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An Iterative Method for the Least-Squares
Minimum-Norm Symmetric Solution
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Abstract: The mapping from the symmetric solution set to its independent pa-
rameter space is studied and an iterative method is proposed for the least-squares
minimum-norm symmetric solution of AXB = E. Numerical results are reported
that show the efficiency of the proposed methods.
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1 Introduction

Denoted by Rm×n and S Rn×n the set of m×n real matrices and the set of n×n real
symmetric matrices, respectively. For any A∈Rm×n, R(A),AT ,A†,‖A‖2 and ‖A‖F

present the range, transpose, Moore-Penrose generalized inverse, Euclid norm and
Frobenius norm, respectively. A⊗B represents the Kronecker product of matrices
A and B. The sub-vector consisting of from αth component to β th component of xi

is denoted by xα:β ,i. For any X ∈S Rn×n, we define a following symmetry norm:

‖X‖S =
√

∑
i≥ j

x2
i j.

Let m,n, l be three positive integers, and let E ∈Rm×l,A ∈Rm×n and B ∈Rn×l .
We consider the least squares problem

min
X∈S Rn×n

‖AXB−E‖F , (1)

and its corresponding linear matrix equation is

AXB = E. (2)
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Eq.(1) and Eq.(2) have been widely studied due to its some applications in electric-
ity, control theory, processing of digital signals(See Xie, Sheng and Hu (2003)) and
the design and analysis of the vibrating structures(See Yuan and Dai (2007)). For
solving them, inevitably, Moore-Penrose generalized inverses and some compli-
cated matrix decompositions such as canonical correlation decomposition (CCD)
and general singular value decomposition (GSVD) are involved. All these meth-
ods are called direct methods. With the increasing dimension of the system, direct
methods face many difficulties and become impractical, and here iterative methods
play an important role.

In Peng (2005); Peng, Hu and Zhang (2005); Hou, Peng and Zhang (2006); Qiu,
Zhang and Lu (2007), matrix iteration methods were given for solving AXB = C
with the symmetry constraint XT = X . They are matrix-form CGLS method and
LSQR method, which can be obtained by applying the classical CGLS method-
Stiefel (1952) and LSQR methodPaige and Saunders (1982) respectively to matrix
LS problem minX ‖AXB−C‖F . The matrix-form CGLS method can be easily de-
rived from the classical CGLS method applied on the vector-representation of the
matrix LS using Kronecker product. However, as known, the condition number is
squared when normal equation is involved. This may lead to numerical instabil-
ity. It is not easy to derive the matrix-form LSQR method, which has favorable
numerical properties.

Sometimes, it is important to find the minimum-norm symmetric solution of Eq.(1)
or Eq.(2). But, the algorithm of Qiu, Zhang and Lu (2007) can’t do so. In this
paper, on basis of the idea of Qiu, Zhang and Lu (2007), an iterative method for
the least-squares minimum-norm symmetric solution will be proposed and relevant
results are more perfect.

2 Minimum-norm symmetry constraint matrix

A symmetric matrix is uniquely determined by part of its elements, namely some
independent elements. For a matrix X = (x1,x2, · · · ,xn) ∈Rn×n, we define

vec(X) =


x1
x2
...

xn

 ∈Rn2
,veci(X) =



x11/
√

2
x2:n,1

x22/
√

2
x3:n,2

...
xnn/
√

2


∈RN , (3)
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where N ≡ n(n + 1)/2. Obviously, there is an one to one linear mapping from the
long-vector space

vec(S Rn×n) = {vec(X)|X ∈S Rn×n}

to the independent parameter space

veci(S Rn×n) = {veci(X)|X ∈S Rn×n}.

Let us denote by F (n) the matrix that defines linear mapping form veci(S Rn×n)
to vec(S Rn×n),

X ∈S Rn×n, vec(X) = F (n)veci(X).

We call F (n) ∈Rn2×N a minimum-norm symmetry constraint matrix of degree n,
which will be simply denoted by F if n can be ignored without misunderstanding.

Next we give the representations of F (n).

Theorem 2.1. Suppose F ∈Rn2×Na minimum-norm symmetric constraint matrix
of degree n. Then

(1). F = (Fi j) is a block lower triangular matrix with

i > j ,Fi j = e je
(n− j+1)T

i− j+1 ; i < j ,Fi j = 0;Fii =

 0 0√
2 0

0 In−i

 .

(2). F T F = 2IN .

(3). F † = 1
2F T .

From the above theorem, we see that the properties and structure of F are simpler
than those of Qiu, Zhang and Lu (2007). On the basis of this theorem, in section 4,
we will get a better result(Theorem 4.1).

By simple computation, we can obtain that, for any X ∈S Rn×n,

F †vec(X) = veci(X).

Furthermore, for any X ∈Rn×n,

F †vec(X) = F †vec(XT ).

So, for any X ∈Rn×n,

2F †vec(X) = F †vec(X +XT ) = veci(X +XT ).
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This leads to the following result.

Theorem 2.2. Suppose F ∈Rn2×N a minimum-norm symmetriy constraint matrix
of degree n and Y ∈Rn×n. Then

F †vec(Y ) = veci

(
Y +Y T

2

)
, FF †vec(Y ) = vec

(
Y +Y T

2

)
.

3 Algorithm LSQR

In the section, we briefly review the algorithm LSQR prosed by Paige and Sauder-
sPaige and Saunders (1982) for solving the following lease squares problem:

min
x∈Rn
‖Mx− f‖2 (4)

with given M ∈Rm×n and f ∈Rm, whose normal equation is

MT Mx = MT f . (5)

Theoretically, LSQR converges within at most n iterations if exact arithmetic could
be performed, where n is the length of x. In practice the iteration number of
LSQR may be larger than n because of the computational errors. It was shown
in Paige and Saunders (1982) that LSQR is numerically more reliable even if M is
ill-conditioned.

We summarize the LSQR algorithm as follows.

Algorithm LSQR

(1)Initialization.
β1u1 = f ,α1v1 = MT u1,h1 = v1,x0 = 0, ζ̄1 = β1, ρ̄1 = α1.
(2)Iteration. For i = 1,2, · · ·

(i) bidiagonalization
(a)βi+1ui+1 = Mvi−αiui

(b)αi+1vi+1 = MT ui+1−βi+1vi

(ii)construct and use Givens rotation
ρi =

√
ρ̄2

i +β 2
i+1

ci = ρ̄i/ρi,si = βi+1/ρi,θi+1 = siαi+1
ρ̄i+1 =−ciαi+1,ζi = ciζ̄i, ζ̄i+1 = siζ̄i

(iii) update x and h
xi = xi−1 +(ζi/ρi)hi



An Iterative Method for the Least-Squares Minimum-Norm Symmetric Solution 177

hi+1 = vi+1− (θi+1/ρi)hi

(iv) check convergence.

It is well known that if the consistent system of linear equations Mx = f has a so-
lution x∗ ∈R(MT ), then x∗ is the unique minimal norm solution of Mx = f . So, if
Eq.(5) has a solution x∗ ∈R(MT M) = R(MT ), then x∗ is the minimum norm solu-
tion of (4). It is obvious that xk generated by Algorithm LSQR belongs to R(MT )
and this leads the following result.

Theorem 3.1. The solution generated by Algorithm LSQR is the minimum norm
solution of Eq.(4).

Remark 3.1. Theoretically, when βk+1 = 0 or αk+1 = 0 for some k < min{m,n},
then recursions will stop. In both cases, xk is the minimum norm least squares
solution to Eq.(4). Also notice that ‖MT ( f −Mxk)‖2 = |αk+1ζ̄k+1ck|= 0 is mono-
tonically decreasing when k is increasing. Also notice that, at each step of the
LSQR iteration, the main costs of computations are two matrix-vector products.

Remark 3.2. During the iterative processing, because of the round-off error, com-
puted solution x̂k may make ‖MT ( f−Mx̂k)‖2 6= 0 even ‖MT ( f−Mxk)‖2 = |αk+1ζ̄k+1ck|=
0. Therefore we need to setup the stopping criteria to check the correct k. Paige and
Sauders Paige and Saunders (1982) discuss several choices of the stopping criteria.
Sometimes we need to use restart strategy to improve the accuracy. In the numeri-
cal experiments provided in §5, we use |αk+1ζ̄k+1ck| < τ = 10−11 as the stopping
criterion. We observe that this stopping criterion works well.

4 The matrix-form LSQR algorithm

In this section, we will propose an iterative method for the minimum-norm sym-
metric solutions of Eq.(1) and Eq.(2).

Since
vec(AXB) = (BT ⊗A)vec(X),

where⊗ denote the Kronecker product, then we have vec(AXB)= (BT⊗A)Fveci(X)
and the problem Eq.(1) is equivalent to

‖Mx− f‖2 = min, (6)

where

M = (BT ⊗A)F ∈R lm×N ,x = veci(X) ∈RN , f = vec(E) ∈R lm.

The normal equation of (6) is MT Mx = MT f , which is equivalent to

F T (B⊗AT )(BT ⊗A)Fveci(X) = F T (B⊗AT )vec(E).
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From Theorem 2.1 and Theorem 2.2, the above formula leads to the following
results.

Lemma 4.1. The normal equation of Eq.(1) is

AT AXBBT +BBT XAT A = AT EBT +BET A.

The vector iterations of LSQR will be rewritten into matrix form so that the kro-
necker product and F can be released. To this end, it is required to transform the
matrix-vector products of Mv and MT u back to a matrix-matrix form for variant
vectors v in the independent element space and u = vec(U) ∈ Rml. Further, we
must guarantee that matrix form of MT u is symmetric.

For any v ∈RN , let V ∈S Rn×n satisfy veci(V ) = v. Then we can obtain that the
matrix form of Mv is

mat(Mv) = mat((BT ⊗A)F v) = mat((BT ⊗A)vec(V )) = AV B.

For deriving the matrix form of MT u, we need the following result.

Theorem 4.1. Suppose that U ∈Rm×l and Z = BTUA. Then we have

MT vec(U) = vec(Z +ZT ).

Proof. It follows from Theorem 2.1 and Theorem 2.2 that

mat(MT vec(U)) = mat(F T (B⊗AT )vec(U))
= mat(F T vec(ATUBT )) = mat(F T FF †vec(Z))

= mat(F T Fveci(
Z +ZT

2
)) = mat(2INveci(

Z +ZT

2
))

= Z +ZT .�

For any u ∈R lm, let U ∈R l×m satisfy u = vec(U) and define Z = BTUA Then we
have

mat(MT u) = mat(MT vec(U)) = Z +ZT .

Now we can give the following algorithm.
Algorithm LSQR-M-S
(1)Initialization.

X0 = 0(∈Rn×n), β1 = ‖E‖F , U1 = E/β1,
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Z1 = ATU1BT , V̄1 = Z1 +ZT
1 , α1 = ‖V̄1‖S, V1 = V̄1/α1,

H1 = V1, ζ̄1 = β1, ρ̄1 = α1.
(2)Iteration. For i = 1,2, · · ·

Ūi+1 = AViB−αiUi, βi+1 = ‖Ūi+1‖F , Ui+1 = Ūi+1/βi+1,
Zi+1 = ATUi+1BT , V̄i+1 = Zi+1 +ZT

i+1−βi+1Vi,
αi = ‖V̄i+1‖S, Vi+1 = V̄i+1/αi+1,

ρi =
√

ρ̄2
i +β 2

i+1, ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1,

ρ̄i+1 =−ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i,
Xi = Xi−1 +ζi/ρiHi,
Hi+1 = Vi+1−θi/ρiHi,

(3)check convergence.

Remark 4.1. Algorithm LSQR-M-S can compute X with minimal ‖veci(X)‖2. Be-
cause ‖X‖2

F = 2‖veci(X)‖2
2, X computed by Algorithm LSQR-M-S is the minimum

Frobenius norm solution of Eq.(1) or Eq.(2).

5 Numerical examples

In Qiu, Zhang and Lu (2007), the authors have pointed out that the matrix-form
LSQR method needs less flops than the matrix-form CGLS method in each it-
eration. In this section, we will compare our matrix-form LSQR algorithm and
the matrix-form CGLS algorithm considered in Peng (2005); Peng, Hu and Zhang
(2005), and show that our algorithm can find the minimum-norm solution more ef-
ficiently.
Example 5.1. The example given in Peng, Hu and Zhang (2005) is that

A =



1 3 −5 7 −5
3 0 4 1 −1
0 −2 9 6 8

11 6 2 17 −13
−5 5 −22 −1 −11
9 4 −6 −9 −19

 ,B =


4 0 4 −5 4
−1 5 0 −2 3
3 −1 0 3 5
0 3 9 2 −6
−2 7 −8 1 11

 ,

E =



−279 242 −554 132 238
28 −130 −179 8 105
−87 176 −58 244 60
−474 94 −1645 288 791
−248 326 −138 −128 −32
258 −742 −421 −464 195

 .
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Matrix equation AXB = E is consistent and has infinite symmetric solution. By our
algorithm, we can obtain the minimum-norm symmetric solution as follows

X12 =


0.2947 −1.9916 1.1226 −5.1217 −0.0858
−1.9916 1.6254 −2.9704 1.4939 −0.3997
1.1226 −2.9704 0.1950 0.1664 −0.2461
−5.1217 1.4939 0.1664 −0.1228 3.8844
−0.0858 −0.3997 −0.2461 3.8844 1.1435


with the residual error ξ12 = ‖R12‖F = ‖AX12B−E‖F = 3.1918e−012.

Using the algorithm of Peng, Hu and Zhang (2005) and iterating 15 steps, the
authors got the unique minimum-norm solution with the residual error ‖R12‖F =
‖AX15B−E‖F = 4.6978e− 012. This solution is the same as the above X12 when
four decimals are contained.

As I said early, our algorithm needs less flops.
Example 5.2. The example given in Peng (2005) is that

A =



4 3 −1 3 1 −3 2
3 −2 3 −4 3 2 1
4 3 −1 3 1 −3 2
3 −1 3 −1 3 2 1
4 3 −1 3 1 −3 2
3 −1 3 −1 3 2 1

 ,B =



−3 4 −3 −3 4 4
5 −3 5 5 −3 −3
−6 2 −6 −6 2 2
−8 4 −8 −8 4 4
4 −5 4 3 −2 −7
−3 2 −3 −3 2 2
−1 −2 −1 −1 −2 −2


,

E =



43 −54 73 −54 51 −54
−31 37 −61 37 −53 37
43 −54 73 −54 51 −54
−31 37 −61 37 −53 37
47 −54 73 −54 21 −54
−31 27 −61 27 −53 27

 .

Our algorithm is very efficient for this example and, using 22 iterations, computes
the minimum-norm solution

X17 =



1.0650 0.2510 −0.9062 0.6469 0.6130 −1.8154 0.5729
0.2510 −0.6516 −0.0189 0.4239 1.8937 0.8660 −1.3207
−0.9062 −0.0189 1.9641 0.3755 −2.2609 0.4210 2.2353
0.6469 0.4239 0.3755 −0.3307 −0.2146 −0.4136 1.0401
0.6130 1.8937 −2.2609 −0.2146 −2.6651 −4.3017 2.3216
−1.8154 0.8660 0.4210 −0.4136 −4.3017 −1.0648 2.4271
0.5729 −1.3207 2.2353 1.0401 2.3216 2.4271 −0.4410


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with the normal equation error

η17 = ‖AT EBT +BET A−AT AX17BBT −BBT X17AT A‖F = 4.0136e−012

and the residual error ‖R17‖F = ‖AX17B−E‖F = 179.0445.

Using Algorithm 2.1 of Peng (2005) and iterating 58 steps, the author got the
unique minimum-norm solution with the normal equation error η58 = 2572e−011
and the residual error ‖R58‖F = 179.0445.

Figure 1 plots the functions of log10(ξk) and log10(ηk) in Example 1 and Example
2.

Figure 1: Error and iteration number for Example 1 and Example 2
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