
Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

Mesh Simplification Method Using Principal Curvatures
and Directions

V. Ungvichian 1 and P. Kanongchaiyos1

Abstract: This paper describes an enhancement to Garland and Heckbert’s mesh
simplification method by using the principal curvatures and directions of each ver-
tex. We calculate the values and directions, before using them to determine the
absolute normal curvature in the direction of contraction, and multiplying the cur-
vature with the edge length, the maximum absolute cosine of the angles between
the edge and the normals of faces adjacent to either endpoint, and the quadric error
of the collapse. We also apply penalties based on compactness and angular and di-
hedral deviations of the resulting faces. We have implemented these improvements
and tested our algorithm on a sample of models from Purdue’s Engineering Shape
Benchmark. We observe that, while our algorithm tends to produce competitive
Hausdorff distances than QEM up to 20% face count, and reduces models to be-
tween 20% and 50% of the original face count before significant distortion occurs
(at a Hausdorff distance of approximately .05 of the bounding box diagonal), QEM
still performs better at more drastic levels of simplification, especially on meshes
with already low face count. Future research includes, among others, improving the
factors to be more robust towards changes in the model during the simplification
process.

Keywords: Three dimensional computer graphics, Mesh simplification, Curva-
ture, Edge contraction

1 Introduction

Three-dimensional computer graphics have been widely used in various applica-
tions, such as simulation and animation, due to their suitability in representing
objects in a realistic fashion and better practicality than actual physical objects.
Along with the general capabilities of computer graphics hardware, the quality and
complexity of three-dimensional polygonal models has increased. The high num-
ber of faces found in current 3D models makes them not only more detailed and

1 Department of Computer Engineering, Chulalongkorn University, Bangkok, Thailand.

202 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

realistic, but also more complex than can be efficiently rendered under the inherent
limitations of typical graphics hardware. In many applications, rendering efficiency
is more important than detail, for example, gaming, which requires real-time user
interaction; also, some game engines set a limit on the number of polygons permis-
sible in a single model. There are also cases where fine detail is unnecessary: For
example, for various forms of analysis of objects for engineering, a face count in
the thousands is sufficient for reasonably accurate results. In any case, it is neces-
sary for such lower-polygon models to resemble the original model. Depending on
the usage, either a visual or geometric resemblance is necessary.

Therefore, a commonly-researched topic in computer graphics research is deter-
mining methods to reduce the number of faces in the model to a much smaller
number, while retaining as much visual (and/or geometric) resemblance to the orig-
inal model as possible. This process is known as mesh simplification, and many
methods and schemes have been proposed. The following paper presents a general-
purpose mesh simplification method based on principal curvature directions.

2 Related work

Among the many mechanisms that have been described for mesh simplification
(Luebke (2001)), the most commonly-used mechanism is edge contraction, in which
edges that are deemed unimportant to the overall shape of the model are contracted,
removing degenerate triangles. Such methods are well-suited for structures based
on dynamic reduction, for example, Hoppe’s Progressive Meshes (Hoppe (1996)),
as the edge contraction steps can be stored as part of the structure, and then used to
re-create the mesh at a given face count, providing an advantage over static reduc-
tion. One of the most notable and widely-used edge-contraction-based algorithms
is Garland and Heckbert’s Quadric Error Metric (Garland and Heckbert (1997)),
or QEM, which uses 4×4 matrices to score contractions based mainly on the dis-
tances of the resulting vertex from the original faces. The QEM method has been
noted for providing a good trade-off between the quality of results and algorithm
complexity, compared to previous methods.

However, Garland and Heckbert’s original metric is based solely on geometric er-
ror, which may, for example, result in ambiguity around sharp corners, which may
be contracted without introducing much quadric error. Subsequent papers have
incorporated other factors into the original algorithm, such as curvedness-like mea-
sures (Xu, Chen, Liu, and Lv (2008)) (Li and Zhu (2008)), torsion (Jong, Tseng,
and Yang (2006)), optimal placement based on various factors (Choi, Kim, and Lee
(2008)), and higher-dimension feature sensitivity metrics (Wei and Lou (2010)),
to preserve visual significant features. The lattermost method uses a 6×6 matrix,
more than doubling memory usage from the standard 4×4 matrix, while the other

Mesh Simplification Method Using Principal Curvatures and Directions 203

methods apply the factors to the 4×4 matrix, either by multiplying the matrix with
a penalty, or adding the penalty to the error score. These penalties all involve a
single value per vertex, calculated from the vertex and its immediate locality.

Differential geometry states, however, that the curvature of a surface around a given
point involves two principal curvature directions and their respective normal curva-
tures, which are the maximum (kmax) and minimum (kmin) curvatures of area around
the given point. We also observe from the previous research that areas of high cur-
vature are more important (visually and geometrically) to retain. Therefore, we
expect that moving a vertex in a direction of little to no curvature (on a flat surface
or a straight feature edge) should affect the overall structure less than moving the
same vertex in a high curvature direction. As the principal curvatures and their
directions can be used to determine the curvature in a given direction, we believe
that using these values may help assist in the improvement of mesh simplification
better than using a single value.

Other aspects that we believe influence the quality of a reduced model are facial ori-
entation and regularity. The orientation of a given face (both on its own and relative
to adjacent faces) is a major factor in determining its shade of color when rendering
the model, while facial regularity (or compactness) is desirable in applications such
as finite element analysis and design processes; also, we have observed in early ex-
periments that highly irregular faces may produce high angular deviation without
introducing significant geometric error.

3 The proposed method

The algorithms described in the previous section calculate a factor for each individ-
ual vertex for use in penalizing scores. For our algorithm, we calculate the principal
curvatures and directions for each vertex, so that instead of using each individual
vertex and its locality to calculate the penalty, we calculate the penalty for each
edge, resulting in a lower score for contracting a given vertex in a direction with
lower curvature. We assume that the mesh input is a non-textured model with tri-
angular faces, and mostly manifold topology. The steps of our algorithm follow the
same general framework as most edge-contraction based algorithms.

After receiving the input, we perform pre-processing by calculating each vertex’s
principal curvatures, principal directions and quadric matrix. We then determine
the validity of contracting each edge, and where valid, the score and resulting ver-
tex, by calculating the QEM score and applying other penalties to obtain the score
and inserting the vertex with better score in a heap. We then perform the simplifica-
tion by contracting the best scores on the heap and updating the heap as necessary
until the desired level of simplification has been reached. Each step will now be

204 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

explained in detail.

3.1 Pre-processing

After receiving the input mesh data, we calculate the principal curvatures and their
directions for each vertex, by calculating the normal vectors at each vertex, and
then using Batagelo and Wu’s method (Batagelo and Wu (2007)) of using linear
least squares to estimate the curvature tensor, and then deriving the curvatures from
the estimated tensor using eigenvalues and eigenvectors. This method is claimed to
be fast and robust, producing fewer outliers than other methods. As the normal vec-
tor and two principal directions are all orthogonal, we need only store the normal
vector and one principal direction, deriving the remaining direction using a cross
product.

We then calculate the quadric matrices for each vertex in a similar fashion to Gar-
land and Heckbert’s method. For each face, we calculate its normal vector to deter-
mine its corresponding plane p, and convert p to a Kp matrix:

Kp =

a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 (1)

where the plane equation of p is ax + by + cz + d = 0 and a2 + b2 + c2 = 1. To
each of the face’s constituent vertices, we weight Kp with the product of the area
and incident angle on the vertex. After inspecting every face, we perform an area-
weighted sum to obtain a quadric matrix Q(v) for each vertex:

Q(v) =
k

∑
i=1

K fiθ〈v, fi〉w fi (2)

where θ〈v, fi〉 is the angle of face fi incident on v, w fi is the area of fi (see Fig. 1), and
K fi is the quadric matrix of the plane on which fi lies. Fig. 2 shows the pseudocode
for preparing the quadric matrices.

3.2 Scoring

Next, we determine how to contract each edge of the model, and the score of the
contraction. We first determine the validity of contracting each edge. For each edge
〈vx,vy〉, we check the valences of the vertices immediately adjacent to vx and vy,

Mesh Simplification Method Using Principal Curvatures and Directions 205

Figure 1: Explanation for weighting using angles

1 for each face f in model M
2 determine normal vector ~N and area w f of f
3 determine quadric matrix K f from ~N
4 for each vertex v of f
5 determine angle θ〈v, f 〉 of f on v
6 Q(v)← Q(v)+K f θ〈v, f 〉w f

Figure 2: Pseudocode for preparing quadric matrices

206 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

Figure 3: An example of topology being affected by contraction

discarding any edges where any such vertex has a valence of 3. We also determine
the number of vertices that are adjacent to both endpoints and the number of faces
adjacent to the edge, and discard edges where these two values are not equal. These
checks prevent a contraction from altering the topology of the model. For example,
in Fig. 3, an edge whose endpoints are adjacent to 2 vertices, but is itself adjacent
to one face, is contracted, resulting in a hole being closed up.

For edges that pass these checks, we then determine the point to which to contract
the edge. In our method, we use a subset selection policy (i.e., selecting between
the two endpoints), which is easier to implement than determining the optimal po-
sition. We first calculate the initial QEM score, starting by summing together the
matrices of the edge’s endpoints and using the summed matrices to calculate the
raw QEM score as in Garland and Heckbert’s method: vT(Q(vx) + Q(vy))v. We
next determine the absolute normal curvature from the contracted point to the re-
sult point; that is, when contracting vx to vy, we determine the normal curvature in
the direction from vx to vy. Where kmax and kmin are, respectively, the maximum
and minimum principal curvatures of vx, ~Nvx is the normal vector of vx, and ~D is the
direction for kmax, the absolute normal curvature k from vx to vy can be calculated
as follows:

~D′ = (~Nvx× (~vy−~vx))× ~Nvx/‖(~Nvx× (~vy−~vx))× ~Nvx‖ (3)

cos2
θ = (~D · ~D′)2 (4)

k = |cos2
θkmax +(1− cos2

θ)kmin| (5)

Lastly, for each face f adjacent to exactly one endpoint of the edge, we determine
the absolute cosine of the angle between its normal vector ~N f and the edge using

Mesh Simplification Method Using Principal Curvatures and Directions 207

w =
√

3/4 w =
√

15/16 w≈ 0

γ = 4
√

3(
√

3/4)
12+12+12 = 1 γ = 4

√
3(
√

15/16)
12+12+0.52 ≈ 0.745 γ = 4

√
3(∼0)

12+12+∼02 ≈ 0
Figure 4: Regularity from Guéziec’s equation

a dot product, and determine the maximum of these vales (cosmax φ), as a lower
cosine indicates a lower likelihood of the contraction affecting the surface in the
area.

We multiply the raw QEM score with k, cosmax φ and the edge length ‖(~vy−~vx)‖, as
we consider that contracting a vertex in a low-curvature direction, in a low-cosine
area and/or over a short edge length is less likely to significantly affect the model
than contraction in a high-curvature direction and/or over a long edge. We obtain
the initial QEM score as follows:

s′ = (〈vx,vy〉,vx) = ‖~vy−~vx‖cosmax φkvT
x (Q(vx)+Q(vy))vx (6)

Next, we calculate penalties, starting by calculating the regularity of each face ad-
jacent to the resulting vertex, using Guéziec’s equation (Guéziec (1995)):

γ =
4
√

3w
l2
1 + l2

2 + l2
3

(7)

where w is the area of a given face, and the li are the lengths of its edges. This
equation produces a result of 1 for an equilateral triangle, and 0 for a degenerate
triangle (Fig. 4). We determine the face with the least regularity, and penalize
contractions that result in faces with lower than 0.5 thusly:

preg =

{
(0.5

γmin
)2−1 if γmin ≤ 0.5

0 if γmin > 0.5
(8)

208 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

Our choice of 0.5 allows for some degree of variance in facial regularity from being
perfectly equilateral. Next, we determine the orientation of the resulting faces,
and compare with the face’s original orientation to determine the overall change
in orientation θ , before penalizing according to the largest change in orientation
thusly:

pang =

{
sinθmax

1−sinθmax
if θmax < 90◦

+∞ if θmax ≥ 90◦
(9)

We then compare the resulting orientation of each resulting face to the normal vec-
tors of its vertices and calculate their curvedness-inverse-weighted average, as we
consider that normal vectors at areas of low curvedness are more representative of
the ideal facial orientation than those at areas of higher curvedness:

Rvi =
√

kmin(vi)2 + kmax(vi)2/
√

2 (10)

θ
′ =

∑
∠(~N f , ~Nvi)

Rvi

∑
1

Rvi

(11)

where vi are the constituent vertices of the resulting face f , kmin(vi) and kmax(vi) are
the principal curvatures of each vi, Rvi is the curvedness of each vi, and ∠(~N f , ~Nvi)
is the angle between the normal vector of f and the normal vector of vi. We then
apply the same penalizing method as above:

pavg =

{
sinθ ′max

1−sinθ ′max
if θ ′max < 90◦

+∞ if θ ′max ≥ 90◦
(12)

Lastly, we also consider the dihedral angles between the affected faces, and faces
immediately adjacent to such faces, and compare them to the dihedral angles of
the original orientations. The faces being compared need not have been originally
adjacent to each other. We also consider that cases where the relative orientation
between a given pair of faces has changed from concave to convex, or vice versa,
produce subjectively “bad” results, hence, we detect and penalize such cases:

Mesh Simplification Method Using Principal Curvatures and Directions 209

(a) (b)
Figure 5: Dihedral angles between two faces before (a) and after contraction (b)

θ̂(~O1, ~O2, ~N1, ~N2) =

|sin−1(‖~N1× ~N2‖)− sin−1(‖~O1× ~O2‖)|

if (~N1× ~N2) · (~O1× ~O2) > 0
2sin−1(‖~N1× ~N2‖)+ sin−1(‖~O1× ~O2‖)

if (~N1× ~N2) · (~O1× ~O2)≤ 0

(13)

Where ~O1 and ~O2 are the original unit normal vectors of two adjacent faces, and ~N1
and ~N2 are the unit normal vectors of the same faces after the contraction (Fig. 5).
We then use the highest dihedral angle score to calculate the penalty, in the same
way as the previous angles above:

prdc =

{
sin θ̂max

1−sin θ̂max
if θ̂max < 90◦

+∞ if θ̂max ≥ 90◦
(14)

After calculating the penalties, we take the logarithm of the initial QEM score, and
add the penalties thusly:

s(〈vx,vy〉,vx) = log(s′(〈vx,vy〉,vx))+α(pang + pavg + prdc)+β preg (15)

where α and β represent user-defined weights for each part of the score. In effect,
this multiplies the QEM score with various powers of the calculated penalties. After
we have obtained the final scores of contracting the edge to each endpoint, we insert
the better score into a binary priority heap H, along with the following information:

210 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

the two endpoints (with the better-scoring endpoint listed first), the edge’s label
(ex), and the update number when it was most recently updated (U(ex)), initially
−1. These values are used to assist in the updating process.

3.3 Simplification and updating process

As in the QEM method, we repeatedly contract the edge with the least score, sum
together the endpoints’ quadric matrices to produce the new vertex’s quadric ma-
trix, and update the priority heap, until the desired level of simplification has been
reached, or no valid contractions remain. When updating the priority heap, we use
a “lazy” updating scheme, which updates the heap only as required, and only up-
date the topmost portion, under the reasoning that scores in the topmost portion
are more likely to remain near the top afterwards. This scheme has similarities
to Cohen et al.’s “dirty bit” method (Cohen, Manocha, and Olano (1997)) (which
can be described as a different case of our proposed updating scheme) and Wu and
Kobbelt’s Multiple-Choice Techniques (Wu and Kobbelt (2002)). From our exper-
iments, as a balance between updating more entries than necessary, and updating
more frequently, we have chosen to update the top n−6 levels of the heap, which
can be shown to contain between |H|/64 and |H|/128 entries, where |H| is the size
of the heap.

As in Cohen’s method, we only update the heap when we encounter an edge whose
score needs to be updated. We determine this by checking whether either of the
edge’s endpoints have been affected since the most recent update of the score; that
is, if the score of contracting the given endpoint may have changed due to changes
in the immediate area. To achieve this, we maintain a counter U and increment it
each time we perform an update, and store information on the update number when
each vertex has been most recently affected (U(v)). We consider that all vertices
in triangles adjacent to the contracted vertex, or any triangle adjacent to such a
triangle are affected. In other words, when contracting 〈vx,vy〉 to vy (Fig. 6):

∀ f ∈ F(vx) : ∀v ∈ f : U(v)←U +1 (16)

∀ f ′ adjacent to any f ∈ F(vx) : ∀v ∈ f ′ : U(v)←U +1 (17)

U(vx)←U +1,U(vy)←U +1 (18)

where F(vx) is the set of faces adjacent to vx. Our justification is as follows: All
faces in F(vx) change shape (possibly becoming degenerate) and orientation; there-
fore, any contractions involving vertices adjacent to these faces need their scores
recalculated. Because of our consideration of dihedral angles, the same is also true

Mesh Simplification Method Using Principal Curvatures and Directions 211

Figure 6: Before (left) and after (right) edge contraction: affected vertices marked
in black

of any contractions involving vertices of faces adjacent to those in F(vx). Lastly,
both vx and vy are affected, as vx has been contracted (requiring the contractions of
all adjacent edges to be updated), and vy has a different F(v) and Q(v) than before.

Note that while we update U(ex) with the current update number U when we update
a score for ex, we set the U(v) of affected vertices to U + 1. This is so that when
two contractions affecting the same vertex are encountered between updates, only
the first will be performed, and the second will trigger another update. We also take
advantage of our use of affected vertices to update only scores that require updates,
in a similar fashion to detecting that the top edge needs updating. Going through
the heap, we detect and discard duplicate edges, and update scores of edges where
either endpoint has been affected since its most recent update, by re-calculating
the score in the same way as during initialization (including topology checks). To
assist in the update process, we use the following rules to track geometric changes:

Point-face relationships: When collapsing 〈vx,vy〉 to vx, the faces adjacent to ex-
actly one of the endpoints become the faces adjacent to the remaining vertex, while
faces adjacent to both endpoints (i.e., to the edge) become degenerate and can be
removed; that is:

F(vx)← F(vx)∪F(vy)− (F(vx)∩F(vy)) (19)

Vertex mappings: We use a many-to-one vertex mapping function S to convert a
given vertex in the original model to its current position (vertex) in the simplified
model, allowing us to (for example) determine a face’s validity, and use the inverse
S−1 to assist in updating. When collapsing 〈vx,vy〉 to vx, vertices that were origi-
nally mapped to either vertex are now mapped to vx, that is, the resulting inverse is

212 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

the union of the two sets:

S−1(vx)← S−1(vx)∪S−1(vy) (20)

∀v ∈ S−1(vx)∪S−1(vy) : S(v)← vx (21)

To save on memory usage, we remove the quadric matrices and S−1 and F sets
from contracted vertices immediately after contraction. It can be shown that with
this method, the total memory usage for the S−1 sets remains constant throughout
the execution, while the total memory usage for the F sets is proportional to the
number of remaining valid faces, as in both cases, each vertex (or valid face) is
represented exactly once (or 3 times) in total amongst the sets of S−1 (or F).

4 Experiment and results

We have implemented the above algorithm using Visual Basic .NET running on a
Pentium Dual Core system with 2 GB RAM, and tested the algorithm on a selection
of 15 models from Purdue’s Engineering Shape Benchmark, ranging from 1,672 to
79,680 faces (details in Table 1). We reduce each model using our algorithm to
50%, 20%, 10%, 5%, 2%, and 1% (or until no valid contractions remain), and for
comparison, we also reduce the models to the same percentages using the QSlim
implementation of QEM (using a subset selection policy). To determine the quality
of the reduced models, we compare them to the original models by using Cignoni
et al.’s Metro program (Cignoni, Rocchini, and Scopigno (1998)) to determine the
Hausdorff distance dH between the original model and the reduced version (with
respect to the bounding box diagonal of the original model). A graph comparing
the averaged results from the models is shown in Fig. 7, and examples of good and
bad visual results are shown in Figs. 8 and 9, with their corresponding Hausdorff
results in Fig. 10. The visual and Hausdorff results from the other tested models
are shown in Figs. 11 and 12 respectively.

5 Discussion

A low Hausdorff distance (whether absolute or with respect to bounding box) is
vital when evaluating a mesh simplification algorithm. This is especially so for
the reduction of models for engineering, as a reduced mesh that has been highly
distorted from its original version will not properly reflect the behavior of the orig-
inal. A suitable limit to the Hausdorff distance is dependent on the structure of the
model. Nevertheless, we observe that for most models, most of the reduced models

Mesh Simplification Method Using Principal Curvatures and Directions 213

Table 1: Models used in the experiment

Name Face count Name Face count Name Face count
1338386 21,730 2360536 5,360 MISUMI 2,906
1400407 10,750 ARIES147A 84,70 NOZAG_BFI 8,664
1411731 79,680 ASM11 4,322 REAR_PLATE 3,980
1417143 1,344 CD_SPINDLE 6,752 SPACER_67 1,672
1626TOP 5,578 GANTER_DIN 3,700 WORM_GEAR 13,670

Figure 7: Comparing the average of our results (solid line) and QEM (dashed line)

Figure 8: Example of a good result: (left to right) Full Nozag model (8,664 faces),
Reduction to 20% with QEM (1,732 faces, dH =0.1117) and our method (1,726
faces, dH =0.1010)

214 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

Figure 9: Example of a bad result: (top) Full Misumi model (2,906 faces), (mid-
dle) Reduction with QEM (l-r: 1,452 [dH =0.0013], 580 [dH =0.0065], 290
[dH =0.0157], 144 [dH =0.0372], 58 [dH =0.0521], 28 [dH =0.0819]), (bottom)
Reduction with our method (l-r: 1,444 [dH =0.0017], 576 [dH =0.0295], 288
[dH =0.0675], 138 [dH =0.1097], 58 [dH =0.4517], 30 [dH =0.4617])

Figure 10: Comparison for Nozag (left) and Misumi (right) models

Mesh Simplification Method Using Principal Curvatures and Directions 215

have a Hausdorff distance dH of less than .05 (with respect to bounding box) from
the original.

From our results, we observe that on most of the models, the Hausdorff results are
competitive with Garland and Heckbert’s QEM method in the early stages of re-
duction (up to 20%), and performs best on models with mostly smooth surfaces.
In most cases, we observe that the models can be reduce to 20% or 50% of the
original face count without significant distortion. However, we also observe that
the algorithm tends to produce higher Hausdorff distances at more drastic levels of
simplification, suggesting that although the curvature-related factors that we have
chosen can help improve the QEM method initially, these factors become less use-
ful in later stages of reduction, perhaps due to trying to retain topological structure
and/or certain features at the cost of other parts of the figure, or changes in the
locality around each vertex; for example, the faces adjacent to the vertex covering
a larger area than originally used in calculating the curvature, and faces becom-
ing more irregular in later stages. One of the worst cases from our algorithm is
shown in detail in Fig. 9, in which the main shaft of the Misumi model is removed
completely at the 2% level, while the base retains its “thickness” and holes better.

We also observe that on models with a low face count (with lengthy edges span-
ning features in different areas), our algorithm tends to exhaust available contrac-
tions before our 1% limit (unlike the QEM algorithm), as the algorithm deems that
all possible contractions would violate our given restrictions. Conceptually, this
should result in final models that are still easily recognizable as the original.

Another concern is that our curvedness-inverse-average-based penalty may not suf-
ficiently take sharp features and overall figure shape into account. Although our
logic that normal vectors at areas of high curvedness are less reliable as an indicator
of ideal face orientation seems valid on smooth surfaces, we suspect that they may
still exert some influence in our algorithm, especially when more than one vertex
of a resulting face lies on such an area (for example, a triangle with an edge lying
on a feature edge). We are currently considering methods to reduce the probability
of such an occurrence resulting in a subjectively “bad” facial orientation.

6 Conclusions and future work

Mesh simplification allows for complex 3D models to be handled more easily, for
cases such as real-time display and efficient scenery rendering, by reducing the
number of faces, making it a popular research topic. Here, we have developed an
enhancement to Garland and Heckbert’s Quadric Error Metric mesh simplification
method that uses the principal curvatures and their directions to provide preference
for contracting edges in directions of low curvature, as an alternative to measures

216 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

1338386 10,858 faces 2,172 faces 1400407 5,360 faces 2,150 faces

dH =.0037 dH =.0367 dH =.0118 dH =.0331

1411731 39,834 faces 3,984 faces 1417143 268 faces 268 faces

dH =.00046 dH =.0443 dH =.0287 dH =.0238

1626TOP 2,778 faces 2,788 faces 2360536 2,672 faces 536 faces

dH =.0151 dH =.0316 dH =.0104 dH =.0226

ARIES147A 4,220 faces 1,694 faces ASM11 860 faces 432 faces

dH =.0283 dH =.1421 dH =.0576 dH =.0099

CD_SPINDLE 1,344 faces 1,350 faces GANTER_DIN 184 faces 184 faces

dH =.0349 dH =.0248 dH =.0291 dH =.0190

REAR_PLATE 1,990 faces 1,796 faces SPACER_67 334 faces 334 faces

dH =.0125 dH =.0445 dH =.0484 dH =.0684

WORM_GEAR 1,366 faces 1,364 faces

dH =.0168 dH =.0062

Figure 11: Other models. For all models (left to right) Full, least acceptable face
count with our method, and with QEM

Mesh Simplification Method Using Principal Curvatures and Directions 217

1338386 1400407 1411731

1417143 1626TOP 2360536

ARIES147A ASM11 CD_SPINDLE

GANTER_DIN REAR_PLATE SPACER_67

WORM_GEAR
Figure 12: Hausdorff distances graphs for other models: Solid line is our algorithm,
dashed line is QEM

218 Copyright © 2011 Tech Science Press CMES, vol.77, no.4, pp.201-219, 2011

that calculate such measures on single vertices.

The Hausdorff distance results and visual renders suggest that this approach pro-
duces results competitive to Garland and Heckbert’s method at lower levels of re-
duction, especially on meshes with smooth surfaces; also, our curvature use has the
effect of preserving feature areas of high curvature. However, the QEM algorithm
still produces significantly better results at more drastic levels, suggesting that the
factors we have used to assist the simplification become deficient in those cases.

Future research includes developing factors that are more robust towards changes
in the model during simplification as well as lengthy areas of high curvature, along
with detecting and taking drastic changes in the locality into account, to allow for
improved reduction performance at more drastic levels. Other possibilities include
taking the direction of contraction in relation to the normal vector of the contracted
vertex into account, which may help to detect major surface changes, and discard-
ing (or otherwise penalizing) normal vectors on vertices with high curvedness when
calculating the curvedness-inverse-weighted average, to reduce the possibility of
“bad” facial orientations. Another topic to be researched further is making the al-
gorithm work well on meshes with multiple connected components, as our current
algorithm may apply higher penalties to contractions on smaller components.

References

Batagelo, H. C.; Wu, S.-T. (2007): Estimating curvatures and their derivatives on
meshes of arbitrary topology from sampling directions. Vis. Comput., vol. 23, pp.
803–812.

Choi, H.; Kim, H.; Lee, K. (2008): A mesh simplification method using noble
optimal positioning. In Chen, F.; Jüttler, B.(Eds): Advances in Geometric Mod-
eling and Processing, volume 4975 of Lecture Notes in Computer Science, pp.
512–518. Springer Berlin / Heidelberg.

Cignoni, P.; Rocchini, C.; Scopigno, R. (1998): Metro: Measuring error on
simplified surfaces. Technical Report 2, 1998.

Cohen, J.; Manocha, D.; Olano, M. (1997): Simplifying polygonal models using
successive mappings. In Proceedings of the 8th conference on Visualization ’97,
VIS ’97, pp. 395–ff., Los Alamitos, CA, USA. IEEE Computer Society Press.

Garland, M.; Heckbert, P. S. (1997): Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’97, pp. 209–216, New York, NY, USA. ACM
Press/Addison-Wesley Publishing Co.

Mesh Simplification Method Using Principal Curvatures and Directions 219

Guéziec, A. (1995): Surface simplification with variable tolerance. In Second
Annual Intl. Symp. on Medical Robotics and Computer Assisted Surgery (MRCAS
’95), pp. 132–139.

Hoppe, H. (1996): Progressive meshes. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, SIGGRAPH ’96, pp.
99–108, New York, NY, USA. ACM.

Jong, B.-S.; Tseng, J.-L.; Yang, W.-H. (2006): An efficient and low-error mesh
simplification method based on torsion detection. The Visual Computer, vol. 22,
pp. 56–67.

Li, Y.; Zhu, Q. (2008): A new mesh simplification algorithm based on quadric
error metrics. In Advanced Computer Theory and Engineering, 2008. ICACTE
’08. International Conference on, pp. 528 –532.

Luebke, D. P. (2001): A developer’s survey of polygonal simplification algo-
rithms. IEEE Comput. Graph. Appl., vol. 21, pp. 24–35.

Wei, J.; Lou, Y. (2010): Feature preserving mesh simplification using feature
sensitive metric. J. Comput. Sci. Technol., vol. 25, pp. 595–605.

Wu, J.; Kobbelt, L. (2002): Fast mesh decimation by multiple-choice techniques.
In Greiner, G.(Ed): VMV, pp. 241–248. Aka GmbH.

Xu, L.; Chen, W.; Liu, J.; Lv, T. (2008): An improved quadric error metrics
based on feature matrix. In RAM, pg. 582. IEEE.

