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Green Tensor for a General Anisotropic Slip Condition

A. Sellier and N. Ghalia

Abstract: The Green tensor complying with anisotropic slip conditions at the
surface of a plane, impermeable, motionless and slipping wall is theoretically ob-
tained and an efficient numerical method is proposed to accurately compute at a
very reasonable cpu time cost each of its Cartesian component. The accuracy of
the advocated numerical strategy is tested against the Maple Software and the em-
ployed procedure makes it possible to calculate the Green tensor for a non-isotropic
slip condition at a cpu time cost comparable with the one needed for the less com-
plicated isotropic Navier condition.
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1 Introduction

It is well known that particle-particle and/or particle-boundary interactions strongly
affect the macroscopic properties (such as effective viscosity) of a suspension made
of solid particles immersed in a Newtonian liquid with uniform density ρ and vis-
cosity µ. Of course, particle-boundary interactions close to a boundary deeply de-
pend upon the boundary shape (plane, curved) and rouhgness. Today, one can elab-
orate surfaces with a selected roughness (using micro-scaled or nano-scaled pat-
terns) or hydrophobicity at which the usual no-slip boundary condition is not valid
any more and must be replaced with a so-called slip condition. Assuming hence-
forth a liquid flow with velocity u and pressure p above the motionless and im-
permeable x3 = 0 plane boundary Σ and using Cartesian coordinates (O,x1,x2,x3)
with origin O attached to Σ, one therefore switch from the usual no-slip condition

ui = u.ei = 0 at Σ(x3 = 0) for i = 1,2,3 (1)

to another slip condition to be proposed in accordance with the experimental inves-
tigations. The widely-employed and well experimentally supported (see Churaev,
Sobolev, and Somov (1994), Baudry, Charlaix, Tonck, and Mazuyer (2001)) one is
the famous Navier (1823) slip condition

u1 = b
∂u1

∂x3
, u2 = b

∂u2

∂x3
and u3 = 0 at Σ(x3 = 0) (2)
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where b > 0 is the (effective) slip length and may be seen as the distance to which
the velocity should be extrapolated inside the solid boundary to vanish. When com-
pared with (1) the condition (2) clearly allows a non-zero tangential fluid velocity at
the slipping (but still impermeable) motionless wall Σ. In addition, since it actually
permits the liquid to slip with the same magnitude whatever the tangential direction
the condition (2) is isotropic. However, by using anisotropic textures it is possible
to produce patterned surfaces admitting properties depending upon the selected di-
rection tangent to the surface. For these surfaces (2) is not valid any more and a
non-istopic slip condition has been therefore recently proposed (see Stone, Stroock,
and Adjari (2004), Bazant and Vinagradova (2008)). This condition distinguishes
two othogonal tangential directions: the fastest one e1 with slip length b1 > 0 and
the slowest one e2 with slip length b2 such that 0 < b2 < b1. It then reads

u1 = b1
∂u1

∂x3
, u2 = b2

∂u2

∂x3
and u3 = 0 at Σ(x3 = 0). (3)

Through adequate models it is possible to relate the slip lengths b1 and b2 to some
of the surface pattern characteristics. In order to encompass usual boundary condi-
tions (1)-(2) we henceforth assume that b1 ≥ b2 ≥ 0 in the adopted anisotropic slip
condition (3).

We denote by a and V the flow typical length scale and velocity scale, respec-
tively. For applications involving flows in micro-channels and/or suspensions made
of micro-sized solid particles it turns out that Re = ρVa/µ� 1. In other words, in-
ertial effects are negligible and in practice the flow (u, p) obeys the steady Stokes
equations in the liquid domain. These equations are supplemented with relevant
boundary conditions at infinity in each direction where the liquid domain is un-
bounded and additional conditions on each particle’s surface and each boundary.
Within this framework of Low-Reynolds-Number flow there is a considerable body
of literature. Since this it not the aim of the present paper to review this huge lit-
erature we content ourselves with directing the reader to the well-established text-
books by Happel and Brenner (1991) and Kim and Karrila (1991) and aslo briefly
distinguishing the employed procedures and associated advantages and drawbacks
as follows:

(1) Analytical solutions. Exact solutions (available in previously-quoted textbooks
and Feuillebois (1989)) exist for one spherical or ellipsoidal solid particle im-
mersed in an unbounded liquid. These solutions, sometimes obtained by using
a few carefully-selected singularities outside the liquid domain, provide excellent
benchmark tests for the other procedures but are unfortunately restrited to quite a
very few particle geometries and unbouned liquid domains.

(2) Semi-analytical solutions. These solutions are obtained using the so-called
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bipolar coordinates which permit one to adress the case of two spherical particles
in an unbounded liquid (see the pionnering work by Stimson and Jeffery (1926))
or one spherical particle interacting with a spherical cavity (see for instance Jones
(2009)) or a plane impermeable wall (see Brenner (1961); Maude (1961); Dean and
O’Neill (1963); O’Neill (1964, 1967, 1968); Cooley and O’Neill (1969); O’Neill
(1969) where the no-slip condition holds. The case of a plane impermeable and
slipping wall with anisotropic Navier condition (2) has also been treated in O’Neill
and Bhatt (1991); Davis, Kezirian, and Brenner (1994); Feuillebois, Loussaief, and
Pasol (2009) whereas references dealing with one or two bubbles or drops using
the same approach are given in the review by Pasol, Sellier, and Feuillebois (2010).
The bipolar coordinates provides accurate results but is by essence restricted to the
case of one or two spherical particles (solid, bubble, droplet).

(3) The multipoles method. This approach, reviewed in Ekiel-Jeżewska and Wa-
jnryb (2009), makes it possible to accurately deal with several interacting solid
spheres as done in Cichocki, Felderhof, Hinsen, Wajnryb, and Bławzdziewicz (1994)
and also spheres interacting with one (see Cichocki and Jones (1998), Cichocki,
Jones, Kutteh, and Wajnryb (2000)) or two parallel plane and no-slipping wall(s)
(see Jones (2004), Bhattacharya, Bławzdziewicz, and Wajnryb (2005)). Although
this technique makes it possible to handle several spheres it is however restricted
once more to spherical particles. One should also mention that the collocation point
method employed in Hsu and Ganatos (1989, 1994) is similar to the multipoles
method.

(4) The Boundary-integral method. This approach, theoretically studied in La-
dyzhenskaya (1969) and seemingly first implemented by Youngren and Acrivos
(1975, 1976), reduces the problem to the numerical treatment of a few boundary-
integral equations. In contrast to other techniques it allows one to cope with arbitrarily-
shaped particles. For a bounded liquid domain, it however becomes very cpu time
consuming if the boundary-integral equation also involves the entire liquid bound-
ary (which is in general the case). This drawback is in practice nicely circumvented
as soon as one is able to obtain a so-called Green tensor (see the definition in §2.1)
which however depends upon the encountered liquid boundaries. This Green ten-
sor has been obtained for a a few no-slipping boundaries and the reader is directed
to Lorenz (1907) and Blake (1971) for a plane wall with condition (1), to Oseen
(1927) and Sellier (2008) for a spherical boundary, to Liron and Shahar (1978) for
a liquid bounded by a circular pipe, to Miyazaki and Hasimoto (1978) for a plane
boundary with a circular hole, to Liron and Mochon (1976) and Jones (2004) for
two parallele plane walls. Note that the Green tensor for a liquid domain confined
by a no-slippling plane wall and a parallel and free surface has also been determined
in Sellier and Pasol (2006).
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It turns out that the Boundary-integral method is a powerfool technique which ac-
tully also receives an efficient implementation for bounded Stokes flows as soon as
the following two basic issues are adequately solved:

Issue 1: One is able to determine a so-called Green tensor which complies with
the conditions to be satisfied by the flow on each boundary (except the particles
surfaces).

Issue 2: One is able to quickly and accurately compute as many time as necessary
the obtained Green tensor.

While Issue 1 is thus satisfied for the previously-quoted examples for which the
Green tensor has been obtained one should note that, for example, Issue 2 has not
yet been adequately adressed for the Green tensor obtained in Liron and Shahar
(1978).

The aim of the present work is to determine the Green tensor associated with the
general anisotropic slip condition (3) and also to present an efficient numerically
strategy to accurately calculate its Cartesian components at a reasonable cpu time.
The paper is organized as follows. The governing problem for the Green tensor and
some key remarks motivating its introduction are given in §2 whereas the determi-
nation of the Green tensor is addressed in §3. An efficient numerical strategy to
accurately compute each Cartesian component of the obtained Green tensor is pro-
posed and benchmarked against the Maple Software in §4. Finally, a few remarks
in §5 close the paper.

2 Green tensor: governing problem and motivations

This section defines the Green tensor for Stokes flows in the half x3 > 0 space and
subject to the anisotropic slip condition (3) on the plane x3 = 0 impermeable and
motionless boundary Σ. It also illustrates the use of this Green tensor by proposing
a relevant boundary-integral equation to determine the Stokes flow about a single
solid particle immersed in the liquid in the vicinity of the surface Σ and experienc-
ing a prescribed rigid-body migration.

2.1 Definition of the Green tensor and basic symmetry property

Let us consider, as sketched in Fig. 1, two points located in the liquid domain above
the plane boundary Σ : one so-called source point y and the observation point x. We
also recall that Cartesian coordinates (O,x1,x2,x3) are employed with xi = x.ei and
yi = x.ei.

For k = 1,2,3 we can introduce a Stokes flow with pressure p(k), velocity v(k)

produced by a concentrated point force with strength ek placed at the source y.
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Figure 1 – A pole y and its symmetric y′ with respect to the plane wall
Σ(x3 = 0).

x1

Σ(x3 = 0)n = e3

µ

D
n

x3

S

P

O

Figure 2 – A solid and arbitrarily-shaped particle P near the x3 = 0 motion-
less, impermeable, slipping and anisotropic plane boundary Σ.
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Figure 3 – Adopted notations in the Fourier space with angles θ, θ′ and
variables ρ and ξ.

Figure 1: A pole y and its symmetric y′ with respect to the plane wall Σ(x3 = 0).

This flow vanishes far from the source y. Accordingly, one has

µ∇
2v(k) = ∇p(k)−δ3d(x−y)ek for x3 > 0, (4)

∇.v(k) = 0 for x3 > 0, (5)

(u(k), p(k))→ (0,0) as |x| → ∞ (6)

with δ3d(x− y) = δd(x1− y1)δd(x2− y2)δd(x3− y3) if δd denotes the usual Dirac
pseudo-function. The previous flows introduce a second-rank Green tensor G with
Cartesian components G jk(x,y) = v(k)(x,y).e j. One should note that in absence of
prescribed boundary conditions on the x3 = 0 plane for the flows (v(k), p(k)) such a
tensor G is not unique! For example, the usual (see Pozrikidis (1992)) free-space
Oseen-Burgers tensor Gfree and associated pressure field p f ree,(k) such that

8πµGfree
jk (x,y) =

δ jk

|x−y| +
[(x−y).e j][(x−y).ek]

|x−y|3 , (7)

4π p f ree,(k)(x,y) = (x−y).ek (8)

is a solution to (4)-(6). The solution (7)-(8) is the so-called Stokeslet with strength
ek located at the pole y. The tensor Gfree is weakly singular as the observation point
x approaches the source point y and any Green tensor G actually takes the form
G = Gfree + R with R a tensor regular in the entire x3 > 0 half-space. In contrast,
the Green tensor Gc complying with the anisotropic slip condition (3) is unique and
obtained from Stokes flows (v(k), p(k)) fulfilling (4)-(6) and the specific boundary
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conditions (3) on the plane surface Σ, i. e. the additional relations

v(k).e3 = 0 on Σ(x3 = 0), (9)

v(k).e1 = b1
∂v(k).e1

∂x3
on Σ(x3 = 0), (10)

v(k).e2 = b2
∂v(k).e2

∂x3
on Σ(x3 = 0) (11)

with prescribed slip lengths 0≤ b2 ≤ b1. In summary, the retained Green tensor Gc

is obtained by determining three Stokes flows (v(k), p(k)) governed by (4)-(6) and
(9)-(11). If we further consider two flows (u, p) and (u′, p)′ having stress tensors
σσσ and σσσ ′ and subject to the boundary conditions (3) on the surface Σ it is clear that∫

Σ

u.σσσ ′.ndS =
∫

Σ

u′.σσσ .ndS. (12)

Mimicking the treatment employed in Pozrikidis (1992) for a no-slip boundary it
is then straightforward to show that, because of the above relation (12) the selected
Green tensor Gc admits the following symmetry propoerty

Gc
k j(y,x) = Gc

jk(x,y). (13)

Before closing this subsection, let us outline that property (13) would not necessar-
ily hold when prescribing at the plane wall Σ other boundary conditions than the
selected anisotropic ones (9)-(11).

2.2 Application to the Stokes flow about a migrating solid particle

Since the determination of the Green tensor Gc in §3 requires some efforts it is
worth briefly illustrating to which extent its knowledge nicely facilitates the accu-
rate determination of the flow about a solid particle migrating and interacting with
the unbounded slipping wall Σ. As illustrated in Fig. 2, the particle P has smooth
surface S with unit outward normal n pointing into the liquid.

The particle has prescribed rigid-body velocity urb on its surface S and the fluid
flows with pressure p and velocity u in the liquid domain D . The Stokes flow (u, p)
obeys in the domain D the equations (4)-(6) with δ3d set to zero, the anisotropic
boundary conditions (3) and the condition u = urb on S. Adopting the usual tensor
summation convention and exploiting the property (13), it is then possible to show
that the velocity u field then admits in the entire liquid domain D the key integral
representation

u(x).e j =−
∫

S
f(y).ekGc

jk(x,y)dS(y), x in D (14)
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Figure 2: A solid and arbitrarily-shaped particle P near the x3 = 0 motionless,
impermeable, slipping and anisotropic plane boundary Σ.

with f the traction exerted by the flow (u, p) on the particle surface. One should
note that (14) soleley involves the particle surface S (and not at all the unbounded
boundary Σ) because the specific tensor Gc is employed! In addition, it actually
reduces to a single-layer contribution because the particle has a rigid-body motion.
Finally, letting the point x in (14) tend onto the surface S yields for the unknown
surface traction f the key Fredholm boundary-integral equation of the first kind

urb.e j =−
∫

S
f(y).ekGc

jk(x,y)dS(y), x on S. (15)

Once Gc is determined, solving (15) then provides the vector f (and thus the net
force and torque exerted by the flow on the particle) and also, if necessary and
subsequently, the velocity field u about the particle by appealing to (14).

3 Determination of the Green tensor

This section obtains the required Green tensor Cartesian components Gc
jk(x,y) for

arbitrary pole y and observation point x located above the plane surface Σ. It is
recalled that, except for a few clearly specified cases, the usual tensor summation
convention is used throughout this paper.

3.1 Employed decomposition and solution in the Fourier space

As shown in Fig. 1, we introduce the symmetric point y′ of the selected pole y with
respect to the plane, impermeable and slipping boundary Σ. Accordingly, y′3 =−y3
whereas y′i = yi for i = 1,2. For convenience, we also set h = y3 and define the
vectors R = x− y = Riei and R′ = x− y′ = R′iei such that R′1 = R1,R′2 = R2,R3 =
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x3−h and R′3 = x3 + h > 0. For a given value of k we introduce the pressure field
pc,(k)(x,y) associated with the Stokes flow velocity Gc

jk(x,y)e j and, recalling the
definitions (7)-(8), then adopt the following decompositions

Gc
jk(x,y) = G f ree

jk (x,y)−G f ree
jk (x,y′)+w(k)

j (x,y), (16)

pc,(k)(x,y) = p f ree,(k)(x,y)− p f ree,(k)(x,y′)+ s(k)(x,y). (17)

Hence, the flow (Gc
jk(x,y)e j, pc,(k)(x,y)) produced by a concentrated point with

strength ek at the source y is thus obtained by superposing a Stokeslet with strength
ek at y, a Stokeslet with strength −ek at the symmetric point y′ and a Stokes flow
with velocity w(k) = w(k)

j (x,y)e j and pressure s(k)(x,y). Since the Stokeslet located
at y satifies (4), the third above flow is regular in the entire half x3 > 0 space.
Clearly, it obeys

µ∇
2w(k) = ∇s(k) and ∇.w(k) = 0 for x3 > 0, (18)

(w(k),s(k))→ (0,0) as |x| → ∞ (19)

and, because the flow Gc
jk(x,y)e j satisfies the anisotropic slip condition (9)-(11), at

the plane wall the additional impermeability condition

8πµw(k)
3 = δk3(

1
R′
− 1

R
)+

R′3R′k
R′3
− R3Rk

R3 at x3 = 0, (20)

and the two anisotropic slip relations

8πµw(k)
j +δ jk(

1
R
− 1

R′
)+

R jRk

R3 −
R′jR

′
k

R′3
=

b j

{
8πµ

∂w(k)
j

∂R′3
+δ jk(

R′3
R′3
− R3

R3 )+δk3(
R j

R3 −
R′j
R′3

)

+3(
R′jR

′
kR′3

R′5
− R jRkR3

R5 )
}

for j = 1,2 at x3 = 0 (21)

where R = |R|,R = |R′| and there is no summation over indices j in (21).

The problem (18)-(21) is solved here, using the two-dimensional Fourier transform
F<g> of a function g depending upon the variables R1,R2 and R′3 defined as

F<g>= ĝ(λ1,λ2;R′3)

=
1

2π

∫
∞

−∞

∫
∞

−∞

g(R1,R2,R′3)e
i(λ1R1+λ2R2)dR1dR2 (22)
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with i the usual complex number such that i2 =−1. Setting ξ = {λ 2
1 +λ 2

2 }1/2 and
using Gradshteyn and Ryzhik (1963), one for example gets for R′3 = x3 +h > 0 the
identities

F<(R2
1 +R2

2 +R′23 )−1/2>=
e−R′3ξ

ξ
, (23)

F<(R2
1 +R2

2 +R′23 )−3/2>=
e−R′3ξ

R′3
. (24)

From (18) the pressure field s(k) is harmonic in the entire x3 > 0 domain where
one therefore has the differential equation ∂ 2ŝ(k)/∂R′23 = ξ 2ŝ(k). Since the far-field
behaviour (19) shows that ŝ(k) vanishes as x3 → ∞ the retained solution ŝ(k) thus
reads

ŝ(k) =
h

4πµ
[2µB(k)]e−ξ (R′3−h) (25)

where the unknown function B(k) depends upon λ1,λ2, the length h = y3 and the two
slip lengths b1 and b2. In a similar fashion, the first equation (18) and the behaviour
(19) also give the differential equation ∂ 2ŵ(k)

j /∂R′23 = ξ 2ŵ(k)
j + ŝ(k)/µ with ŵ(k)

j
vanishing as x3→ ∞. Exploiting (25), the obtain solution takes the following form

ŵ(k)
j =

h
4πµ

{
B(k)

j +[i(
λ1δ1 j +λ2δ2 j

ξ
)+δ j3](R′3−h)B(k)

}
e−(R′3−h)ξ (26)

with three additional unknown functions B(k) still depending upon (λ1,λ2,h,b1)
and b2. Finally, one also gets the additional relation

B(k) = iλ1B(k)
1 + iλ2B(k)

2 +ξ B(k)
3 (27)

here obtained by enforcing the divergence-free condition required in (18). The four
unknown functions B(k),B(k)

j are finally determined by using the Fourier tranforms
of the boundary conditions (20)-(21). Appealing to (23)-(24) and noting that R′ =
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R,R′3 = h =−R3 at the plane surface Σ(x3 = 0) then easily shows that

B(k)
3 = i(λ1δ1k +λ2δ1k)g1(ξ ), (28)

B(k)
j − iδk3(λ1δ1 j +λ2δ2 j)g1(ξ ) = b j

{
i(λ1δ1 j +λ2δ2 j)

ξ
B(k)−ξ B(k)

j +2δ jkg3(ξ )

−λ jλk(1−δk3)a
j
1g1(ξ )

}
for j = 1,2 (29)

g1(ξ ) =
e−hξ

ξ
, g3(ξ ) =

e−hξ

h
. (30)

As in (21), there is no summation over indices j in (29). Using the Maple Software
to solve the linear system (27)-(29) then yields for k = 3 the solutions

B(3)
1 =

iλ1g1(ξ )[b2ξ 2 +ξ +(b2−b1)λ 2
2 ]

2ξ 3b1b2 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2
2
, (31)

B(3)
2 =

iλ2g1(ξ )[(2b1−b2)ξ 2 +ξ +(b2−b1)λ 2
2 ]

2ξ 3b1b2 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2
2
, (32)

B(3)
3 = 0, (33)

B(3) =− g1(ξ )ξ 2[b2ξ 2 +ξ +(b1−b2)λ 2
2 ]

2ξ 3b1b2 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2
2

(34)

and for k = 1 the more heavy results

B(1)
1 =− 2b1[b2g1(ξ )ξ 4 +g1(ξ )ξ 3

2b1b2ξ 3 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2
2

− b2ξ 2(g3(ξ )+g1(ξ )λ 2
2 )

2b1b2ξ 3 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2
2

− g1(ξ )ξ λ 2
2 +g3(ξ )+b2g3(ξ )λ 2

2 ]
2b1b2ξ 3 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2

2
, (35)

B(1)
2 =− 2b2λ1λ2[b1g1(ξ )ξ 2 +g1(ξ )ξ +b1g3(ξ )]

2b1b2ξ 3 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2
2
, (36)

B(1)
3 = iλ1g1(ξ ), (37)

B(1) =
iλ1ξ [b2g1(ξ )ξ 2 +(g1(ξ )+2b1b2g3(ξ ))ξ
2b1b2ξ 3 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2

2

+
iλ1ξ [2b1g3(ξ )+(b1−b2)g1(ξ )λ 2

2 ]
2b1b2ξ 3 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2

2
. (38)
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Of course, the functions B(2)
1 ,B(2)

2 ,B(2)
3 and B(2) are obtained by replacing upper-

scripts (1) with (2) and switching subscripts 1 and 2 in (35)-(38). As announced,
the functions B(k),B(k)

j depend upon (λ1,λ2,h,b1,b2) and the results (31)-(38) per-

mit one to gain the results in the Fourier space for the velocity components ŵ(k)
j and

the pressure field ŝ(k).

3.2 Cartesian components of the Green tensor

The next key step consists in applying the inverse two-dimensional Fourier trans-
form to the quantities ŵ(k)

j and (if also needed) ŝ(k) calculated in the previous sub-
section §3.1. By virtue of (22), one actually has the relation

g(R1,R2,R′3) =
1

2π

∫
∞

−∞

∫
∞

−∞

ĝ(λ1,λ2;R′3)e
−i(λ1R1+λ2R2)dλ1dλ2. (39)

Restricting henceforth our attention to the velocity components, one then arrives at

w(k)
j =

h
8µπ2

∫
∞

−∞

∫
∞

−∞

H(k)
j e−R′3ξ e−i(λ1R1+λ2R2)dλ1dλ2 (40)

with functions H(k)
j deduced from (26), (31)-(38) and displayed in Appendix A.

3.3 Case of the isotropic Navier boundary condition

For this case we set b = b1 = b2 ≥ 0 and the functions D and H(k)
j defined in the

Appendix A then take simple forms with D = ξ (1+bξ )(1+2bξ ). Employing the
identities (see Gradshteyn and Ryzhik (1963))

∫ 2π

0
e−ixcosθ ′dθ

′ = 2πJ0(x), (41)

J1(x) =−J′0(x), J2(x) = 2J1(x)/x− J0(x), (42)∫
∞

0

J0(ax)
ecx dx = (a2 + c2)−1/2 for a≥ 0 and c > 0, (43)

where Jm designates the usual Bessel function of integer order m and introducing
the variable ρ = {R2

1 +R2
2}1/2 makes it possible to cast the results (40) for b = b1 =
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b2 into the following forms

w(3)
j = (

h
4πµ

)(
R j

ρ
)
{

L1,1
1 − x3L2,1

1

}
for j = 1,2, (44)

w(3)
3 =− hx3

4πµ
L2,0

1 , (45)

w(1)
1 =

h
4πµ

{
[2b+ x3(1+2b/h)][L2,2

1 (R1/ρ)2− L1,1
1
ρ

]

+
2b2

hρ
L1,1

2 −L2,2
2 (R2/ρ)2 +

2b
h

L1,0
1

}
, (46)

w(1)
2 = (

h
4πµ

)(
R1R2

ρ2 )
{

[x3 +2b(1+ x3/h)]L2,2
1

+
2b2

h
L2,2

2

}
, (47)

w(1)
3 = (

h
4πµ

)(
R1

ρ
)
{

x3(1+2b/h)L2,1
1

+
ρ

(ρ2 +R′23 )3/2

}
(48)

where the integrals Lp,q
1 and Lp,q

2 are defined for positive integers p and q as

Lp,q
1 =

∫
∞

0

ξ pe−R′3ξ Jq(ρξ )dξ

1+2bξ
, (49)

Lp,q
2 =

∫
∞

0

ξ pe−R′3ξ Jq(ρξ )dξ

(1+bξ )(1+2bξ )
. (50)

As a consequence, for b1 = b2 the task reduces to the computation of seven one-
dimensional regular integrals: L1,0

1 ,L1,1
1 ,L2,0

1 ,L2,1
1 ,L2,2

1 ,L1,1
2 and L2,2

2 .

4 Advocated Numerical treatment and benchmark tests

As emphasized in the introduction, it is in practice both required to theoretically
determine the Green tensor complying with the anisotropic slip condition (3) (see
Issue 1) and accurately compute its Cartesian components at a reasonable cpu time
cost (see Issue 2). While Issue 1 has been treated in §3 the present section copes
with the Issue 2 by proposing, implementing and benchmarking a suitable numeri-
cal method to compute the velocity components w(k)

j given by (40) and the material
displayed in Appendix A. As detailed in §4.1, the key point consists in rewriting
the two-dimensional integrals w(k)

j as one-dimensional ones.
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4.1 Advocated procedure to solely end up with one-dimensional integrals

As shown by (44)-(50), when b1 = b2 = b one solely encounters one-dimensional
integrals of the following form

I(ρ,x3,h;b) =
h

4πµ

∫
∞

0
e−R′3ξ S(ξ ,ρ,x3,h;b)dξ (51)

with S a smooth function of ξ and R′3 = x3 + h > 0 so that e−R′3ξ decays as ξ

becomes large.

In constrast, for b1 > b2 ≥ 0 the velocity component w(k)
j turns out to be a fully

two-dimensional integral (recall (40)) which depends upon the selected pole y, the
observation point x and the two inequal positive slip lengths b1 > b2 through the
variables x3,h = y3,R1 = x1−y1,R2 = x2−y2 and the sum R′3 = x3 +h > 0. As seen
in (40), the integrand has a regular (see (80)-(88)) and decaying term H(k)

j e−R′3ξ

but also exhibits oscillations produced by the factor e−i(λ1R1+λ2R2). At a very first
glance, one thus might think about accurately and quickly compute each integral
w(k)

j using the so-called Fast Fourier Transform (FFT) technique. Unfortunately,
such a powerful procedure tremendously speeds up the calculations only when one
is actually interested in simultaneously gaining the values of an oscillating integral
at a large number of wave numbers (i. e. here at a large number of pairs (R1,R2) in
the two-dimensional physical space). Because we are interested in calculating w(k)

j
solely at one prescribed value (R1,R2) the FFT is not competitive for the present
work. Fortunately, it has been found both possible and very efficient to analytically
perform one integration in (40) therefore ending up with solely a one-dimensional
integral to be computed (analogous to (51)) when handling w(k)

j . The employed
procedure is explained below and illustrated for the treatment of the component
w(1)

2 in §4.2.

As sketched in Fig. 3, we first introduce the polar coordinates (ρ,α),(ξ ,θ) and
the angle θ ′ such that θ ′ ∈ [0,2π] and

R1 = ρ cosα, R2 = ρ sinα, (52)

λ1 = ξ cosθ , λ2 = ξ sinθ , θ = θ
′+α. (53)

Then dλ1dλ2 = ξ dξ dθ and the equality (40) becomes

w(k)
j =

h
4µπ

∫
∞

0
e−R′3ξ S(k)

j (ξ ,ρ,α,x3,h;b1,b2)dξ (54)

with S(k)
j a one-dimensional and oscillating integral of the following form

S(k)
j =

1
2π

∫ 2π

0
e−ρξ cosθ ′T (k)

j (θ ,ξ ,x3,h;b1,b2)dθ
′ (55)
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x1

Σ(x3 = 0)

y′•

h = y3 > 0
y•

x
•

O

x3

Figure 1 – A pole y and its symmetric y′ with respect to the plane wall
Σ(x3 = 0).

x1

Σ(x3 = 0)n = e3

µ

D
n

x3

S

P

O

Figure 2 – A solid and arbitrarily-shaped particle P near the x3 = 0 motion-
less, impermeable, slipping and anisotropic plane boundary Σ.

λ1

θ
α

R1e1 + R2e2
ρ

θ′

λ1e1 + λ2e2

ξ

λ2

Figure 3 – Adopted notations in the Fourier space with angles θ, θ′ and
variables ρ and ξ.

Figure 3: Adopted notations in the Fourier space with angles θ ,θ ′ and variables ρ

and ξ .

where it is recalled that θ = θ ′+α. As the reader may easily check, inspecting the
definitions (80)-(88) shows that each fucntion T (k)

j actually consists of terms of the
form A(θ)T with

A(θ) = 1, cos(θ), sin(θ), cos(2θ), sin(2θ), cos(4θ), (56)

T = c(ξ ,x3,h;b1,b2)+
C(ξ , ,x3,h;b1,b2)

1−a2(ξ ;b1,b2)sin2(θ)
(57)

and, recalling that b1 ≥ b2 and ξ ≥ 0,

a(ξ ;b1,b2) = [
(b1−b2)ξ

2b1b2ξ 2 +(b2 +2b1)ξ +1
]1/2 < 1, (58)

Accordingly, it is possible to rewrite T as a serie Fourier of the following type

T (θ) =
∞

∑
n=0

tn(ξ ,x3,h;b1,b2)cos(2nθ) (59)

with coefficients cn analytically obtained from the relations (see, for (61), Grad-
shteyn and Ryzhik (1963) page 368 for a2 < 1)

tn =
22−δn0

π

∫
π/2

0
T (θ)cos(2nθ)dθ , (60)∫

π/2

0

cos(2nθ)dθ

1−a2 sin2(θ)
=

π(−1)n

2
√

1−a2
[
1−
√

1−a2

a
]2n. (61)
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It follows that each term A(θ)T becomes

A(θ)T =
∞

∑
n=0

tn(ξ ,x3,h;b1,b2)A(θ ′+α)

[cos(2nα)cos(2nθ
′)− sin(2nα)sin(2nθ

′)]. (62)

Developing the function A(θ ′+α) in terms of the functions 1,cos(θ ′),sin(θ ′),cos(2θ ′)
and sin(2θ ′) 1 and exploiting the following identities∫ 2π

0
e−iρξ cosθ ′ cos(2nθ

′)dθ
′ = 2π(−1)nJ2n(ρξ ), (63)∫ 2π

0
e−iρξ cosθ ′ sin(2nθ

′)dθ
′ = 0, (64)

i
∫ 2π

0
e−iρξ cosθ ′ cos(2nθ

′)cos(θ ′)dθ
′ = pisin[(n+

1
2
)π]J2n+1(ρξ )

+π sin[|n− 1
2
|π]J|2n−1|(ρξ ), (65)

i
∫ 2π

0
e−iρξ sinθ ′ sin(2nθ

′)sin(θ ′)dθ
′ = π sin[|n− 1

2
|π]J|2n−1|(ρξ )

−π sin[(n+
1
2
)π]J2n+1(ρξ )}, (66)∫ 2π

0
e−iρξ cosθ ′ cos(2nθ

′)cos(2θ
′)dθ

′ =

π(−1)n+1{J2n+2(ρξ )+ J|2n−2|(ρξ )}, (67)∫ 2π

0
e−iρξ cosθ ′ sin(2nθ

′)sin(2θ
′)dθ

′ =

π(−1)n+1{J|2n−2|(ρξ )− J2n+2(ρξ )}, (68)

then makes it possible to analytically perform the calculation of the oscillating
integral S(k)

j defined by (55). More precisely, the quantity S(k)
j then admits the

expansion

S(k)
j (ξ ,ρ,α,x3,h;b1,b2) =

∞

∑
n=0

sn(ξ ,ρ,α,x3,h;b1,b2) (69)

with each “coefficient” sn analytically determined and if necessarily computed at
any desired accuracy level at a very low cpu time cost. Of course, when b1 =
b2 = b the coefficients tn in (62) and sn in (69) vanish for n ≥ 1 and the value of
s0(ξ ,ρ,α,x3,h;b1,b2) retrieves the one deduced from (44)-(50).

1 When A(θ) = cos(4θ) we actually directly write the product A(θ)T (θ) as a Fourier serie (59).
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In summary, the numerical implementation obtains the velocity w(k)
j by comput-

ing the one-dimensional (54) once the occurring function S(k)
j is numerically and

accurately known truncating its analytical expansion (69).

4.2 Illustrating example for w(1)
2

The procedure introduced in §4.1 in order to arrive at the key expansion (69) for
each component w(k)

j solely requires elementary manipulations which are however
too long to be reproduced here for each value for the pair ( j,k). Nevertheless, it is
worth detailing for one example. This is achieved in this subsection by adressing
the component w(1)

2 .

Using the relations dλ1dλ2 = ξ dξ dθ ′,λ1λ2 = ξ 2 sin(2θ)/2 and the definition (84)
of the function H(1)

2 then yields T (1)
2 = sin(2θ)T with function T (1)

2 introduced by
(55) and here such that

T =
ξ 2x3

2
+

[−Q(1)
2 (ξ ,x3,h;b1,b2)ξ 2/2]

1−a2(ξ ;b1,b2)sin2(θ)
, (70)

Q(1)
2 =

N
2ξ 2b1b2 +(b2 +2b1)ξ +1

, (71)

N = 2b2(1+b1ξ +b1/h)+ x3[1+(b2 +2b1)ξ
+2b1b2ξ

2 +(1+b2ξ )(1+2b1/h)]. (72)

Appealing to (60)-(61), it immediately follows that (59) here holds for

t0 =
ξ 2

2
[x3−

Q(1)
2√

1−a2
], (73)

tn =
(−1)nξ 2Q(1)

2√
1−a2

[
1−
√

1−a2

a
]2n for n≥ 1. (74)

Exploiting the relation θ = θ ′+α, the resulting identities

sin(2θ) = sin(2α)cos(2θ
′)+ cos(2α)sin(2θ

′), (75)

cos(2θ) = cos(2α)cos(2θ
′)− sin(2α)sin(2θ

′), (76)

and the relations (67)-(68) one thus deduces that function S(1)
2 occurring in (54) and

obtained from T (1)
2 by performing the integration over θ ′ as shown in (55) admit
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the following analytical expansion

S(1)
2 =−t0 sin(2α)J2(ρξ )+ ∑

n≥1
[
tn
2

]
{

sin[(2n+2)α](−1)n+1J2n+2(ρξ )

−sin[(2n−2)α](−1)n−1J2n−2(ρξ )
}

(77)

with tn given for n≥ 0 by (71)-(74).

4.3 Numerical treatment of each encountered one-dimensional integral and
benchmark tests

One-dimensional integrals (51) and (54) are computed using the change of variable
ξ =− log t. For instance, for (54) one then gets∫

∞

0
e−R′3ξ S(k)

j (ξ ,ρ,α,x3,h;b1,b2)dξ =
∫ 1

0
tR′3−1S(k)

j (− log t,ρ,α,x3,h;b1,b2)dt (78)

and the regular integral on the right-hand side of (78) is here accurately and itera-
tively calculated at a given accuracy level by first truncating the expansion (69) at
this prescribed accuracy and then iteratively dividing the domain [0,1] into equal
subsegments on which a Gaussian of order 8 or 16 is employed.

Table 1: Comparisons against the results provided by the Maple Software for set-
tings b1 = 1,b2 = 0.2,x3 = 1/2 and y3 = h = 1/3. Case of weakly-oscillating
integrals: R1 =−0.7,R2 =−0.1 It is recalled that w(k)

j = hw
′(k)
j /(4πµ).

w
′k
j Maple (R′3 = 0.1) Fortran (R′3 = 0.1) Maple (R′3 = 1) Fortran (R′3 = 1)

w
′1
1 7.7567698098 7.7567698219 1.1727368380 1.1727368385

w
′1
2 1.5644810076 1.5644810085 0.0717101966 0.0717101967

w
′1
3 -5.5551541286 -5.5551541469 -0.9636199432 -0.963199432

w
′2
1 1.4449074993 1.4449075005 0.0652592911 0.0652592913

w
′2
2 -2.7285236646 -2.7285236672 0.0512840044 0.0512840044

w
′2
3 -0.8762725769 -0.8762725744 -0.1164679197 -0.1164679200

w
′3
1 0.8312453930 0.8312453953 0.0438230004 0.0438230005

w
′3
2 0.2527838614 0.2527838601 -0.0037009441 -0.0037009441

w
′3
3 -0.5668804764 -0.5668804827 -0.1761637586 -0.1761637584
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Table 2: Comparisons against the results provided by the Maple Software for set-
tings b1 = 1,b2 = 0.2,x3 = 1/2 and y3 = h = 1/3. Case of moderately-oscillating
integrals: R1 = 2,R2 =−1.5. It is recalled that w(k)

j = hw
′(k)
j /(4πµ).

w
′k
j Maple (R′3 = 0.1) Fortran (R′3 = 0.1) Maple (R′3 = 1) Fortran (R′3 = 1)

w
′1
1 0.3536712338 0.35367122374 0.3544786109 0.3544786084

w
′1
2 -0.2896394410 -0.02896394436 -0.1463434884 -0.1463434884

w
′1
3 0.1970021000 0.1970020930 0.1927649466 0.1927649460

w
′2
1 -0.2516197474 -0.2516197506 -0.1280063049 -0.1280063049

w
′2
2 0.0603747621 0.0603747626 0.0616010126 0.0616010125

w
′2
3 -0.0150214943 -0.150214943 -0.1216560698 -0.1216560697

w
′3
1 0.0809436825 0.0809436814 0.0384483781 0.0384483782

w
′3
2 -0.0487071456 -0.0487071403 -0.0393437158 -0.0393437158

w
′3
3 0.0162356781 0.0162356779 0.0004864529 0.0004864529

Table 3: Comparisons against the results provided by the Maple Software for set-
tings b1 = 1,b2 = 0.2,x3 = 1/2 and y3 = h = 1/3. Case of strongly–oscillating
integrals: R1 = 20,R2 =−15. It is recalled that w(k)

j = hw
′(k)
j /(4πµ).

w
′k
j Maple (R′3 = 0.2) Fortran (R′3 = 0.2) Maple (R′3 = 1) Fortran (R′3 = 1)

w
′1
1 0.0010074508 0.0010074599 0.0012990282 0.0012990271

w
′1
2 -0.0004836719 -0.0004836679 -0.0004759370 -0.0004759400

w
′1
3 0.0013060891 0.0013060910 0.0013194533 0.0013194532

w
′2
1 -0.0004085189 -0.0004085246 -0.00004020889 -0.00004020880

w
′2
2 0.0000592200 0.0000592200 0.0001181210 0.0001181210

w
′2
3 -0.0009749514 -0.0009749424 -0.0009764560 -0.0009764560

w
′3
1 0.0012618453 0.0012618460 0.0012472237 0.0012472255

w
′3
2 -0.0009469234 -0.0009468681 -0.0009416822 -0.0009416821

w
′3
3 0.0000313950 0.0000313952 0.0000306379 0.0000306376

Comparisons against the Maple Sofware are provided for the auxiliary quantity
w
′(k)
j = 4πµw(k)

j /h (see (54)) in Tables 1, 2, 3 for x3 = 1/2 and h = 1/3 and sev-
eral values of the parameter R′3 > 0 (here selected as if independent of x3 +h) and
of the pair (R1,R2) which dictates the magnitude of the oscillating factor in (39).
The Maple Software directly computes the formula (40) at a required 10−10 accu-
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racy (increasing the required accuracy results in a large computational time for the
Maple Software). The same accuracy level has been set in our numerical compu-
tations and the obtained results perfectly match the ones predicted by the Maple
Software. In any case, our numerical treatment is very fast compared with the
Maple Software which was also found to becomes very slow for strong oscillations
(see Table 3) and R3 weak. This is the reason why the lower employed of R′3 in
Table 3 is equal to 0.2 (whereas Tables 1 and 2 report comparisons for R′3 = 0.1).
It was also found in our numerical code that, as expected, the cpu time cost for
anisotropic case b1 6= b2 is comparable with the cpu time cost for the isotropic case
b1 = b2.

5 Concluding remarks

The Green tensor for an extended and anisotropic slip condition at a plane, motion-
less, impermeable and slipping wall has been theoretically obtained. An efficient
and accurate numerical implementation has been also proposed to calculate at a rea-
sonable cpu time cost and a sufficient accuracy level each Cartesian component of
the derived Green tensor and the achieved comparisons against the Maple Software
clearly show that the advocated numerical strategy provides very good results.

This work opens the way to the challenging investigation of the motion of a solid
particle suspended in a liquid bounded by such a non-isotropic slipping surface.
The use of the proposed Green tensor will make it possible to deal with the case of a
non-necessarily spherical particle by resorting to a boundary-integral method. Such
a key issue however requires many additional efforts and is therefore postponed to
a future work.

Finally, the present paper is dedicated to our outstanding colleague Professor Wil-
son Sergio Venturini who sadly passed away on 15th July, 2010 at the age of 62.
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Appendix A: Functions H(k)
j

This Appendix provides the functions H(k)
j arising in (38). Upon introducing the

function D as

D = 2ξ
3b1b2 +(b2 +2b1)ξ 2 +ξ +(b2−b1)λ 2

2

= 2ξ
3b1b2 +(b1 +2b2)ξ 2 +ξ +(b1−b2)λ 2

1 (79)
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and exploiting the definitions (30) and the results (31)-(38), one easily gets

H(3)
1 =

iλ1

D

{
b2ξ +1+(b2−b1)λ 2

2 /ξ

−x3[b2ξ
2 +ξ +(b1−b2)λ 2

2

}
, (80)

H(3)
2 =

iλ2

D

{
(2b1−b2)ξ +1+(b2−b1)λ 2

2 /ξ

−x3[b2ξ
2 +ξ +(b1−b2)λ 2

2 ], (81)

H(3)
3 =−ξ x3

D

{
b2ξ

2 +ξ +(b1−b2)λ 2
2

}
, (82)

H(1)
1 =− 1

D

{
2b1ξ (ξ −1/h)(1+b2ξ )

−2b1(1+b2ξ +b2/h)λ 2
2

+λ
2
1 x3[(1+b2ξ )(1+2b1/h)+(b1−b2)λ 2

2 /ξ ]
}

, (83)

H(1)
2 =−λ1λ2

D

{
2b2(b1ξ +1+b1/h)

+x3[(1+b2ξ )(1+2b1/h)+(b1−b2)λ 2
2 /ξ ]

}
, (84)

H(1)
3 =

iλ1

D

{
D/ξ

+x3ξ [(1+b2ξ )(1+2b1/h)+(b1−b2)λ 2
2 /ξ ]

}
(85)

H(2)
1 =−λ1λ2

D

{
2b1(b2ξ +1+b2/h)

+x3[(1+b1ξ )(1+2b2/h)+(b2−b1)λ 2
1 /ξ ]

}
, (86)

H(2)
2 =− 1

D

{
2b2ξ (ξ −1/h)(1+b1ξ )

−2b2(1+b1ξ +b1/h)λ 2
1

+λ
2
2 x3[(1+b1ξ )(1+2b2/h)+(b2−b1)λ 2

1 /ξ ]
}

, (87)

H(2)
3 =

iλ2

D

{
D/ξ

+x3ξ [(1+b1ξ )(1+2b2/h)+(b2−b1)λ 2
2 /ξ ]

}
. (88)
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