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Wave Propagation in Unsaturated Poroelastic Media:
Boundary Integral Formulation and Three-dimensional
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Abstract: This paper aims at obtaining boundary integral formulations as well as
three dimensional(3D) fundamental solutions for unsaturated soils under dynamic
loadings for the first time. The boundary integral equations are derived via the use
of the weighted residuals method in a way that permits an easy discretization and
implementation in a Boundary Element code. Also, the associated 3D fundamen-
tal solutions for such deformable porous medium are derived in Laplace transform
domain using the method of Hérmander. The derived results are verified analyt-
ically by comparison with the previously introduced corresponding fundamental
solutions in elastodynamic limiting case. These solutions can be used, afterwards,
in a convolution quadrature method (CQM)-based boundary element formulations
in order to model the wave propagation phenomena in such media in time domain.

Keywords: Boundary element method, Boundary integral equations, Fundamen-
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1 Introduction

In compacted fills or in arid climate areas where soils are submitted to wetting-
drying cycles such as ground water recharge, surface runoff and evapo-transpiration,
fine-grained soils are not saturated with water, and contain some air. Due to cap-
illary effects and soil-clay adsorption, the pore water is no more positive, and is
submitted to suction.

The dynamic behavior of the saturated soils has been extensively investigated [Biot
(1941, 1956); Zienkiewicz and Shiomi (1984)]. In the current state of the art, it
could be claimed that behavior of the saturated porous media has been well under-
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stood. Conversely, the study of the dynamic behavior of the unsaturated porous
media is a relatively new area in the field of geotechnical earthquake engineering.

Wave propagation in unsaturated soils and the dynamic response of such media
are of great interest in geophysics, soil and rock mechanics, and many earthquake
engineering problems. However, in geomechanics, the behavior of such media
including more than two phases is not consistent with the principles and concepts
of classic saturated soil mechanics.

From the mechanical point of view, an unsaturated porous medium can be repre-
sented as a three-phase (gas, liquid, and solid), or three-component (water, dry air,
and solid) system in which two phases can be classified as fluids (i.e. liquid and
gas). The liquid phase is considered to be pure water containing dissolved air and
the gas phase is assumed to be a binary mixture of water vapor and ‘dry’ air.

In order to model unsaturated soil behavior, first the governing partial differential
equations should be derived and solved. Because of the complexity of the gov-
erning partial differential equations, with the exception of some simple cases, their
closed-form solutions are not available. Therefore the numerical methods, such
as the Finite Element Method (FEM) and the Boundary Element Method (BEM),
should be used for such partial differential equations.

The BEM is a very effective numerical tool for dynamic analysis of linear elastic
bounded and unbounded media. The method is very attractive for wave propagation
problems, because the discretization is done only on the boundary, yielding smaller
meshes and systems of equations. Another advantage is that this method represents
efficiently the outgoing waves through infinite domains, which is very useful when
dealing with waves scattered by topographical structures. When this method is
applied to problems with semi-infinite domains, there is no need to model the far
field. In this method, during the formulation of boundary integral equations, the
fundamental solutions for the governing partial differential equations should be
derived first. Indeed, attempting to solve numerically the boundary value problems
for unsaturated soils using BEM leads one to search for the associated fundamental
solutions.

To the best of the authors’ knowledge, no 3D fundamental solution exists in the
published literature for the dynamic modeling of unsaturated soils so far, hence the
development of a BEM model for dynamic behaviour of unsaturated soil is not yet
possible.

The comprehensive state-of-the-art review by Gatmiri and Kamalian (2002), Gat-
miri and Nguyen (2005), Gatmiri, Maghoul and Duhamel (2010), Maghoul, Gat-
miri and Duhamel (2010), Maghoul, Gatmiri and Duhamel (2011) provides clearly
presented information on the fundamental solution applied to the soil and the porous
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media. For unsaturated soils, Gatmiriand Jabbari(2005 a, b) have derived the
first fundamental solutions for the nonlinear governingdifferential equations for
quasi-static poroelastic media for both two and three dimensionalproblems. The
corresponding thermo-poro-mechanic fundamental solutions for static andquasi-
static problems are, respectively, derived by Jabbari and Gatmiri(2007)(for both
two and threedimensionalproblems) and Gatmiri, Maghoul and Duhamel(2010)(for
two-dimensional problems) and Maghoul, Gatmiri and Duhamel(2010) (for three-
dimensional problems).Also, it seems that the first attempt to obtain fundamental
solutions for unsaturated soils under dynamic loadings(for two-dimensional prob-
lems) is referred to Maghoul, Gatmiri and Duhamel(2011).

This paper aims at obtaining the boundary integral equation and 3D fundamental
solution for unsaturated soils under dynamic loadings in order to be able to model
the wave propagation phenomena in these media by BEM.

In this paper first of all, the set of fully coupled governing differential equations
of a porous medium saturated by two compressible fluids (water and air) subjected
to dynamic loadings is obtained. These phenomenal formulations are presented
based on the experimental observations and with respect to the poromechanics the-
ory within the framework of the suction-based mathematical model presented by
Gatmiri (1997) and Gatmiri, Delage and Cerrolaza (1998).

In this model, the effect of deformations on the suction distribution in the soil skele-
ton and the inverse effect are included in the formulation via a suction-dependent
formulation of state surfaces of void ratio and degree of saturation. The linear
constitutive law is assumed. The mechanical and hydraulic properties of porous
media are assumed to be suction dependent. In this formulation, the solid skele-
ton displacements ui, water pressure pw and air pressure pa are presumed to be
independent variables.

Secondly, the Boundary Integral Equation (BIE) is developed directly from those
equations via the use of the weighted residuals method for the first time in a way
that permits an easy discretization and implementation in a numerical code.

The associated 3D fundamental solution in Laplace transform domain is presented
by the use of the method of Hérmander (1963) for ui− pw− pa formulation of
unsaturated porous media. As these solutions are the basis of BE formulation their
singular behavior is also discussed.

In this case that the fundamental solution is known only in the frequency domain
and it seems too difficult to obtain the time-dependent fundamental solution in an
explicit analytical form by an inverse transformation of the frequency domain re-
sults; the convolution integral in the BIE can be numerically approximated by a new
approach called “Operational Quadrature Methods” developed by Lubich (1988 a,
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b). In this formulation, the convolution integral is numerically approximated by a
quadrature formula whose weights are determined by the Laplace transform of the
fundamental solution and a linear multistep method [Maghoul (2010); Maghoul,
Gatmiri and Duhamel(2011)].

Finally, the derived results are verified analytically by comparison with the previ-
ously introduced corresponding fundamental solutions in the elastodynamic limit-
ing case.

2 Governing equations

Governing differential equations consist of mass conservation equations of liquid
and gaseous phases, the equilibrium equation of the skeleton associated with wa-
ter and air flow equations and constitutive relation. Also in order to have a fully
coupled model of unsaturated soil, the effect of the suction change on the skele-
ton deformation and on the water and air permeabilities is considered. The state
variables are the net total stress (σ − pa) and matric suction (pw− pa). The basic
assumptions considered in this paper are the following:

1. The medium consists of the superposition of three continuum media.

2. The interconnected porous space is the space through which mass exchanges
of fluids occur.

3. The displacement field is defined by the displacements of the solid skeleton u
(or ui) and the displacement of the fluids relative to the solid wα (or wα

i ). The
absolute displacement of the fluids Uα (or Uα

i ) is defined in such a way that
the volume of fluid α displaced through unit area normal to the xi direction
is nSαUα

i where n is the porosity and Sα is the degree of saturation relative
to fluid α .

4. The poroelastic medium of the skeleton is isotropic and linear.

5. The solid grains are considered incompressible.

6. The infinitesimal transformation is considered. Then, the volume dilatation
of the skeleton is equal to the variation of the porous connected space:

dn
dt

= (1−n) u̇i,i (1)

7. Generalized Darcy’s law is valid for motion of water and air.
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8. Darcy flow velocity or the Eulerian relative flow vector of fluid volume (with
respect to the skeleton) for fluid α can be defined through the relation

ẇα = nSα

(
U̇α − u̇

)
(2)

in which U̇α is the Eulerian absolute fluid velocity.

9. Void ratio and degree of saturation state surfaces are suction-dependent.

2.1 Solid skeleton

The equilibrium equation and the constitutive law for a non-isothermal isotropic
and linear medium can be written as follows,

2.1.1 Equilibrium equation

(σi j−δi j pa), j + pa,i + fi = ρ üi (3)

where ρ = (1−n)ρs +nSwρw +nSaρa is the total density of the mixture.

In this equation, the relative acceleration terms of the fluids (ẅw, ẅa) are omitted.

2.1.2 Constitutive law:

Under the assumption of small deformations, the constitutive law for the solid
skeleton of an unsaturated soil, which is under suction effect, can be written as

(σi j−δi j pa) = (λδi jεkk +2µεi j)−Fs
i j (pa− pw) (4)

where λ , µ are Lame coefficients, δi j is the Kronecker delta and Fs
i j is the suction

modulus matrix:

Fs
i j = Di jkl(Ds

kl)
−1 (5)

in which Ds
kl is a vector obtained from the state surface of void ratio (e) which is a

function of the independent variables of (σ − pa) and (pa− pw).

(Ds
kl)
−1 =

1
1+ e

∂e
∂ (pa− pw)

[
1 1 0

]T (6)

The elasticity matrix
(
Di jkl

)
can be presented by using the bulk modulus and the

tangent modulus

Di jkl (λ ,µ) = Di jkl (K0,Et) = Di jkl (σ − pa, pa− pw) (7)
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where Et is tangent elastic modulus which can be evaluated as

Et = El +Es (8)

El is the elastic modulus in absence of suction and

Es = ms (pa− pw) (9)

ms being a constant, Es represents the effect of suction on the elastic modulus. K0
is the bulk modulus of an open system and evaluated from the surface state of void
ratio

K−1
0 =

1
1+ e

∂e
∂ (σ − pa)

(10)

Considering the strain–deformation relation:

εi j =
1
2

(ui, j +u j,i) (11)

The final equation, stating the equilibrium of solid skeleton becomes

(λ + µ)u j,i j + µui, j j +Fs pw,i +(1−Fs) pa,i−ρ üi + fi = 0 (12)

2.2 Mass conservation of water

The conservation law for the mass of water is written:

ẇw
i,i =−Swε̇ii +Cww ṗw +Cwa ṗa (13)

where Cwa = −ng1 and Cww = (ng1−CwnSw) in which Cw = dρw/(ρwd pw) is the
compressibility of water and g1 = dSw/d (pa− pw).
The degree of saturation in unsaturated soil Sw depends on the net stress level
(σ − pa) and variation of suction (pa− pw). Numerous relations have been in-
troduced to define the degree of saturation of unsaturated soils, but the exponential
form based on suction variations is one of the most common and reliable ones.
The exponential form of the degree of saturation is presented here by omitting the
dependency to the net stress in the original equation [Gatmiri(1997)]:

Sw = 1−{1− exp(βw (pa− pw)) } (14)

in which βw is constant. By assuming a negative βw, one can see that any increase
in suction results in a decrease in Sw and any decrease in suction results in the
approach of Sw to one (saturated).
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2.3 Mass conservation of air

With the same approach presented for the water mass conservation, the mass con-
servation equation of the air can be written as

ẇa
i,i =−Saε̇ii +Caw ṗw +Caa ṗa (15)

where Caw = −ng1 and Caa = (ng1−CanSa) in which Ca = dρa/(ρad pa) is the
compressibility of air.

2.4 Flow equation for the water

Based on generalized Darcy’s law for describing the balance of the forces acting on
the liquid phase of the representative elementary volume, the water velocity in the
unsaturated soil takes the following form:

−pw,i = ρwüi +
ẇw

i
kw
−ρwgi (16)

where kw = aw10eαw

(
Sw−Swu
1−Swu

)dw
denotes the water permeability in an unsaturated

soil in which e is the void ratio, aw, αw, dw and Swu are constants depending on the
soil studied.

In this equation, the relative acceleration terms of the water is omitted.

2.5 Flow equation for the air

With the same approach presented for the water based on generalized Darcy’s law,
the air velocity in the unsaturated soil takes the following form:

−pa,i = ρaüi +
ẇa

i
ka
−ρagi (17)

where ka = caγa
µa

(e(1−Sw))da is the air permeability in an unsaturated soil in which
µa is the air viscosity, e is the void ratio, ca and da are constants depending on the
soil studied).

2.6 Summary of the field equations

By introducing (4) into (3), (16) into (13) and (17) into (15), we have

(λ + µ)uβ ,αβ + µα,ββ +Fs pw,α +(1−Fs) pa,α −ρ üα + fα = 0 (18)

−Swu̇α,α +ρwkwüα,α + kw pw,αα +Cww ṗw +Cwa ṗa = 0 (19)

−Sau̇α,α +ρakaüα,α + ka pa,αα +Cwa ṗw +Caa ṗa = 0 (20)
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2.7 Governing equations in the Laplace transform domain

The Laplace transformation is used to eliminate the time variable of a partial differ-
ential equation. Therefore, by applying the Laplace transform with the assumption
of zero initial conditions,

uα(t=0) = ww
α(t=0) = wa

α(t=0) (21)

pw(t=0) = pa(t=0) = 0 (22)

we can rewrite compactly the transformed coupled differential equation system into
the following matrix form:

B̃

ũα

p̃w

p̃a

+

 f̃α

0
0

= 0 (23)

with the not self-adjoint operator B̃:

B̃ =

(µ∆−ρs2
)

δαβ +(λ + µ)∂α∂β Fs∂α (1−Fs)∂α

−sθ1∂β kw4+Cwws Cwas
−sθ2∂β Cwas ka4+Caas

 (24)

where θ1 = (Sw−ρwkws) and θ2 = (Sa−ρakas).
In equations (23) and (24), α, β = 1,3 in three dimensional problems. Also in (24),
the partial derivative (1),α is denoted by ∂α and4= ∂αα is the Laplacian operator.

Based on this equation in the next section, the boundary integral equation and fun-
damental solutions are derived.

3 Boundary integral equation

We aim at reaching the boundary integral equations for dynamic unsaturated poroe-
lasticity at such a level that it allows application to physical meaningful problem.
The corresponding fundamental solutions will be derived in section 4. Thank to the
Boundary Element Method an easy discretization and implementation can be done
in a numerical code. To that end, the present section is dedicated to the derivation
of a set of the boundary integral equations for dynamic multiphase poro-elasticity
using the weighted residuals method. In this method, the poro-elasto-dynamic in-
tegral equation is derived directly by equating the inner product of Eq. (23) and the
matrix of the adjoint fundamental solutions G̃∗ implying that

B̃∗G̃∗+ Iδ (x−ξ ) = 0 (25)
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to a null vector, i.e.

∫
Ω

B̃

ũα

p̃w

p̃a

 G̃∗dΩ = 0

with

G̃∗ =

G̃∗
αβ

G̃∗
α4 G̃∗

α5

G̃∗4β
G̃∗44 G̃∗45

G̃∗5β
G̃∗54 G̃∗55

=

ŨS
αβ

∗ Ũw
α
∗ Ũa

α
∗

P̃wS
β

∗ P̃wW ∗ P̃wA∗

P̃aS
β

∗ P̃aW ∗ P̃aA∗

 (26)

where the integration is performed over a domain Ω with boundary Γ and vanishing
body forces and sources are assumed. By this inner product, essentially, the error
in satisfying the governing differential equations (23), is forced to be orthogonal to
G̃∗ [Schanz (2001)].

This yields, after some algebraic manipulations, the following system of integral
equations in index notation as

∫
Γ

[
(λ ũk,k−Fs (p̃a− p̃w)+ p̃a)nβ δαβ + µ

(
ũβ ,α + ũα,β

)
nβ

]
G̃∗α jdΓ

−
∫

Γ

ũα

[(
λ G̃∗k j, j + sθ1G̃∗4 j ++sθ2G̃∗5 j

)
nβ δαβ + µ

(
G̃∗

α j,β + G̃∗
β j,α

)]
dΓ

+ kw

∫
Γ

(
p̃w,nG̃∗4 j− p̃wG̃∗4 j,n

)
dΓ+ ka

∫
Γ

(
p̃a,nG̃∗5 j− p̃aG̃∗5 j,n

)
dΓ

+
∫

Ω

(
ũiB̃∗im

)
G̃∗m jdΩ = 0 (27)

in which

B̃∗ =

(µ∆−ρs2
)

δαβ +(λ + µ)∂α∂β sθ1∂α sθ2∂α

−Fs∂β kw4+Cwws Cwas
−(1−Fs)∂β Cwas ka4+Caas

 (28)

By substituting Eq. (25) into (27) and using the property of Dirac’s delta function
δ (x−ξ ), we reach the transformed dynamic unsaturated poroelastic boundary in-
tegral representation for the transformed internal displacements and pressures given
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in matrix form, i.e.,

c(ξ )I

ũα (ξ ;s)
p̃w (ξ ;s)
p̃a (ξ ;s)

=

∫
Γ

ŨS
αβ

∗ (x,ξ ;s) −P̃wS
α
∗ (x,ξ ;s) −P̃aS

α
∗ (x,ξ ;s)

ŨW
β

∗ (x,ξ ;s) −P̃wW ∗ (x,ξ ;s) −P̃aW ∗ (x,ξ ;s)
ŨA

β

∗ (x,ξ ;s) −P̃wA∗ (x,ξ ;s) −P̃aA∗ (x,ξ ;s)


 t̃α (x;s)

q̃w (x;s)
q̃a (x;s)

dΓ

−
∫

Γ

T̃ S
αβ

∗ (x,ξ ;s) Q̃wS
α
∗ (x,ξ ;s) Q̃aS

α
∗ (x,ξ ;s)

T̃W
β

∗ (x,ξ ;s) Q̃wW ∗ (x,ξ ;s) Q̃aW ∗ (x,ξ ;s)
T̃ A

β

∗ (x,ξ ;s) Q̃wA∗ (x,ξ ;s) Q̃aA∗ (x,ξ ;s)


ũα (x;s)

p̃w (x;s)
p̃a (x;s)

dΓ (29)

where the traction vector, the normal water flux and the normal air flux are respec-
tively

t̃α = σαβ nβ =
[
(λ ũk,k−Fs (p̃a− p̃w)+ p̃a)δαβ + µ

(
ũβ ,α + ũα,β

)]
nβ (30)

q̃w =−kw
(

p̃w,n +ρws2ũαnα

)
(31)

q̃a =−ka
(

p̃a,n +ρas2ũαnα

)
(32)

The coefficient ci j has a value δi j for points inside Ω and zero outside Ω. The value
of ci j for points on the boundaryΓ is determined from the Cauchy principal value
of the integrals. It is equal to 0.5δ i j for points on Γ where the boundary is smooth.

Also the T̃S∗, Q̃wS∗ and Q̃aS∗ in Eq. (29) can be interpreted as the adjoint terms to
the traction vector t̃α , the water flux q̃w and the air flux q̃a as follows:

T̃ S
αβ

∗ =
[(

λŨS
kβ ,k
∗+ sSwP̃wS

β

∗+ sSaP̃aS
β

∗
)

δαl + µ

(
ŨS

αβ ,l
∗+ŨS

lβ ,α
∗
)]

nl (33)

T̃W
α
∗ =

[(
λŨW

k,k
∗+ sSwP̃wW ∗+ sSaP̃aW ∗)

δαl + µ

(
ŨW

α,l
∗+ŨW

l,α
∗
)]

nl (34)

T̃ A
α
∗ =

[(
λŨA

k,k
∗+ sSwP̃wA∗+ sSaP̃aA∗)

δαl + µ

(
ŨA

α,l
∗+ŨA

l,α
∗
)]

nl (35)

Q̃wS
α
∗ = kwP̃wS

α,n
∗ (36)

Q̃wW ∗ = kwP̃wW
,n
∗ (37)

Q̃wA∗ = kwP̃wA
,n
∗ (38)

Q̃aS
α
∗ = kaP̃aS

α,n
∗ (39)
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Q̃aW ∗ = kaP̃aW
,n
∗ (40)

Q̃aA∗ = kaP̃aA
,n
∗ (41)

Eq. (29) can be compacted in index notation for the 3D case as follows

c(ξ )Iũ j (ξ ;s) =
∫

Γ

G̃∗i j (x,ξ ;s) t̃i (x;s)− F̃∗i j (x,ξ ;s) ũi (x;s) (42)

where t̃i =
[
t̃α q̃w q̃a

]T , ũi =
[
ũα p̃w p̃a

]T and also

G̃∗i j =

ŨS
αβ

∗ −P̃wS
α
∗ −P̃aS

α
∗

ŨW
β

∗ −P̃wW ∗ −P̃aW ∗

ŨA
β

∗ −P̃wA∗ −P̃aA∗

 (43)

F̃∗i j =

T̃ S
αβ

∗ Q̃wS
α
∗ Q̃aS

α
∗

T̃W
β

∗ Q̃wW ∗ Q̃aW ∗

T̃ A
β

∗ Q̃wA∗ Q̃aA∗

 (44)

with i, j varies from one to five and α, β , k varies from one to three.

The time dependent boundary integral equation for the unsaturated soil is obtained
by a transformation to time domain.

4 Fundamental solutions

The objective of this section is to derive the fundamental solutions for the unsatu-
rated poroelastodynamic governing equation (23) in the Laplace transform domain.

These solutions are used in the time-dependent convolution quadrature-based BE
formulation which needs only Laplace transform fundamental solutions.

The physical interpretation of the fundamental solutions for the system of equa-
tions (23) is the response of the medium in the point x to, respectively, a unit
point excitation F̃i j = F̃ie j = δ (x−ξ )δi j in the solid skeleton domain with infi-
nite boundaries, represented by ŨS

αβ
, P̃wS

β
and P̃aS

β
, as well as a unit source in the

water fluidγ̃w = δ (x−ξ ) represented by ŨW
α , P̃wW , P̃aW and a unit source in the

air fluid γ̃a = δ (x−ξ ) represented by ŨA
α , P̃wA, P̃aA. Here, Ũα , P̃w and P̃a denote,

respectively, the displacement of the solid skeleton in the α direction, the water
and air pressures and the superscripts S, W, A designs the applied force in, respec-
tively, solid skeleton, water and air fluids. Also, the second subscript β presents the
direction of applied force in the solid skeleton.

Mathematically speaking, a fundamental solution is a solution of the equation
BG+ Iδ (x−ξ )δ (t− τ) = 0 where the matrix of fundamental solutions is denoted
by G, the identity matrix by I and the matrix differential operator by B.
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As in a 3D unsaturated poroelastic problem there are five unknowns (u1, u2,u3, pw, pa)
per each observation point therefore, the dimension of the fundamental solution
matrix is 5×5 per each point:

G̃ =

G̃αβ G̃α4 G̃α5
G̃4β G̃44 G̃45
G̃5β G̃54 G̃55

=

ŨS
αβ

ŨW
α ŨA

α

P̃wS
β

P̃wW P̃wA

P̃aS
β

P̃aW P̃aA

 (45)

In this study, because the operator type of the governing equations is an ellipti-
cal operator the explicit 3D Laplace transform domain fundamental solution are
derived by using the method of Hérmander[Hérmander(1963)]. The idea of this
method is to reduce the highly complicated operator given in (24) to simple well
known operators. In this method, in the Laplace transform domain, the first stage
is to find the matrix of cofactors Bco to calculate the inverse matrix of B (B−1 =
Bco/detB ). For the second stage, we assume that ϕ is a scalar solution to the
equation

det(B) Iϕ + Iδ (x−ξ )= 0 ! B Bco
ϕ +δ (x−ξ ) = 0 (46)

Consequently, we get

G = Bco
ϕ (47)

From the mathematical theory of Green’s formula, it is known that the fundamental
solution should satisfy the adjoint operator [Stakgold 1998]. As shown in equation
(24), all the operators are elliptic and not self-adjoint. Therefore, for the deduction
of fundamental solutions, the adjoint operator B̃∗ has to be used:

B̃∗ =

(µ∆−ρs2
)

δαβ +(λ + µ)∂α∂β sθ1∂α sθ2∂α

−Fs∂β kw4+Cwws Cwas
−(1−Fs)∂β Cwas ka4+Caas

 (48)

At first following Hérmander’s idea (47) the determinant of the operator B̃∗ are
calculated:

det
(

B̃∗
)

= µ
2 (λ +2µ)kwka

(
∆−λ

2
1
)2 (

∆−λ
2
2
)(

∆−λ
2
3
)(

∆−λ
2
4
)

(49)

in which the λ 2
i
(
i = 1,4

)
are the coefficients corresponding to the wave velocity

propagating through the medium in a way that λ 2
1 = ρs2/µ is related to the shear

wave velocity and λ 2
2 , λ 2

3 and λ 2
4 correspond to the three compressional waves



Wave Propagation in Unsaturated Poroelastic Media 63

which are affected by the degree of saturation and the spatial distribution of fluids
within the medium [Maghoul, Gatmiri and Duhamel (2011)]. These three roots
must be determined as these which satisfy:

λ
2
2 + ??2

3 +λ
2
4 =

ρs2 +Fsρws2 +ρa (1−Fs)s2

(λ +2µ)
−Caas

ka
−Cwws

kw
− SwFss

(λ +2µ)kw
− Sa (1−Fs)s

(λ +2µ)ka
(50)

λ
2
2 λ

2
3 +λ

2
2 λ

2
4 +λ

2
3 λ

2
4 =

− ρCaas3

(λ +2µ)ka
− ρCwws3

(λ +2µ)kw
− ρw (FsCaa− (1−Fs)Cwa)s3

(λ +2µ)ka

− ρa (−FsCwa +(1−Fs)Cww)s3

(λ +2µ)kw
+

(
CwwCaa−C2

wa
)

s2

kwka

+
Sw (FsCaa− (1−Fs)Cwa)s2

(λ +2µ)kwka
+

Sa (−FsCwa +(1−Fs)Cww)s2

(λ +2µ)kwka
(51)

λ
2
2 λ

2
3 λ

2
4 =

ρ
(
CwwCaa−C2

wa
)

s4

(λ +2µ)kwka

Secondly, by introducing the determinant, the scalar multline corresponding to (47)
is given by(
∆−λ

2
1
)(

∆−λ
2
2
)(

∆−λ
2
3
)(

∆−λ
2
4
)

Φ+δ (x−ξ ) = 0 (52)

in which Φ is an interim operator, i.e.

Φ = µ
2 (λ +2µ)kwka

(
∆−λ

2
1
)

ϕ (53)

Equation (53) can be expressed as either of four equations (55), (56), (57) and (58):(
∆−λ

2
1
)

ϕ1 +δ (x−ξ ) = 0; ϕ1 =
(
∆−λ

2
2
)(

∆−λ
2
3
)(

∆−λ
2
4
)

Φ (54)(
∆−λ

2
2
)

ϕ2 +δ (x−ξ ) = 0; ϕ2 =
(
∆−λ

2
1
)(

∆−λ
2
3
)(

∆−λ
2
4
)

Φ (55)(
∆−λ

2
3
)

ϕ3 +δ (x−ξ ) = 0; ϕ3 =
(
∆−λ

2
1
)(

∆−λ
2
2
)(

∆−λ
2
4
)

Φ (56)(
∆−λ

2
4
)

ϕ4 +δ (x−ξ ) = 0; ϕ4 =
(
∆−λ

2
1
)(

∆−λ
2
2
)(

∆−λ
2
3
)

Φ (57)
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The above differential equations are of the familiar Helmholtz type. The funda-
mental solution of Helmholtzdifferential equations for an only r-dependent fully
symmetric three-dimensional domain is

ϕi =
exp(−λir)

4πr
, i = 1,4 (58)

By definition of ϕ1, ϕ2, ϕ3 and ϕ4, it is deduced:

Φ =
1(

λ 2
3 −λ 2

4

)(
λ 2

2 −λ 2
1

) [ϕ3−ϕ2

λ 2
3 −λ 2

2
− ϕ3−ϕ1

λ 2
3 −λ 2

1
+

ϕ4−ϕ1

λ 2
4 −λ 2

1
− ϕ4−ϕ2

λ 2
4 −λ 2

2

]
(59)

Replacing equation (59) into (60), one obtains

ϕ =
1

4πr

{
exp(−λ1r)(

λ 2
1 −λ 2

3

)(
λ 2

1 −λ 2
4

)(
λ 2

1 −λ 2
2

) +
exp(−λ2r)(

λ 2
2 −λ 2

4

)(
λ 2

2 −λ 2
3

)(
λ 2

2 −λ 2
1

)
+

exp(−λ3r)(
λ 2

3 −λ 2
2

)(
λ 2

3 −λ 2
1

)(
λ 2

3 −λ 2
4

) +
exp(−λ4r)(

λ 2
4 −λ 2

1

)(
λ 2

4 −λ 2
2

)(
λ 2

4 −λ 2
3

)} (60)

in which the argument r = |x−ξ | denotes the distance between a load point and an
observation point.

Finally, we can determine the components of fundamental solution tensor by ap-
plying the matrix of cofactors B̃∗

co
to the scalar function ϕ which are:

1. Displacement caused by a Dirac force in the solid

G̃∗
αβ

= ŨS
αβ

∗ =
1

4πµ

−(λ + µ)Λ2

ρs2( (
λ 2

i −K2
ss1
)(

λ 2
i −K2

ss2
)(

λ 2
i −λ 2

i+1

)(
λ 2

i −λ 2
i+2

)(
λ 2

i −λ 2
i+3

) (R1 +R2λi +R3λ
2
i
)

exp(−λir)

)

+
δαβ

4πµr
(61)

in which λ 2
5 = λ 2

1 , λ 2
6 = λ 2

2 , λ 2
7 = λ 2

3 , R1 = (3r,α r,β−δαβ)
r3 , R2 = (3r,α r,β−δαβ)

r2 ,

R3 = r,α r,β

r , Λ2 = ρs2

(λ+2µ) and

K2
ss1 +K2

ss2 =− SwFss
(λ + µ)kw

− Sa (1−Fs)s
(λ + µ)ka

− (kwCaa + kaCww)s
kwka

+
ρwFss2

(λ + µ)

+
ρa (1−Fs)s2

(λ + µ)
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K2
ss1K2

ss2 =

(
CwwCaa−C2

wa
)

s2

kwka
+

Sw (FsCaa−Cwa (1−Fs))s2

(λ + µ)kwka

+
Sa (−FsCwa +Cww (1−Fs))s2

(λ + µ)kwka
− ρw (FsCaa−Cwa (1−Fs))s3

(λ + µ)ka

− ρa (−FsCwa +Cww (1−Fs))s3

(λ + µ)kw
.

2. Water pressure caused by a Dirac force in the solid

G̃∗4β
= P̃wS

β

∗ =
−Fs

4π (λ +2µ)kw

r,β

r2
(1+ rλi)exp(−λir)(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

)(
λ

2
i −

(Cwa (1−Fs)−FsCaa)
Fska

s
)

(62)

in which i = 2,4 and λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 .

3. Air pressure caused by a Dirac force in the solid

G̃∗5β
= P̃aS

β

∗ =
−(1−Fs)

4π (λ +2µ)ka

r,β

r2
(1+ rλi)exp(−λir)(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

)(
λ

2
i −

(CwaFs−Cww (1−Fs))
(1−Fs)kw

s
)

(63)

in which i = 2,4 and λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 .

4. Displacement caused by a Dirac source in the water fluid

G̃∗α4 = ŨW
α
∗ =

(Sw− kwρws)s
4π (λ +2µ)kw

r,β

r2
(1+ rλi)exp(−λir)(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

) (λ 2
i −Kαw

)
(64)

in which i = 2,4, λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 and Kαw = (Cwa(Sa−ρakas)−Caa(Sw−ρwkws))
ka(Sw−ρwkws) s.

5. Displacement caused by a Dirac source in the air fluid

G̃∗α5 = ŨA
α
∗ =

(Sa− kaρas)s
4π (λ +2µ)ka

r,β

r2
(1+ rλi)exp(−λir)(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

) (λ 2
i −Kαa

)
(65)

in which i = 2,4, λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 and Kαa = (Cwa(Sw−ρwkws)−Cww(Sa−ρakas))
kw(Sa−ρakas) s.
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6. Water pressure caused by a Dirac source in the water fluid

G̃∗44 = P̃wW ∗ =
1

4πkwr
exp(−λir)(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

) (λ 2
i −K2

w
)(

λ
2
i −Λ

2
w
)

(66)

in which i = 2,4 and λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 and K2
wΛ2

w = −ρCaas3

(λ+2µ)ka
and K2

w +Λ2
w =

−Sa(1−Fs)s
(λ+2µ)ka

− Caas
ka

+ ρaka(1−Fs)s2

(λ+2µ)ka
+ ρs2

(λ+2µ) .

7. Air pressure caused by a Dirac source in the air fluid

G̃∗55 = P̃aA∗ =
1

4πkar
exp(−λir)(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

) (λ 2
i −K2

a
)(

λ
2
i −Λ

2
a
)

(67)

in which i = 2,4 and λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 and K2
a Λ2

a = −ρCwws3

(λ+2µ)kw
and K2

w +Λ2
w =

−SwFss
(λ+2µ)kw

− Cwws
kw

+ ρwkwFss2

(λ+2µ)kw
+ ρs2

(λ+2µ) .

8. Air pressure caused by a Dirac source in the water fluid

G̃∗54 = P̃aW ∗ =

s
4π (λ +2µ)kwkar

(−(λ +2µ)Cwa +(ρwkws−Sw)(1−Fs))λ 2
i +ρCwas2(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

)
exp(−λir) (68)

in which i = 2,4 and λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 .

9. Water pressure caused by a Dirac source in the air fluid

G̃∗45 = P̃wA∗ =

s
4π (λ +2µ)kwkar

(−(λ +2µ)Cwa +(ρakas−Sa)Fs)λ 2
i +ρCwas2(

λ 2
i+2−λ 2

i

)(
λ 2

i+1−λ 2
i

)
exp(−λir) (69)

in which i = 2,4 and λ 2
5 = λ 2

2 , λ 2
6 = λ 2

3 .

In the derivation of the multiphase poroelastodynamic boundary integral equation
(29) several abbreviations corresponding to an ‘adjoint’ traction or flux are intro-
duced (Eqs. (33)-(41)). At first, the ‘adjoint’ traction solution is presented. How-
ever, for simplicity, only parts are given
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1. T̃ S
αβ

∗ =
[(

λŨS
kβ ,k
∗+ sSwP̃wS

β

∗+ sSaP̃aS
β

∗
)

δαl + µ

(
ŨS

αβ ,l
∗+ŨS

lβ ,α
∗
)]

nl

(
ŨS

αβ ,l
∗+ŨS

lβ ,α
∗
)

nl =

nl

2πr

(
CsS

i

(
R5

r2

(
λi +

1
r

)
+

R6

r
λ

2
i − r,αr,β r,lλ

3
i

)
exp(−λir)

)
−
(
r,αnβ + r,nδαβ

)
4πµr

(
λ1 +

1
r

)
exp(−λ1r) (70)

where

R5 = 3
(
r,αδβ l + r,β δαl + r,lδαβ −5r,αr,β r,l

)
,

R6 =
(
r,αδβ l + r,β δαl + r,lδαβ −6r,αr,β r,l

)
.

ŨS
kβ ,k
∗
δαlnl =

−
r,β nα

4πr

(
CsS

i

(
λi +

1
r

)
λ

2
i exp(−λir)

)
−

r,β nα

4πµr

(
λ1 +

1
r

)
exp(−λ1r)

(71)

2. T̃W
α
∗ =

[(
λŨW

k,k
∗+ sSwP̃wW ∗+ sSaP̃aW ∗

)
δαl + µ

(
ŨW

α,l
∗+ŨW

l,α
∗
)]

nl(
ŨW

α,l
∗+ŨW

l,α
∗
)

nl =
nl

2πr
CsW

i−1Ri−1exp(−λir) (72)

ŨW
k,k
∗
δαlnl =− nα

4πr

(
CsW

i−1λ
2
i exp(−λir)

)
(73)

with i = 2,4 and Rk = (δαl−3r,α r,l)
r2 +λk

(δαl−3r,α r,l)
r −λ 2

k r,αr,l .

3. T̃ A
α
∗ =

[(
λŨA

k,k
∗+ sSwP̃wA∗+ sSaP̃aA∗

)
δαl + µ

(
ŨA

α,l
∗+ŨA

l,α
∗
)]

nl(
ŨA

α,l
∗+ŨA

l,α
∗
)

nl =
nl

2πr
CsA

i−1Ri−1exp(−λir) (74)

ŨA
k,k
∗
δαlnl =− nα

4πr

(
CsA

i−1λ
2
i exp(−λir)

)
(75)

with i = 2,4 and Rk = (δαl−3r,α r,l)
r2 +λk

(δαl−3r,α r,l)
r −λ 2

k r,αr,l
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The other explicit expressions are

Q̃wS
α
∗ =

nα

4πr
CwS

i−1Ri−1exp(−λir) (76)

Q̃wW ∗ =− r,n

4πr

(
CwW

i−1

(
λi +

1
r

)
exp(−λir)

)
(77)

Q̃wA∗ =− r,n

4πr

(
CwA

i−1

(
λi +

1
r

)
exp(−λir)

)
(78)

Q̃aS
α
∗ =

nα

4πr
CaS

i−1Ri−1exp(−λir) (79)

Q̃aW ∗ =− r,n

4πr

(
CaW

i−1

(
λi +

1
r

)
exp(−λir)

)
(80)

Q̃aA∗ =− r,n

4πr

(
CaA

i−1

(
λi +

1
r

)
exp(−λir)

)
(81)

in which i = 2,4 and the coefficients are presented in Appendix A.

5 Singular behavior

As shown in part 3, the boundary integral equation is obtained by moving ξ to
the boundary Γ. Then in order to determine the unknown boundary data, it is
necessary to know the behavior of the fundamental solutions when r = |ξ − x| tends
to zero, i.e. when an integration point x approaches a collocation point ξ . Simple
series expansions of the fundamental solutions with respect to the variable r =
|ξ − x| show that the singularity of these solutions in the limit r→ 0 is equal to the
elastostatic, poro-elastostatic or the acoustic fundamental solutions (Table 1).

The variable r in the 3D fundamental solutions is in the exponential functions.
Then, as r→ 0, so does the argument of the exponential functions. Consequently,
one has:

exp(−λkr) =
∫

∞

l=0

(−λkr)l

l!
= 1−λkr +o

(
r2) (82)

Thus, by replacing Eq. (83) into the 3D solutions and after some algebraic manip-
ulations one obtains:

ŨS
αβ

∗ =
1

16π

1
µ (1−ν)

1
r

{xαxβ

r2 +δαβ (3−4ν)
}

︸ ︷︷ ︸
elastostatic f undamental solution

+o
(
r2) (83)



Wave Propagation in Unsaturated Poroelastic Media 69

P̃wW ∗ =
1

4πkw

1
r︸ ︷︷ ︸

poroelastostatic f undamental solution

+o
(
r2) (84)

P̃aA∗ =
1

4πka

1
r

+o
(
r2) (85)

ŨW
α
∗ = ŨA

α
∗ = o

(
r2) (86)

P̃wS
β

∗ = P̃aS
β

∗ = o
(
r2) (87)

P̃wA∗ = P̃aW ∗ = o
(
r2) (88)

Also, for adjoint fundamental solutions we have:

T̃ S
αβ

∗=− 1
8π

1
(1−ν)

1
r2

{
∂ r
∂n

[
(1−2ν)δαβ +3r,αr,β

]
− (1−2ν)

(
r,αnβ − r,β nα

)}
︸ ︷︷ ︸

elastostatic f undamental solution

+ o
(
r2) (89)

T̃W
α
∗ =

s
4πkw

{
4π (Sw− kwρws)

(λ +2µ)
r,nr,α + kwρwsnα

}
1
r

+o
(
r2) (90)

T̃ A
α
∗ =

s
4πka

{
4π (Sa− kaρas)

(λ +2µ)
r,nr,α + kaρasnα

}
1
r

+o
(
r2) (91)

Q̃wW ∗ = Q̃aA∗ = − r,n

4πr2︸ ︷︷ ︸
acoustic f undamental solution

+o
(
r2) (92)

Q̃wS
α
∗ =

Fs

4π (λ +2µ)
1
r

(nα −2r,nr,α)+o
(
r2) (93)

Q̃aS
α
∗ =

(1−Fs)
4π (λ +2µ)

1
r

(nα −2r,nr,α)+o
(
r2) (94)

6 Analytical verification of the fundamental solutions

Having derived the fundamental solution, at this stage, it is of interest to verify the
validity of these solutions in somewhat more detail. One limiting case is presented
here. Investigate the solution form as kw and ka approach infinity, ρw, ρa and Fs

approach zero, to see if they would exactly take the same form as the elastodynamic
fundamental solution in the Laplace transform domain.
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Table 1: Kind of singularity of 3D fundamental solutions

Components Singularity
ŨS

αβ

∗ weakly singular (1/r)
ŨW

β

∗ regular (1/r)
ŨA

β

∗ regular (1/r)
P̃wS

α
∗ regular (1/r)

P̃aS
α
∗ regular (1/r)

P̃wW ∗ weakly singular (1/r)
P̃aA∗ weakly singular (1/r)
P̃aW ∗ regular (1/r)
P̃wA∗ regular (1/r)
T̃ S

αβ

∗ hyper singular
(
1/r2

)
T̃W

β

∗ weakly singular (1/r)
T̃ A

β

∗ weakly singular (1/r)
Q̃wS

α
∗ weakly singular (1/r)

Q̃aS
α
∗ weakly singular (1/r)

Q̃wW ∗ hyper singular
(
1/r2

)
Q̃aA∗ hyper singular

(
1/r2

)
Q̃wA∗ regular (1/r)
Q̃aW ∗ regular (1/r)

6.1 Limiting case: Elastodynamic

Letting kw and ka approach infinity and ρw, ρa and Fs equal zero, the roots of the
determinant equation (50) reduce to two and we will have

λ
2
1 =

ρs2

µ
, λ

2
2 = λ

2
3 = 0, λ

2
4 = Λ

2 =
ρs2

(λ +2µ)
(95)

Then,

ŨW
β

∗ = ŨA
β

∗ = 0 (96)

P̃wS
α
∗ = P̃aS

α
∗ (97)

P̃wW ∗ = P̃aA∗ = 0 (98)

P̃aW ∗ = P̃wA∗ = 0 (99)

ŨS
αβ

∗ =
1

2πρC2
2

(
aδαβ −b

xαxβ

r2

)
(100)
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in which

a =
(

1
r

+
C2

sr2 +
C2

2
s2r3

)
exp
(
− sr

C2

)
−C2

2

C2
1

(
C1

sr2 +
C2

1
s2r3

)
exp
(
− sr

C1

)
(101)

b =
(

1
r

+
3C2

sr2 +
3C2

2
s2r3

)
exp
(
− sr

C2

)
−C2

2

C2
1

(
1
r

+
3C1

sr2 +
3C2

1
s2r3

)
exp
(
− sr

C1

)
(102)

C2
1 =

(λ +2µ)
ρ

, C2
2 =

µ

ρ
(103)

Eqs. (97) to (101) show the fundamental singular solutions in the Laplace transform
domain for a point force in 3D solid of infinite extent. This limiting case supports
that the Laplace transform domain fundamental solutions of dynamic unsaturated
poroelasticity for 3D cases derived in previous sections are likely to be correct.

7 Conclusion

In this paper, firstly coupled governing differential equations of a porous medium
saturated by two compressible fluids (water and air) subjected to dynamic load-
ings are presented based on the poromechanics theory within the framework of the
suction-based mathematical model presented by Gatmiri (1997) and Gatmiri, De-
lage and Cerrolaza (1998). After that, the Boundary Integral Equation (BIE) is de-
veloped directly from those equations via the use of the weighted residuals method
for the first time. Finally, the associated fundamental solution in the Laplace trans-
formed domain is presented by the use of the method of Hérmander (1963)for 3D
ui− pw− pa formulation of unsaturated porous media. Also, the singular behavior
of the fundamental solutions is studied in order to be able to determine the unknown
boundary data. It is observed that the singularity of these solutions is equal to the
elastostatic, poroelastostayic or the acoustic fundamental solutions.

The derived Laplace transform domain fundamental solutions can be directly im-
plemented in time domain BEM in which the convolution integral is numerically
approximated by a new approach so-called “Operational Quadrature Methods” de-
veloped by Lubich (1988 a, b) to model the transient behaviour of unsaturated
porous media. This enables one to develop more effective numerical hybrid BE/FE
methods to solve 3D nonlinear wave propagation problems in the near future.
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