
Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.239-262, 2011

Modified Algorithm for Surface Tension with Smoothed
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Abstract: Based on smoothed particle hydrodynamics (SPH) method with sur-
face tension proposed by Morris, this paper is intended to modify equations for
surface tension by modifying normal and curvature with corrective smoothing par-
ticle method (CSPM). Compared with the continuum surface force (CSF) model
for surface tension employed in the traditional SPH method, the accuracy in the
present paper is much higher in terms of handling the problems with large defor-
mation and surface tension. The reason is that in the traditional SPH method the
deficiency of particles is near the boundary and sharp-angled areas, and it causes
gross errors of curvature calculation. Via a semicircular problem the new method
is tested, the factors affecting the accuracy of which are then investigated, includ-
ing surface definition, normal calculation and curvature calculation and smoothing
length in curvature calculation is also confirmed reasonable. Furthermore, evolu-
tion of a liquid drop under surface tension from initial square shape is simulated
by the new method. Compared with Morris method and grid-based volume of fluid
method, there is higher accuracy at sharp-angled areas and the final particle distri-
bution is more homogeneous. Then, based on the modified algorithm, coalescence
process of two oil drops in water under surface tension is simulated. The results
show a good agreement with physical process. The method presented here is more
applicable to solve the surface tension problems in both vacuum and multi-phase
fluid involving density differences. Moreover, second breakup of an oil drop in
water accelerated by an impulsive force is analyzed through simulation.
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1 Introduction

Surface tension, as an important property of liquid, plays a significant role in the
formation of drops, coalescence of colliding drops, breaking up of colliding drops
and so on. Many researchers have shown great interest in numerical simulation
for it. In practice surface tension has been brought in many techniques. Some
of these use simplifying assumptions to increase computational efficiency, making
it difficult to include extra physical or chemical effects or complicated boundary
conditions. And some methods are difficult to be extended to three-dimensional
problems. For example, level set methods (LSM) (Sethian, 1996) can deal with
large interfaces, however, exact conservation of mass is not guaranteed. Since the
droplets’ colliding involves large deformation of free surface, it is very difficult to
track moving interfaces for traditional grid based methods such as finite element
method (FEM). When the pinch-off happens, the deformable FEM is no longer
useful. Although the volume of fluid (VOF) (Hirt and Nichols, 1981) method
is still applicable, the accuracy and stability of numerical schemes are question-
able. As the time accelerate, interfaces become illegible. An adaptive local grid
refinement technique (Nikolopoulos, Nikas and Bergeles, 2009) is needed in order
to increase the resolution around the interface which is more computationally ex-
pensive. Smoothed particle hydrodynamics (SPH) (Monaghan, 1992; Monaghan,
2005), as a full Lagrangian particle method, is used when fluid interfaces are ad-
vected with very little numerical diffusion. The SPH formalism readily accom-
modates extra physical and chemical effects and highly irregular, mobile or even
deformable boundaries (Morris, 2000). This flexibility readily carries over into
three-dimensional problems.

At present, two methods exist in traditional treatment of surface tension in SPH.
One is imported from molecular interaction, using molecular cohesive pressure
within van der Waals(vdW) model or intermolecular interactions to cope with the
surface tension. Nugent and Posch(2000) applied the SPH method to van der
Waals(vdW) fluid and studied the oscillation of a droplet with an initial rectan-
gular shape under the surface tension. Although the surface tension generated by
this method agrees well with the analytical solution, there still exists unphysical
clustering in the simulation. Y. Meleán, L. D. G. Sigalotti and A. Hasmy(2004)
removed the tensile instability by adding an artificial stress method and an energy
generation term to the standard SPH equations. Y. Meleán and L. D. G. Siga-
lotti(2005) then employed the SPH method to simulate the coalescence of colliding
van der Waals liquid drops and took the effects of different impact velocities on
the collision of two drops into consideration. Unfortunately, the new method by
Y. Meleán had to compromise between avoiding tensile instability and reproducing
the van der Waals phase diagram. M. Y. Zhang, H. Zhang and L. L. Zhang(2006;
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2009) avoided the particles clustering by using XSPH and studied the droplet im-
pact on a smooth substrate in 3D with solidification. A. Colagrossi and M. Lan-
drini(2003) increased the accuracy of interface by introducing molecular cohesive
pressure within van der Waals(vdW) model as simulating the interface of two flows.
G. Z. Zhou and Ge Wei(2008) introduced a repulsion between the neighboring par-
ticles of different fluids to arise surface tension automatically. The methods above
for surface tension are all from molecular interaction and have a nature advantage
over other numerical methods by which very complex interface tracking techniques
are needed. However, they can not be used widely, for the parameters in the model
can not correspond to macro parameters naturally.

The other method presented by Morris originally comes from continuum surface
force (CSF)(Brackbill, Kothe and Zemach, 1992) model. Morris(2000) studied
the theoretical computational process and simulated surface tension acting at an
interface between two fluids of the same density and viscosity. The accuracy near
the boundary or at sharp-angled areas is not taken into account, nor is the extension
of the method to higher density and viscosity ratios yet concluded. M. Müller,
D. Charypar and M. Gross(2003) attained a simpler method through initializing
the color functions, the idea and solving process of which coincide with Morris’s.
H.S.Fang et al(2009) and Bao Kai et al(2009) simulated the evolution of a liquid
drop under surface tension from initial square shape, spreading and solidification of
a droplet with high impact Reynolds number and dam-break flow with the simpler
method. Nevertheless the incompressible can’t satisfy the request. The methods
above all have gross errors in the curvature computation of those areas deficient
in particles near the boundary and at the sharp-angled areas. The cases related to
density differences are not involved and the factors affecting the surface tension are
not recognized fully.

Corrective smoothed particle method (CSPM) was proposed by J.K.Chen(1999)
who combined the kernel estimate with the Taylor series expansion in 1999. That
algorithm resolves the general problem of particle deficiency at boundaries and im-
proves the computational resolution, consistency and tensile instability effectively
(Chen, Beraun and Carney, 1999; Chen and Beraun, 2000).

In this work, we modified the surface tension method based on SPH method with
surface tension proposed by Morris. To raise the accuracy of surface curvature
calculation at sharp curvature areas, the normal and curvature were revised with
CSPM. Then higher curvature accuracy and more homogeneous particles distri-
bution calculation were obtained. Furthermore, XSPH was used to smooth the
velocity field. A semicircular problem was carried out to demonstrate the accuracy
in surface defining, normal calculation and curvature calculation. The relation-
ship of smoothing length between curvature formula and normal formula was also
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analyzed. Two engineering tests on coalescence of two oil drops in water and sec-
ondary breakup of oil drop in water were simulated to prove the practicability in
engineering of the new method.

2 CSF model

The CSF model interprets surface tension as a continuous, three-dimensional effect
across the interface, rather than as a boundary value condition on the interface. The
model is from defining a color function through which the normal and curvature are
obtained. In this model, surface tension is translated into a force per unit volume.
Conservation of momentum should be guaranteed exactly in this method.

In this paper we address the accurate modeling of the normal boundary for inter-
faces where the surface tension coefficient is constant and the interface thickness is
limited. The force per unit volume, Fs can be written as

Fs = fsδs (1)

where δs is a normalized function that peaks at the interface and usually is chosen
as surface delta function |n|. fs is the force per unit area given by

fs = σk(x)n̂ (2)

where σ is the surface tension coefficient, k(x) is the curvature of the interface at
x, and n̂ is the unit normal to the interface. The normal n can be obtained by

n =
∇c(x)
[∇c(x)]

(3)

c(x) is the color function identifying each fluid in the problem and [∇c(x)] is the
jump across the interface. The curvature is calculated through the formula

k =−(∇ · n̂) (4)

3 The standard SPH equations

3.1 Governing equations

The fluids in this paper are considered as viscous and incompressible fluids with
the heat transfer is neglected. The surface tension can’t be ignored for droplets
evolution and colliding. The governing equations are written in Lagrangian form
as{

dv
dt =− 1

ρ
∇P+ v∇2v+ fs

dx
dt = v

(5)
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where v is particle velocity; t is time; ρ is fluid particle density; P is pressure; v is
kinematic viscosity; fs is surface tension; x is particle position.

In order to describe the incompressible flow, it’s necessary to use an artificial com-
pressibility equation (Monaghan, 1994),

P = B
[(

ρ

ρ0

)γ

−1
]

+ χ (6)

where B is reference pressure; γdenotes constant, usually, γ = 7; χ is background
pressure, while χ = 0 standing for free-surface flows. The parameters B,γ are
chosen to have maximum density oscillations of order ofϑ(1%). In practice, this
is accomplished by choosing the sound speed 10 times or larger than the highest
fluid velocity expected in the analyzed physical problems. ThereB = 100ρ0v2

max/γ ,
whereρ0 is the initial density of the fluid, vmax is the maximum velocity.

When the incompressible fluid is considered as weekly compressible, the density ρ

can not keep constant. Continue equation in Lagrangian form is needed to compute
density

dρ

dt
=−ρ∇ ·v (7)

3.2 SPH formulations

In SPH method, the fluid is discretized by particles. The equations governing the
evolution of fluid quantities are expressed as summation interpolations using a ker-
nel function W with smoothing length h. The common differential SPH-based
equations are, then, generated. These equations describe the varying of physical
parameters and position of each SPH particle, the most usual one of which is the
standard approach to SPH presented by Monaghan(1992). In this paper, we sim-
ulated two fluids of different density and viscosity. Due to the fact that numerical
instability in the interface with density gradient may trigger the collapse of the
computation, the modified SPH equations improved by Frank Ott and Erik Schnet-
ter (2003) are adopted to deal with multi-phase flows effectively. Here we will
utilize this modified equations.

As calculating viscous forces, one expression is from summating over particles
with adding the computational effort. The other is directly from employing second
derivatives of kernel. The disadvantage of using second derivative is that interpola-
tion is much more susceptible to error at low resolution and hence, we use an SPH
estimation of viscous diffusion which was firstly employed by Monaghan to model
heat conduction and was also used by Morris(1997) to simulate the impressible
fluid at low Reynolds number. This hybrid expression is expressed to combine a
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standard SPH first derivative with a finite difference approximation of a first deriva-
tive. Therefore the full SPH equations of multi-phase viscous flows can be written
as

dρi
dt = mi

N
∑
j=1

vi j ·∇iWi j

dvi
dt =−

N
∑
j=1

m j

(
Pi+Pj
ρiρ j

)
∇iWi j

+
N
∑
j

m j
µi+µ j
ρiρ j

vi j( 1
ri j

∂Wi j
∂ ri j

)+ fs

dxi
dt = vi

(8)

where Wi j = W (xi−x j,h) is kernel function, which is important to numerical sta-
bility and accuracy. So far, the cubic spline function has been the most widely used
smoothing function. hdenotes the smoothing length. ∇iWi j denotes gradient ker-
nel function. vi j = vi− v j, ri j is the distance between particle i and j, µ = ρv is
the dynamic viscosity. Artificial viscosity is not needed in this paper for there is a
realistic viscosity force and the flow is at low Weber number.

To improve the particle distribution during the movement in SPH, XSPH by Mon-
aghan(1992) is generally used and the particle velocity is smoothed as follows

dxi

dt
= vi− ε ∑

j

m j

ρ̄i j
vi jWi j (9)

where ε(0 ≤ ε ≤ 1) denotes a constant and its value of 0.3 is usually used. It
makes the particles distribution more orderly by averaging its velocity with adjacent
particles and the stability of the numerical simulation is usually improved.

4 Modified Algorithm for Surface Tension

As simulating the surface tension based on CSF model, the factors which affect the
method accuracy should be held including surface definition, normal calculation
and curvature calculation. We will investigate these factors next seriatim.

4.1 Defining surface

The defining of surface is related to the resolution of normal, even to that of curva-
ture. Here, a standard interpolation expression(Morris, 2000) is smoothed as

c̄i = ∑
j

m j

ρ j
c jWi j (10)

c j is the color index of particle j, which is zero in the defined fluid field and one
out the defined fluid field initially.
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4.2 Modified normal with CSPM

The expression for n derived by Monaghan(2000) with variational principles is
given by

ni = ∑
j

m j

ρ j
c j∇iWi j (11)

There will be some unstable scatters some distance away from the interface when
Eq.11 is used to compute curvature. In a dynamic simulation, these scatters disrupt
the calculation. With a view to the phenomenon mentioned above, Morris(2000)
improved the accuracy by smoothing the normal as

ni = ∑
j

m j

ρ j
(c j− ci)∇iWi j (12)

This involves a difference between neighboring particle colors as a matter of which
the accuracy is higher. In this paper, we modified Eq.11 with CSPM derived by
J.K.Chen, and the main idea is to apply the corrective kernel estimate to the Tay-
lor series expansion. The modified normal equations in three-dimensional (3-D)
geometry are

nαi =

[
N

∑
j=1

(c̄ j− c̄i)Wi j,β
m j

ρ j

][
N

∑
j=1

(xα
j − xα

i )Wi j,β
m j

ρ j

]−1

(13)

whereα , β=1,. . . ,3, indicate spatial variables. nαi is the normal vector at α di-
rection of the particle i, c̄i and c̄ j are obtained from Eq.10, Wi j = W

(
xj−xi,h

)
,

Wi j,β = ∂Wi j/∂xβ

j . The resolution is higher with this formula than Eq.12 in dealing
with the deficiency of particles near the boundary. It is verified in section 5.1.

4.3 Modified curvature with CSPM

Curvature is the divergence of normalized normal. The traditional SPH expres-
sion(Morris, 2000) of curvature k is

ki =−(∇ · n̂)i =−∑
j

m j

ρ j
n̂ j ·∇iWi j (14)

A more accurate estimation of divergence is obtained by Monaghan(2000) with

ki =−(∇ · n̂)i =−∑
j

m j

ρ j
(n̂ j− n̂i) ·∇iWi j (15)
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However, for the normalized normal n̂ is small and have an erroneous direction
along with the distance away from the interface, any estimate of curvature will be
inaccurate. Morris(2000) suggested using |n| appropriate criteria to determine if a
normal is “reliable” before including it in a divergence calculation. That is

Ni =

{
1, if |ni|> ξ

0, otherwise
(16)

and

n̂i =

{
ni/|ni|, if Ni = 1
0, otherwise

(17)

When the normal value |ni| is less than parameterξ , the normal value and unit
normal vector should be set zero, which is though to have no effect on the curvature
calculation. Typically, ξ is taken 0.01/h. It is the same with modifying normal,
the curvature is revised with CSPM. The modified divergence components of n̂ in
three-dimensional (3-D) geometry are

n̂γ,αi =

[
N

∑
j=1

(n̂γ j− n̂γi)Wi j,β
m j

ρ j

][
N

∑
j=1

(xα
j − xα

i )Wi j,β
m j

ρ j

]−1

(18)

which are brought in curvature equation

ki =−(∇ · n̂)i =−(
∂ n̂xi

∂x
+

∂ n̂yi

∂y
+

∂ n̂zi

∂ z
) = n̂x,xi + n̂y,yi + n̂z,zi (19)

where, α , β , γ=1,. . . ,3, indicate spatial variables. n̂γi and n̂γ j are normalized normal
vectors at direction γ of particles i and j, which are obtained from Eq.17. n̂γ,αi is
partial derivative at direction α of the normalized normal vector n̂γ of particle i. It
is also verified in section 5.1.

Recently Adami, Hu and Adams(2010) derived a new reproducing divergence ap-
proximation to obtain a stable and accurate scheme for surface curvature. The
approach is also based on the corrected kernel form proposed by Chen, but the
differences are: our approach is proposed based on analyzing the deficiency of
the method of Morris and it is tested through a semicircular problem. The factors
affecting the accuracy are all investigated, including surface definition, normal cal-
culation and curvature calculation and smoothing length in curvature calculation is
also confirmed reasonable. Thus for improving the accuracy we also modified the
normal with CSPM which was not done by Adami and co-authors. Otherwise, the
formulas of surface tension force per unit mass on different occasions are obtained
by analyzing.
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4.4 The equation of surface tension per unit mass

For keeping the thickness of transition region a constant, Brackbill(1992) proposed
fluid acceleration due to surface tension depended only on density gradients, not on
the value of the density itself. The acceleration of an interface particle by surface
tension fs in Eq.8 is

(fs)i =− σ

〈ρ〉
(∇ · n̂)ini (20)

where, 〈ρ〉 = (ρ0 +ρ1)/2, ρ0, ρ1 are the density of the fluids on both sides of the
interface. For a single fluid case, Eq.20 is written as

(fs)i =−2σ

ρi
(∇ · n̂)ini (21)

For cases of two kinds of fluids on two sides of the interface, if Eq.20 was used
to calculate the surface tension, each SPH particle on the interface would carry the
same surface tension force. As a result, the interface would become very blurred.
The analysis for the phenomenon is: FVM is an Euler method, while the interface
is defined by the volume of fluid flowing into the grid of the interface. To keep the
thickness of the transition region a constant, the surface force on both sides should
be equal. However, for SPH is a full Lagrangian method, the interface tracking is
related with the force on each particle. During calculation of the surface forces it
must be ensured that the forces on both sides are not equal. Thus the interface can
become clear and the two fluids are separated. So the equation of surface tension
per unit mass for multi-phase fluids is

(fs)i =−σ

ρi
(∇ · n̂)ini (22)

4.5 Time integration

Here we used a leapfrog integrator (Monaghan, 1992) to update the position and
velocity of the particles. It takes the form as follows

φi(t +δ t/2) = φi(t−δ t/2)+φi(t)δ t (23)

xi(t +δ t) = xi(t)+ vi(t +δ t/2)δ t (24)

where φ indicates density ρ and velocity v, xi is the position of particle i.

In quasi-compressible fluid, to maintain numerical stability with respect to surface
tension force, the time step must be appropriate. This paper adopts a Courant-
Friedrich-Lewy (CFL)(Monaghan, 1992) condition to estimate the time step. The
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condition due to the maximum artificial sound velocity cmax and maximum fluid
velocity umax is

∆t ≤ 0.25
h

cmax + |umax|
(25)

The time step resolving the propagation of capillary waves(Brackbill, Kothe and
Zemach, 1992) is

∆t ≤ 0.25(
ρh3

2πσ
)
1/2 (26)

The condition based on viscosity diffusion (Morris, Fox and Zhu, 1997) is

∆t ≤ 0.125
ρh2

µ
(27)

The gravitation does not influence the time step in this paper. Finally, we choose
the minima during Eq.25, Eq.26 and Eq.27 as the time step in computation.

5 Numerical Tests

In this section, some numerical examples are given to test the new method derived
above. In all cases we employ a cubic spline kernel (Monaghan, 1992) as the
weighted function in the form

W (r,h) =
a
hν


1−1.5q2 +0.75q3 0≤ q≤ 1
0.25(2−q)3 1≤ q≤ 2
0 q > 2

(28)

where q = |r− r′|/h, spatial dimension ν = 1,2,3, accordingly the parameter a =
2/3,10/7π,1/π . For the compressible flows, γ = 7.0 is the ratio of specific heats.
ε = 0.3 is in XSPH equation. In normal calculation ξ = 0.01/h.

The fluids in all tests are water and diesel oil. The parameters can be seen in Table
1. There the surface tension coefficient refers to two different types: one is the
surface tension between the fluid and the air; the other one is the surface tension
between the two different fluids.

5.1 Semicircular problem

For the purpose of testing the accuracy of the new method, we chose a semicircular
problem in vacuum which contained linear boundary, curving boundary, sharp-
angled areas and areas with particles deficiency initially. Choices of color function,
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surface defining, surface normal calculation and curvature calculation are all inves-
tigated. The use of different levels of smoothing length to evaluate the curvature
and the surface delta function is analyzed through comparing the numerical results.
The initial particle distribution is shown in Fig.2. The number of particles is 361
and the distance ∆x = 5× 10−6m. The smoothing length evaluating the curvature
is denoted by H, the surface delta function by h which is also the smoothing length
in SPH basic equations. During this test, it is all used that H = 1.5h = 3∆x ex-
cept for the graph in Fig.6(b) gained under the different times H is larger than h.
(Fig.1, Fig.3 and Fig.4 are all three-dimensional for reflecting the function relation-
ship. The numerical results are displayed on grid nodes through inverse-distance
interpolating).

The surface is defined through color function in Eq.10, while the surface normal is
from the new method of Eq.13. (See Fig.1 and Fig.2.) As are shown in the figures,
the color function here is smooth and the surface normal is accurate. It can be seen
from the formula ĉ = 0.5(c1 + c2), the value of the color function on the surface
is 0.5. The boundary line in Fig.2 is the contour of c = 0.5. From the figure we
can see the surface attained from simulation agrees well with the true one and the
normal is calculated accurately.

Fig.3 shows the curvature calculated by the method of Morris and Fig.4 is got by
the new method. The curvature varies along the radius because the drop interface
thickness is comparable to the radius of the drop. Through comparison it is proved
the accuracy of curvature under the new method is larger meanwhile the curvature
of other parts can also meet the requirement.

Table 1: Properties of diesel oil and water

Material Density Surface tension Surface tension Viscosity
coefficient coefficient between diesel (Ns/m2)

(kg/m3) (N/m) oil and water (N/m)
Diesel oil 819.0 0.02825

0.050475
3.16×10−3

Water 1000 0.0727 1.002×10−3

Fig.5 shows the specific particles used for testing some parameters. The particles
selected for testing in Fig.6 are the ones filled with the black color. The accuracy
with the new method modifying the normal is higher than that of not in both cases
of the curvature modified (see Fig.6 (a)). It can not increase the computational price
for the parameters used in modifying the normal and curvature are the same. Fig.6
(b) is the comparison of curvature when H is different from h. We can observe as
H increases, the smoother curvature can be obtained. However, it has to pay more
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Figure 1: Color function
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Figure 2: Surface and normal by the
new method
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Figure 3: Curvature by the method of
Morris
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Figure 4: Curvature by the new method

computational price. A similar observation has already been made by S. Nugent
et al (Nugent and Posch, 2000). The curvature at position (0.0, 0.0) is not zero for
asymmetrical particles’ distribution initially.

For describing more clearly the accuracy of the modified algorithm at areas of
sharp-angled and with particles deficiency initially, on the basis of the above-
mention tests of related parameters, we choose two particles at special areas (par-
ticle 1 at sharp-angled area and particle 2 at center of the semicircle (see Fig.5))
to analyze further the curvature. The results are shown in Tab.2. It can be seen
through comparison the accuracy under the new method with both modifying the
normal and curvature and the smoothing length H=2.0h is more delicate than that
of Morris and the interference is reduced at the areas with particles deficiency ini-
tially. But it increases the computational price at the same time. Although with both
normal and curvature correction and the smoothing length H=1.5h the interference
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Figure 5: Particles used for testing some parameters in semicircular problem (The
black particles are used to calculate the curvature in Fig.6 and particle 1and particle
2 are used in Tab.2.)
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Figure 6: Comparison of curvature under different conditions

at the areas with particles deficiency initially is larger than that of Morris, the accu-
racy of curvature calculation is higher and the computational price is smaller. Thus,
the smoothing length H=1.5h is all used in the modified algorithm involved in later
chapters examples.
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Table 2: Curvature values at special points with different methods (The percentage
shows the ratio of accuracy improved by different modified methods on the base of
Morris.)

Morris Curvature modified but Curvature and normal
method normal not H=1.5h both modified H=1.0h

Curvature of par-
ticle 1(×104)

4.38834 7.43848 6.77117

Percentage of
the accuracy
improved

69.5% 54.30%

Curvature of par-
ticle 2(×104)

0.09004 0.14207 0.41249

Curvature and normal Curvature and normal Theoretical
both modified H=1.5h both modified H=2.0h value

Curvature of par-
ticle 1(×104)

8.25619 8.244573 ∞

Percentage of
the accuracy
improved

88.14% 87.87%

Curvature of par-
ticle 2(×104)

0.11805 0.059255 0

5.2 Evolution of an initially square shaped drop in vacuum

Surface tension always makes liquid surface constrict and the surface area is kept
a minimum. The square droplets can contract and oscillate about its equilibrium
shape. The droplet will keep circular evenly for viscosity dissipation, which is the
reason why many liquid drops keep circular. The objective of this test is to vali-
date the surface tension through comparing with Morris method and traditional grid
based method. Simultaneously the periods of oscillation is obtained for supplying
parameters and reliability index. The initial distribution of particles is 30×30 and
the material is oil in vacuum. The parameters can be seen in Table 1. Fig.7-9 are
the droplet’s shapes at different time under three methods. They were all calcu-
lated through Eq.21. The solid line in Fig.9 is the boundary line of c = 0.5. It
can be drawn through comparing the shape of the droplet in one cycle the particles
in modified algorithm are more stable than that in Morris method and FVM-VOF
method. The form of angular can be maintained when the drop vibrates to the limit
state and the particles are in good order. Compared with the method of Morris, the
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oscillation period of the new method is closer to the actual one and the accuracy
is also higher. Simultaneity compared with FVM-VOF method, at the limit time
the maximum of the drop at x direction of the new method can reach 9.45×10−5m,
however that of VOF method can only reach 8.865×10−5m. Otherwise, the num-
ber of the drop oscillation times before it keeps steady is fewer than that of the new
method. That’s because for VOF methods the accurate evaluation of the geometri-
cal properties of the interface such as curvature also need to be improved by other
methods such as dynamic mesh-adaptive methods. However, as the value of the
curvature at the cusp still can not reach the theoretical value, there is still relatively
small gap between the oscillation period and the actual value. The algorithm will
be improved and refined further next on the basis of this article.

 
t=0s                 t=0.00004s           t=0.00010s          t=0.00014s             t=0.00019s                 t= ∞  

 
Figure 7: Square droplet’s particles changing process under surface tension by Mor-
ris method

 
t=0s                 t=0.00003s             t=0.0007s            t=0.00011s           t=0.00014s                t= ∞  

 
Figure 8: Square droplet’s particles changing process under the new method

 
t=0s                 t=0.00003s             t=0.0006s              t=0.0009s              t=0.00012s                  t= ∞  

 
Figure 9: Square droplet’s changing process under FVM-VOF method
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5.3 Evolution of an initially square shaped oil drop in water in 2-D

For testing the feasibility of the new algorithm as it is used on the interface of two
different fluids with density difference and supplying reliable basis for engineering
applications, the square shaped drop is placed in a solution. The physical model is
shown as Fig.10. That is an initially square shaped oil drop in water. The boundary
with thickness ∆x = ∆y = 25µm and particles number n = 1420, water with ∆x =
∆y = 330µm and particles number n = 3454, and a square oil droplet with ∆x =
∆y = 150µm and particles number n = 900.

Fig.11 and Fig.12 are the droplet’s shape at different time under two methods. The
finite volume method is found to coverage with 5774 cells spanning the initial
square. The four time points are all the margin times in the periods. That is at
0.08ms the droplet contracted to a rhombus, then at 0.16ms it came back to square
at the first time. Then the second period will continue until the kinetic energy is
dissipated to zero by viscosity. The agreement between these two methods at the
periods and shapes is excellent. For comparing the two methods comprehensively,
the velocity fields at three typical times were chosen to be compared (see Fig.13
and Fig.14). It can be seen the two velocity vector plots are basically consistent. It
is proved the process of calculation of the new method is correct.
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Figure 10: Physical model of test in section 5.3
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 Figure 11: Square droplet’s changing process under FVM-VOF method
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 Figure 12: Square droplet’s particles changing process under the new method
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 Figure 13: Square droplet’s velocity changing process under the new method

6 Engineering applications

6.1 Coalescence of two oil drops in water in 3-D

Coalescence of two small drops in liquid-liquid dispersions has appeared com-
monly in systems like latex preparation, liquid-liquid extraction, and separation
with clarifying or multi-phase flowing in porous materials. It is significant to ap-



256 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.239-262, 2011

x/mm

y/
m

m

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2 t=0.04ms

x/mm
y/

m
m

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2 t=0.08ms

x/mm

y/
m

m

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2 t=0.12ms

 
(a)                                                            (b)                                                          (c) 

 Figure 14: Square droplet’s velocity changing process under the FVM-VOF method

prehend and control the coalescence process. The test, coalescence of two oil drops
in water, is simulated here. The parameters of oil and water can be seen in Tab.1.
There are 110000 particles in all placed equidistantly in x∈ [−0.000140,0.000140]
y ∈ [−0.0001025,0.0001025] z ∈ [−0.0001025,0.0001025], and 1736 particles for
each oil drop with diameter D = 75µm, 62624 particles for water. In Fig.15 we
can see when two drops approach each other with no velocity initially, a dimpled
thin liquid film is formed between them. As the liquid in film discharged, the inter-
face can deform by the pressure changing. A dimpled film could be obtained along
with thinnest areas occurred in film margins. The strong surface forces at high-
curvature corners bring the drop into oscillation. Viscosity dissipation eventually
damps the oscillation, causing the coalescence drop to approach an equilibrium
spherical shape. The model simulating here predicts the coalescence time com-
mendably.

 
 Figure 15: Deformation and coalescence of two oil drops in water of still state
initially at four different times. At 0.03ms, the two drops combines completely
and the film size is the same as the drop diameter. At 0.11ms, the film becomes
thickest while the velocity filed is almost zero. The coalescence drop equilibrates
to approach a spherical shape at about 0.35ms.
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6.2 Secondary breakup of oil drop in water in 3-D

Secondary breakup is one of the stage processes in spray combustion, which can ex-
pand the total surface area of the fuel-air interface. The secondary breakup of drop
has been widely investigated through experience (Chou and Faeth, 1998; Joseph,
Belanger and Beavers, 1999; Dai and Faeth, 2001), while the simulation is less for
its research and most of that is only on two-dimensions (2D). There are differences
between two-dimensional simulation and three-dimensional simulation especially
for oscillation breakup and bag breakup. Some three-dimensional numerical ex-
periments of the secondary breakup of drop are operated exploringly in this text.
It can be concluded through previous experiences: the effects of liquid viscosity
can be negligible when Oh<0.1; with low Weber number the drop do not break up
with only deformation; as the acceleration increases past a critical value, the drops
become progressively flatter and eventually break up. As the Weber number is in-
creased, there are four different typical breakup modes (Han and Tryggvason(1999,
2001):

(1) Oscillation breakup. The drop decomposes into several two or more equal-sized
smaller drops.

(2) Bag breakup. The original drop deforms into a torus-shaped rim spanned by a
thin fluid film that ruptures into tiny droplets, followed by disintegration of the rim
into larger droplets.

(3) Shear breakup. Small drops are continuously stripped off the rim of the original
drop.

(4) Explosive breakup. The strong surface waves disintegrate the drop in a violent
manner.

Three types of breakup (forward-facing bag breakup, backward-facing bag breakup
and shear breakup (see Fig.17-19)) have been got through changing the density ratio
and the drop velocity. The processes of the drop deformation are in line with the
physics. For there is less experimental data on such problems and it’s difficult for us
to do such experiments, comparisons with the experiments have not been done. It’s
only used for testing the practicability in large deformation processes and related
engineering fields. The simulation is subject to further experimental verification.
In this text we take the secondary breakup of oil drops in water accelerated by
an impulsive force into consideration. The drop of size D = 75µm is located in
a cuboid channel of size Lx = 380µm, Ly = Lz = 155µm(see Fig.16). There are
no-slip wall boundaries with thickness ∆x = ∆y = 15µm and particles number n =
39104. The oil particles number is 1736 and water 46260. As it’s shown at (Han
and Tryggvason(1999, 2001), the Weber number, Ohnesorge number, density ratio
and viscosity ratio affect the breakup mode and deformation rate. These are defined
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by

We =
ρ0v2
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, ohd =
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ρdDσ
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ρd

ρ0
, γµ =

µd

µ0
(29)

Here, D is the initial diameter of the drop and vrel is the initial relative velocity
between the drop and the ambient fluid. The subscripts d,o denote the properties
of the oil drop and water. Fig.17-19 show the deformation and breakup of oil drop
in water at two different times.
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Figure 16: The initial form of the drop and the flow field in the secondary breakup 
At each figure the above one is the deformation and breakup of oil drop spatially, while the below one is 
the sectional image of second breakup process in the y direction where the color denotes the value of the 

color function. 

Figure 16: The initial form of the drop and the flow field in the secondary breakup.
At each figure the above one is the deformation and breakup of oil drop spatially,
while the below one is the sectional image of second breakup process in the y
direction where the color denotes the value of the color function.

7 Conclusions

One of the traditional surface tension methods simulating surface tension is from
microcosm perspective taking molecular cohesive or repulsive force into consider-
ation, the parameters of which can not keep consistency with practicality in simu-
lation. Simultaneously the accuracy at areas with small curvature is very low, thus
the reflexive separation into two or more drops cannot be attained. The other one is
based on CSF model from macro angel which simulates the surface tension directly.
Although this method avoids the disadvantage of the microcosmic method, the cur-
vature calculation of areas with deficiency of particles such as near the boundary
and sharp-angled areas is not involved. As a result, the accuracy of the curvature is
also very low.
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(a)T=0.04ms (b)T=0.09ms 

Figure 17: The forward-facing bag breakup processes ( 47.54We = , 0.057doh = , 1.638ργ = , 3.16μγ = ) 

 

(a)T=0.063ms (b)T=0.147ms 

Figure 18: The backward-facing bag breakup processes ( 95.09We = , 0.057doh = , 0.819ργ = , 3.16μγ = )

(a)T=0.02ms (b)T=0.03ms 

Figure 19: The forward-facing bag breakup processes ( 27.38We = , 0.057doh = , 10ργ = , 31.6μγ = ) 

Figure 17: The forward-facing bag breakup process (We = 47.54, ohd = 0.057,
γρ = 1.638, γµ = 3.16
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Figure 19: The forward-facing bag breakup processes ( 27.38We = , 0.057doh = , 10ργ = , 31.6μγ = ) 

Figure 18: The backward-facing bag breakup process (We = 95.09, ohd = 0.057,
γρ = 0.819, γµ = 3.16

This paper presents a new method to cope with surface tension which starts from
CSF model based on SPH method with surface tension proposed by Morris. The
modified equations for surface tension are derived by modifying normal and curva-
ture with CSPM which can resolve the boundary deficiency problem and improve
the tensile instability effectively (Chen, Beraun and Jih(1999)). The color func-
tion, normal calculation and curvature calculation all have been analyzed through
numerical simulation. Through a typical test in surface tension simulations, evo-
lution of a diesel oil in vacuum and in water from an initial square shape in 2-D,
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Figure 19: The forward-facing bag breakup processes ( 27.38We = , 0.057doh = , 10ργ = , 31.6μγ = ) Figure 19: The shear breakup process (We = 27.38, ohd = 0.057, γρ = 10, γµ =
31.6)

it’s proved that the new method is feasible for solving such problems and the sta-
bility and accuracy are much higher comparing with Morris method and traditional
grid based method (FVM-VOF), with supplying related parameters for engineering
applications. The two engineering applications both display the capabilities of the
new method in handling multi-phase and large deformation problems.
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