords: saturated porous media, isotropic damage, consolidation, BEM.

1 Introduction

The study of porous materials is extremely relevant in several areas of knowl-
edge, such as soil and rock mechanics, contaminant diffusion, biomechanics and
petroleum engineering. The mechanics of porous media deals with materials where
the mechanical behavior is significantly influenced by the presence of fluid phases.
The response of the material is highly dependent on the fluids that flow through the
pores. Biot (1941) was the first to propose a coupled theory for three-dimensional
consolidation, based on the Terzaghi’s studies on soil settlement (Terzaghi, 1923).
This thermodynamically consistent theory is described in the book by Coussy (2004),
who improved significantly the knowledge on poromechanics. Cleary (1977) pre-
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sented the fundamental solutions to porous solids, representing the first contribu-
tions on integral equations dedicated to this kind of problems. Among others pio-
neers BEM works applied to porous media, the ones from Cheng and his collabo-
rators (1984, 1987, 1998) are well-known, using the direct BEM formulation.

In the field of material mechanics, we note the modelling of nonlinear physical
processes, as damage and fracture. Processes of energy dissipation and consequent
softening have been extensively studied, so that one can count on a wide range of
models already developed. Continuum Damage Mechanics (CDM) deals with the
load carrying capacity of solids whose material is damaged due to the presence
of micro-cracks and micro-voids. CDM was originally conceived by Kachanov
(1958), to analyze uniaxial creeping of metals subjected to high-order tempera-
tures. Several authors studied and developed models related to CDM. Lemaitre
and colleagues (1985, 1992) contributed significantly to the field. In this work, we
use the model of Marigo (1981), who presented a scalar isotropic model for brittle
and quasi-brittle materials. The first applications of BEM to damage mechanics
reported in the literature are Herding & Kuhn (1996) and Garcia et al (1999). Re-
cently, we can cite the works of Sladek and Sladek (2003), Botta, Venturini and
Benallal (2005) and Benallal, Botta and Venturini (2006). These works include
non-local formulations to treat strain localization phenomena and associated nu-
merical instabilities. Some aspects on the numerical analysis of porous media ex-
periencing damage are found in Cheng & Dusseault (1993) and Selvadurai (2003).

Due to the increasing complexity of models developed for engineering problems,
robust numerical models capable to provide accurate results with the least possible
computational effort are looked for. In this scenario, BEM appears as an interesting
choice for obtaining numerical solutions in various engineering applications.

In this paper, a non-linear set of transient BEM equations is developed, based on
Betti’s reciprocity theorem, to deals with isotropic-damaged porous media. The
description of porous solid is done in a Lagrangean approach. Marigo’s damage
model is applied with a local evaluation of the thermodynamic force associated to
damage.

Regarding the BEM numerical procedure, the integration over boundary elements
is evaluated by using a numerical Gauss procedure. A semi-analytical scheme for
the case of triangular domain cells is followed to carry out the relevant domain inte-
grals. A Newton-Raphson procedure is applied to solve the non-linear system, with
a consistent tangent operator. This is done in the light of the procedure introduced
by Simo and Taylor (1985) for finite elements.
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2 Governing equations

Let us assume the free energy potential per unit volume of a saturated porous
medium subject to damage, as,

ρψ(ε jk,D,φ −φ0) =
1
2
(1−D)ε jkEd

jklmεlm +
1
2

b2M
[
Tr
(
ε jk
)]2

+
1
2

M (φ −φ0)
2−bM (φ −φ0)Tr

(
ε jk
) (1)

where the constants M and b represent the Biot modulus and Biot coefficient of
effective stress, respectively. In full-saturated condition, the lagrangian porosity φ

measures the variation of fluid content per unit volume of porous material. The bulk
density is described by ρ . The tensor ε jk denotes the strains in the solid skeleton.
Assuming isotropic case, the damage is represented by the scalar-valued internal
variable D, which defines the internal state of the material, taking values between
zero (sound material) and one (complete degradation). The initial porosity field is
indicated by φ0. Ed

jklmrepresents the isotropic elastic tensor in drained condition,
defined as

Edr
k jlm =

(
Kdr− 2G

3

)
δk jδlm +2GIk jlm (2)

The bulk modulus Kdr and the shear modulus G refer to the drained material and
can be obtained experimentally. The fourth order identity tensor is represented
by Ik jlm. It can be observed that one of the possible sets of parameters for the
characterization of porous material is formed by M, b, Kdr and G.

The derivatives of free energy potential with respect to the internal variables lead
to the associate variables, that are the total stress σjk, the pore-pressure p and the
thermodynamical force Y conjugated to D.

σ jk = ρ
∂ψ

∂ε jk
= (1−D)Ed

jklmεlm +bM
[
bTr

(
ε jk
)
− (φ −φ0)

]
δ jk (3)
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∂ψ

∂ (φ −φ0)
= M

[
(φ −φ0)−bTr

(
ε jk
)]

(4)

Y =−ρ
∂ψ

∂D
=

1
2

ε jkEd
jklmεlm (5)

Using equations (3) and (4) the total stress tensor is written as

σ jk = E jklmεlm−DE jklmεlm−b(p− p0)δ jk (6)
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from which it is seen that it includes three different contributions, being the first
one the effective stress σ

e f
jk , acting on the grains of the solid matrix, and the second

one the stress due to damage σd
jk.

In addition to the state laws given above, it is necessary to define a damage criterion.
In Marigo’s model it takes the form:

F(Y,D) = Y −κ(D) (7)

The term κ(D) represents the maximum value of Y reached during the loading his-
tory, and is adopted here in its simple linear form κ(D) = Y0 + AD, where param-
eters Y0 and A are material dependent. The damage evolution becomes from the
consistency condition Ḟ(Y,D) = 0, resulting in:

Ḋ = Ẏ
/

A (8)

The fluid flow through the porous space can be described by Darcy’s law. Assuming
a laminar flow, this law considers a linear relationship between the flow rate and
the pressure gradient:

νk = k [−p,k + fk] (9)

In this simple version, it is assumed isotropic, with k = k
µ

the scalar permeabil-
ity coefficient, defined as a function of the intrinsic permeability k and the fluid
viscosity µ . The fluid body force is represented by fk.

The fluid mass balance equation, assuming no external fluid sources, is written as:

d (ρ f φ)
dt

+(ρ f νk),k = 0 (10)

The following equilibrium and compatibility relations, added to appropriate bound-
ary conditions complete the set of equations that describes the poro-elasto-damage
problem, in quasi-static conditions:

σ jk,k +b j = 0 (11)

ε jk =
1
2
(
uk, j +u j,k

)
(12)

3 Integral equations

In order to couple the behaviour of the solid and fluid phases, two sets of integral
equations are derived. The first one is related to the elastostatics problem, for which
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a pore-pressure field is distributed over the domain, while the other equation refers
to the pore-pressure itself.

In order to obtain the integral equations one can use Betti’s reciprocity theorem,
which can only be applied to fields that keep a linear and proportional relation-
ship between them. Thus, in the case of elasticity, assuming the effective stress
definition:∫
Ω

σ
e f
jk (q)ε∗i jk(s,q)dΩ =

∫
Ω

ε jk(q)σ∗i jk(s,q)dΩ (13)

∫
Ω

(
σ jk(q)+σ

d
jk(q)+bδ jk p(q)

)
ε
∗
i jk(s,q)dΩ =

∫
Ω

ε jk(q)σ∗i jk(s,q)dΩ (14)

where s and q represent the source and field points, and X∗is the fundamental so-
lution for the variable X , from now on. The direction i refers to the application of
the unit load on the source point into the fundamental domain. In elastostatics, one
applies the well-known Kelvin fundamental solutions. By applying the divergence
theorem to equation (14), and considering the transient nature of the problem, one
obtains the following integral equation for displacements on the boundary points S:

Ciku̇k(S) =
∫
Γ

Ṫk(Q)u∗ik(S,Q)dΓ−
∫
Γ

T ∗ik(S,Q)u̇k(Q)dΓ

+
∫
Ω

bδ jk ṗ(q)ε∗i jk(S,q)dΩ+
∫
Ω

σ̇
d
jk(q)ε∗i jk(S,q)dΩ

(15)

The stresses at internal points are obtained by differentiating equation (15), now
written for internal points, and applying Hooke’s law, which leads to

σ̇i j(s) =−
∫
Γ

Si jk(s,Q)u̇k(Q)dΓ+
∫
Γ

Di jk(s,Q)Ṫk(Q)dΓ+
∫
Ω

Ri jkl(s,q)σ̇d
kl(q)dΩ

+T Li j

[
σ̇

d
kl(s)

]
+
∫
Ω

bδklRi jkl(s,q)ṗ(q)dΩ+T Li j [bδkl ṗ(s)]

(16)

where Si jk, Di jk and Ri jkl are the derivatives of the fundamental solutions, and T Li j

are the free-terms coming from differentiation.

The integral equation for the pore-pressure can be obtained in a similar way, defin-
ing the proportional flow vector ν

pr
k = νk− k fk = −kp,k in order to apply Betti’s
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Theorem∫
Ω

[νk− k fk] p∗,k(s,q)dΩ =
∫
Ω

ν
∗
k (s,q)p,k(q)dΩ (17)

from what the divergence theorem leads to write:

p(s) =−
∫
Γ

ν
∗
η(s,Q)p(Q)dΓ+

∫
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p∗(s,Q)νη(Q)dΓ

−
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Ω
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Ω

p∗,k(s,q)k fk(q)dΩ

(18)

η indicates the outward normal direction to the boundary. Assuming νk,k = −φ̇

(see (10)) and, neglecting the body force fk,we get:

p(s) =−
∫
Γ

ν
∗
η(s,Q)p(Q)dΓ+

∫
Γ

p∗(s,Q)νη(Q)dΓ+
∫
Ω

p∗(s,q)φ̇(q)dΩ (19)

For convenience, it is possible to take the derivative φ̇(q) from (4), so that the
pore-pressure is given by the following equation:

p(s) =−
∫
Γ

ν
∗
η(s,Q)p(Q)dΓ+

∫
Γ

p∗(s,Q)νη(Q)dΓ

+
∫
Ω

p∗(s,q)
[

1
M

ṗ(q)+bTr (ε̇(q))
]

dΩ

(20)

Considering a finite time step ∆tn = tn+1− tn and a corresponding variable incre-
ment ∆X = Xn+1−Xn, one can integrate equations (15), (16) and (20) along the
interval ∆t, leading to the following set of equations, in terms of the variable incre-
ments:

Cik∆uk(S) =
∫
Γ

∆Tk(Q)u∗ik(S,Q)dΓ−
∫
Γ
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]
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(22)
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c(s)p(s) =−
∫
Γ

ν
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∫
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+
1
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1
M
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(23)

4 Algebraic Equations and Solution Procedure

The numerical solution of the boundary value problem requires both the time and
space discretizations. It should represent the system of equations in a discrete way
along the linear boundary elements and into the triangular domain cells in order to
obtain the approximate values of the variables of interest. One defines the number
of boundary points byNnand the number of internal nodes by Ni. The appropriate
discretization of the integrals on (21)-(23), followed by some algebraic manipula-
tions inherent to BEM, leads to the following system:

[H]{∆u}= [G]{∆T}+[Q]
{

∆σ
d
}

+b [Q] [IK]{∆p} (24)

{∆σ}=− [HL]{∆u}+[GL]{∆T}+[QL]
{

∆σ
d
}

+b [QL] [IK]{∆p} (25){
p(i)
}

=−
[
HP(i)

]
{p}+

[
GP(i)

]
{V}

+
1

M∆t

[
QP(i)

]{
∆p(i)

}
+

b
∆t

[
QP(i)

]
[Tr]{∆ε}

(26)

The subscript (i) refers to internal points. The influence matrices represented by
[] come from the integration of the fundamental solutions and its derivatives. The
variables represented by {} are prescribed or unknown variables along the bound-
ary or over the domain. After some arrangements, the system given above is written
as

[E]{∆ε}= {∆Ns}+[[QS]+ [I]]
{

∆σ
d
}

+b [[QS]+ [I]] [IK]
{

∆p(i)
}

(27)

[
[I]− 1

M∆t

[
QP(i)

]]{
∆p(i)

}
=
{

N p
}

+
b
∆t

[
QP(i)

]
[Tr]{∆ε} (28)

where {∆Ns} and
{

N p
}

are vectors containing prescribed values and [E] the drained
elastic tensor. Finally, arranging the two equations in a single one, in terms of {∆ε}
only, leads to[
E
]
{∆ε}= [∆Ns]+

{
N p
}

+
[
QS
]{

∆σ
d
}

(29)
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which contains the new terms:{
N p
}

= b
[
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]
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[
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[
E
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[
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]
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[
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M∆t

[
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QP(i)
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]
(31)

Due to the presence of correction terms associated with damage, equation (29) is
non-linear at each time increment, and can be written:

{Y ({∆εn})}=−
[
E
]
{∆εn}+[∆Ns]+

{
N p
}

+
[
QS
]{

∆σ
d
n

}
= 0 (32)

The solution is carried out by a Newton-Raphson’s scheme. An iterative process
is required to reach equilibrium. Then, from iteration i, the next try i + 1 is given
by
{

∆ε i+1
n
}

=
{

∆ε i
n
}

+
{

δ∆ε i
n
}

. The correction
{

δ∆ε i
n
}

is calculated from the first
term of the Taylor expansion, as follows:

{
Y
({

∆ε
i
n
})}

+
∂
{

Y
({

∆ε i
n
})}

∂ {∆ε i
n}

{
δ∆ε

i
n
}

= 0 (33)

where the derivative
∂{Y({∆ε i

n})}
∂{∆ε i

n}
is the consistent tangent operator.

5 Numerical example

The validation of the implemented formulation was presented in Lima Junior (2011)
and Lima Junior, Venturini and Benallal (2010), based on benchmark cases con-
cerning poroelasticity and damage evolution. It is proposed in this paper the anal-
ysis of a plane problem, as shown in Fig. 1. It consists of a rectangular area, with
2 m wide and 1 m in height. A load of 20 MN is applied monotonically over 2 s,
on impermeable plates placed on the top and bottom faces. The flow occurs only
through the lateral faces. The boundary conditions of the problem are inspired by
the problem of consolidation proposed by Mandel (1953). The constituent material
is Berea sandstone whose properties are defined in Tab. 1. The discretization used
contains 24 boundary elements and 32 domain cells. The four possible material
behaviors are considered, being the uncoupled elasto-damage and poroelastic cases
and the coupled poro-damage regime.

The central point of the domain is taken as reference for the analysis of the problem.
Initially, we observe the behavior in the vertical direction along which the load is
applied. Based on the graphs concerning to damage and porodamage regimes in
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Figure 1: Problem definition, adopted cells mesh

Table 1: Parameters of the Berea sandstone
Parameter Value

G 6000 MPa
υ 0.2
υu 0.33
Ks 36000 MPa
ϕ0 0.19
k 1.9 x 10−13 m2

µ 1 x 10−9 MPa.s
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Figure 2: Vertical strain evolution at the central point
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0.0016 0.16 0.000409 0.40927 0 4.16E-05 -9.1E-05 -1.6E-05

0.0017 0.17 0.00043 0.42957 0 4.41E-05 -9.7E-05 -1.6E-05

0.0018 0.18 0.000449 0.44919 0 4.64E-05 -0.0001 -1.7E-05

0.0019 0.19 0.000468 0.46818 0 4.88E-05 -0.00011 -1.8E-05

0.002 0.2 0.000487 0.48653 0 5.12E-05 -0.00011 -1.9E-05

0.0021 0.21 0.000504 0.50428 0 5.35E-05 -0.00012 -1.9E-05

0.0022 0.22 0.000521 0.52144 0 5.58E-05 -0.00013 -2E-05

0.0023 0.23 0.000538 0.53803 0 5.8E-05 -0.00013 -2.1E-05

0.0024 0.24 0.000554 0.55407 0 6.03E-05 -0.00014 -2.1E-05

0.0025 0.25 0.00057 0.56958 0 6.25E-05 -0.00014 -2.2E-05

0.0026 0.26 0.000585 0.58457 0 6.48E-05 -0.00015 -2.3E-05

0.0027 0.27 0.000599 0.59906 0 6.7E-05 -0.00016 -2.3E-05

0.0028 0.28 0.000613 0.61307 0 6.91E-05 -0.00016 -2.4E-05

0.0029 0.29 0.000627 0.62661 0 7.13E-05 -0.00017 -2.4E-05

0.003 0.3 0.00064 0.63969 0 7.35E-05 -0.00018 -2.5E-05

0.0031 0.31 0.000652 0.65235 0 7.56E-05 -0.00018 -2.5E-05
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Figure 3: Vertical effective stress evolution at the central point
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0.0034 0.34 0.000688 0.68783 0 8.19E-05 -0.0002 -2.7E-05

0.0035 0.35 0.000699 0.69887 0 8.4E-05 -0.00021 -2.7E-05

0.0036 0.36 0.00071 0.70955 0 8.6E-05 -0.00021 -2.8E-05

0.0037 0.37 0.00072 0.71987 0 8.81E-05 -0.00022 -2.8E-05

0.0038 0.38 0.00073 0.72985 0 9.01E-05 -0.00023 -2.9E-05
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0.0046 0.46 0.000799 0.79857 0 0.000106 -0.00028 -3.1E-05
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Figure 4: Pore-pressure evolution at the central point

Fig. 2, it can be seen the influence of the fluid as mitigation in the evolution of the
strains on the solid skeleton, in the presence of damage.

The analysis of Fig. 3 allows to visualize that the coupled behavior (porodamage) is
governed initially by the poroelastic regime, going to suffer the effects of damage,
which starts at around 0.6s analysis (Fig. 5).

From around 0.6 s the pore-pressure starts to evolve coupled to the damage level on
the material, as shown in Fig. 4 and Fig. 5 in which it can be seen that the damage
initiation, as well as its intensity, are delayed along the time, in the porodamage
regime.
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0.0047 0.47 0.000806 0.80592 0 0.000108 -0.00028 -3.2E-05

0.0048 0.48 0.000813 0.81302 0 0.00011 -0.00029 -3.2E-05

0.0049 0.49 0.00082 0.81989 0 0.000112 -0.0003 -3.2E-05

0.005 0.5 0.000827 0.82653 0 0.000114 -0.0003 -3.2E-05

0.0051 0.51 0.000833 0.83295 0 0.000116 -0.00031 -3.3E-05

0.0052 0.52 0.000839 0.83915 0 0.000117 -0.00031 -3.3E-05
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0.0054 0.54 0.000851 0.85095 0 0.000121 -0.00033 -3.3E-05

0.0055 0.55 0.000857 0.85655 0 0.000123 -0.00033 -3.4E-05

0.0056 0.56 0.000862 0.86197 0 0.000125 -0.00034 -3.4E-05
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0.0058 0.58 0.000872 0.87226 0 0.000129 -0.00035 -3.4E-05
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Figure 5: Damage parameter evolution at the central point

0.0062 0.62 0.000891 0.89087 0 0.000136 -0.00038 -3.5E-05

0.0063 0.63 0.000895 0.89514 0 0.000138 -0.00039 -3.5E-05

0.0064 0.64 0.000899 0.89927 0 0.00014 -0.00039 -3.5E-05

0.0065 0.65 0.000903 0.90326 0 0.000141 -0.0004 -3.6E-05

0.0066 0.66 0.000907 0.90712 0 0.000143 -0.00041 -3.6E-05

0.0067 0.67 0.000911 0.91085 0 0.000145 -0.00041 -3.6E-05

0.0068 0.68 0.000914 0.91445 0 0.000147 -0.00042 -3.6E-05
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0.0075 0.75 0.000937 0.93653 0 0.000159 -0.00046 -3.7E-05
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Figure 6: Horizontal strain evolution at the central point

Consider now the problem response along the horizontal direction, also measured
at the center of the domain. Fig. 6 shows the evolution of horizontal strain over
time, considering the different behaviors.

Considering that this is not the direction of load application, the effects of loading
are manifested only partially in the horizontal direction, due to Poisson’s effect.
However, the fluid flows preferentially along horizontal direction, due to the im-
posed boundary conditions.

The comparison between the strain curves regarding the damage and porodamage
regimes in Fig. 6, allows the verification of the predominance of the effects due
to the presence of fluid. The horizontal strains induced in the poroelastic case are
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0.0077 0.77 0.000942 0.94194 0 0.000163 -0.00048 -3.7E-05

0.0078 0.78 0.000945 0.9445 0 0.000165 -0.00048 -3.7E-05

0.0079 0.79 0.000947 0.94699 0 0.000166 -0.00049 -3.7E-05

0.008 0.8 0.000949 0.94938 0 0.000168 -0.0005 -3.7E-05

0.0081 0.81 0.000952 0.9517 0 0.00017 -0.0005 -3.8E-05

0.0082 0.82 0.000954 0.95394 0 0.000172 -0.00051 -3.8E-05

0.0083 0.83 0.000956 0.95611 0 0.000173 -0.00052 -3.8E-05

0.0084 0.84 0.000958 0.95821 0 0.000175 -0.00052 -3.8E-05

0.0085 0.85 0.00096 0.96023 0 0.000177 -0.00053 -3.8E-05

0.0086 0.86 0.000962 0.96219 0 0.000179 -0.00054 -3.8E-05

0.0087 0.87 0.000964 0.96408 0 0.00018 -0.00054 -3.8E-05

0.0088 0.88 0.000966 0.96591 0 0.000182 -0.00055 -3.8E-05

0.0089 0.89 0.000968 0.96768 0 0.000184 -0.00056 -3.8E-05

0.009 0.9 0.000969 0.96939 0 0.000186 -0.00056 -3.8E-05
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Figure 7: Horizontal effective stress evolution at the central point

0.0092 0.92 0.000973 0.97263 0 0.000189 -0.00058 -3.8E-05

0.0093 0.93 0.000974 0.97418 0 0.000191 -0.00058 -3.8E-05

0.0094 0.94 0.000976 0.97567 0 0.000192 -0.00059 -3.9E-05

0.0095 0.95 0.000977 0.97711 0 0.000194 -0.0006 -3.9E-05

0.0096 0.96 0.000979 0.97851 0 0.000196 -0.0006 -3.9E-05

0.0097 0.97 0.00098 0.97985 0 0.000198 -0.00061 -3.9E-05

0.0098 0.98 0.000981 0.98116 0 0.000199 -0.00062 -3.9E-05

0.0099 0.99 0.000982 0.98242 0 0.000201 -0.00062 -3.9E-05

0.01 1 0.000984 0.98363 0 0.000203 -0.00063 -3.9E-05

0.0101 1.01 0.000985 0.98481 0 0.000204 -0.00064 -3.9E-05

0.0102 1.02 0.000986 0.98595 0 0.000206 -0.00064 -3.9E-05

0.0103 1.03 0.000987 0.98705 0 0.000208 -0.00065 -3.9E-05

0.0104 1.04 0.000988 0.98811 0 0.00021 -0.00066 -3.9E-05

0.0105 1.05 0.000989 0.98914 0 0.000211 -0.00066 -3.9E-05

0.0106 1.06 0.00099 0.99013 0 0.000213 -0.00067 -3.9E-05

0.0107 1.07 0.000991 0.99109 0 0.000215 -0.00068 -3.9E-05
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Figure 8: Stress balance in the horizontal direction, at the central point

higher than those caused in the damage case over the major part of the analysis.

The values of effective stress in horizontal direction are negligible, considering
the boundary conditions of the problem. From Fig. 7 we observe the increase in
effective stress caused by the consideration of the damage in poroelastic problem.

In order to illustrate conclusively the difference between the measured responses
in the central point along the two coordinate directions, it is presented in Fig. 8
and Fig. 9 the evolution of the parts of stress tensor, admitting the porodamage
coupled regime. The predominance of the poroelastic behavior along the horizontal
direction becomes clear.
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0.0108 1.08 0.000992 0.99202 0 0.000216 -0.00068 -3.9E-05 -0.03919

0.0109 1.09 0.000993 0.99292 0 0.000218 -0.00069 -3.9E-05 -0.03923

0.011 1.1 0.000994 0.99378 0 0.00022 -0.0007 -3.9E-05 -0.03926

0.0111 1.11 0.000995 0.99462 0 0.000222 -0.0007 -3.9E-05 -0.0393

0.0112 1.12 0.000995 0.99543 0 0.000223 -0.00071 -3.9E-05 -0.03933

0.0113 1.13 0.000996 0.99622 0 0.000225 -0.00072 -3.9E-05 -0.03936

0.0114 1.14 0.000997 0.99697 0 0.000227 -0.00072 -3.9E-05 -0.03939

0.0115 1.15 0.000998 0.9977 0 0.000228 -0.00073 -3.9E-05 -0.03942

0.0116 1.16 0.000998 0.99841 0 0.00023 -0.00074 -3.9E-05 -0.03945

0.0117 1.17 0.000999 0.9991 0 0.000232 -0.00074 -3.9E-05 -0.03947

0.0118 1.18 0.001 0.99976 0 0.000233 -0.00075 -4E-05 -0.0395

0.0119 1.19 0.001 1.0004 0 0.000235 -0.00076 -4E-05 -0.03953

0.012 1.2 0.001001 1.001 0 0.000237 -0.00076 -4E-05 -0.03955

0.0121 1.21 0.001002 1.0016 0 0.000238 -0.00077 -4E-05 -0.03958

0.0122 1.22 0.001002 1.0022 0 0.00024 -0.00078 -4E-05 -0.0396
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Figure 9: Stress balance in the vertical direction, at the central point

6 Conclusions and perspectives

A BEM formulation to poro-elasto-damaged material was applied to a Mandel-type
problem. The model has shown a reasonable level of coupling between the damage
and the fluid seepage. The predominance of each process becomes clear in the two
different directions. The literature, on theoretical and experimental levels, poses
several interesting questions, among which the variations that the damage state
imposes on the poro-elastic parameters, specially about the permeability. Some de-
velopments in this way are being made in the presented model, in order to improve
the solid-fluid interaction.
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