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Abstract:  We present a two phase flow conceptual model, the corresponding
simulator (2pMINC) and a workflow for large-scale fractured reservoirs, based on a
continuum fracture approach which uses the multiple interacting continua (MINC)
method complemented with an improved upscaling technique. The complex tran-
sient behavior of the flow processes in fractured porous media is captured by sub-
gridding the coarse blocks in nested volume elements which have effective proper-
ties calculated from the detailed representation of the fracture system. In this way,
we keep a physically based approach, preserve the accuracy of the model, avoid
the common use of empirically derived transfer functions and considerably reduce
the complexity of the problem which is reflected in the speedup factors up to 1000.
The results are verified by comparison to a discrete fracture model (DFM) for which
the fractures and matrix are explicitly accounted for. The simulator is applied to an
idealized medium with periodic fracture pattern and to a real, naturally fractured
reservoir, mapped on the “wave platforms” along the Bristol Channel. The evalua-
tion shows that the extended MINC model is able to reproduce both, the large-scale
permeability and the dynamics of the fracture-matrix mass transfer, correctly.
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Symbol Definition Unit
Latin Letters:
kro relative permeability of phase o [-]
K intrinsic permeability [m?]
p pressure [Pa]
De capillary pressure [Pa]
Pd entry pressure [Pa]
o source or sink term of the phase o [m3/(m3s)
1
Sa saturation of phase & [-]
Sar residual saturation of phase o [-]
t time [s]
Ti coarse scale transmissibility between node i and j [m3]
Tk"7 x+1  nner block i transmissibility between continuum k and [m3]
k+1
Greek Letters:
a phase n or w
A empirical constant from the Brooks-Corey p, relation-
ship related to the pore size distribution
Ao phase o mobility
u dynamic viscosity [Pa s]
VEer coarse-scale operator (interactions between the fracture

blocks solved at global scale)
Vum fine-scale operator (interactions inside the coarse block
between the matrix continua solved at the local scale)

[ total porosity [-]

P fluid density [kg/m?]
Subscripts:

n non-wetting phase related quantity

w wetting phase related quantity
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1 Introduction

Fracture systems have been investigated for more than 60 years in different fields
like hydrology, petroleum engineering, or geothermal energy and, currently, a wide
literature is available. Many engineering applications present a very high interest in
the correct simulation of multiphase flow in fractured porous media, for example,
oil recovery [Lemonnier and Bourbiaux (2010); Kazemi (1976)], CO, storage in
geological formations [Carneiro (2009); Kopp, Class, and Helmig (2009)], nuclear
waste storage [Bodvarsson, Boyle, Patterson, and Williams (1999)], remediation of
contaminated aquifers [Berkowitz (2002); Niessner, Helmig, Jakobs, and Roberts
(2005)] etc. Extensive literature reviews can be found in [Berkowitz (2002); Neu-
man (2005); Reichenberger, Jakobs, Bastian, and Helmig (2006); Karimi-Fard,
Durlofsky, and Gong (2006); Assteerawatt (2008); Geiger, Cortis, and Birkholzer
(2010)]. As fractures occur on a variety of length scales and in a variety of prob-
lems, the fracture flow models have been roughly classified in discrete fracture
models (DFM), continuum fracture models (CFM) and hybrid models (i.e [Berkowitz
(2002)]) which are a combination of the previous two. The DFMs consider the
fractures explicitly and therefore require huge data density and computation power,
whereas CFMs require the determination of a representative elementary volume
(REV), the appropriate effective parameters and transfer functions between con-
tinua. For a large scale problem, like a CO; storage reservoir, there could be mil-
lions of fractures which might have to be considered which could be a formidable
task for a DFM simulator. In this sense, a very common approach among the CFMs
is to consider the reservoir as dissociated into two interacting continua, fracture and
matrix, linked with a transfer term, which does not require the fine discretization
of the DFM or the detailed fracture characterization during simulations. This is
called the dual- or double- porosity (DP) model and was introduced by Barenblatt,
Zheltov, and Kochina (1960) and Warren and Root (1963) (Fig. 1 (2)).

The classical DP model suffers from several limitations which have been identi-
fied in e.g. Pruess and Narasimhan (1982); Zimmerman, Hadgu, and Bodvars-
son (1996); Karimi-Fard, Durlofsky, and Gong (2006); Unsal, Matthii, and Blunt
(2009); Geiger, Cortis, and Birkholzer (2010) . The method works best if the frac-
ture network is sufficiently well connected, and the difference between the perme-
abilities is large. We enumerate some of the approximations of the classical DP
model: the flow between the fracture and matrix, which is called the inter-porosity
flow, is quasisteady; it neglects flow in the matrix and the spatial variation within
the matrix blocks; it uses empirical transfer functions for the complex fracture-
matrix interactions; it uses average properties for the fracture network which can-
not capture its complexity in a permeability tensor; and it lacks a clear procedure
to determine the parameters from a particular discrete fracture system. Several
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Figure 1: 1) Fractured reservoir with 2) schematic representation of the MINC
model (3D) and 3) a 2D crossection through the “sugar cube model” 4) showing the
connectivities: a) coarse-block inter-connectivity or fracture-fracture; b) fracture-
matrix ¢) matrix-matrix connections.

approaches try to determine improved transfer functions that accurately represent
the matrix-fracture exchange [Zimmerman, Chen, Hadgu, and Bodvarsson (1993);
Abushaikha and Gosselin (2009)] or to quantify the equivalent effective param-
eters (equivalent fracture permeabilities and matrix block dimensions) [Zimmer-
man and Bodvarsson (1995),Min, Jing, and Stephansson (2004)]. For oil recovery,
Abushaikha and Gosselin (2009) proposes a so-called “SubFace” transfer function
that accurately simulates the exchange of fluid between fracture and matrix by cap-
illary imbibition and gravity drainage and they compare it with the conventional,
the non-conventional and the improved transfer functions. Another approach to
resolve matrix dynamics is to introduce subgridding e.g. [Pruess and Narasimhan
(1982), Karimi-Fard, Durlofsky, and Gong (2006)]. The multiple interacting con-
tinua (MINC) method belongs to the CFM category and is an approximate method
for modeling fluid and heat flow in fractured porous media developed by Pruess
and Narasimhan (1982). Pruess (1992) gives a brief guide to the MINC-method for
modeling flow and transport in fractured porous media. The method is a general-
ization of the double porosity concept but treats the inter-porosity flow in a fully
transient way. If the fracture network is sufficiently connected, shortly after a per-
turbation has occurred, some of the regions will have the same or almost the same
thermodynamic properties (pressure, saturation, temperature, etc.) which means
that these flow areas can be lumped together into distinct continua. The classical
MINC approach assumes that the thermodynamic properties of the matrix vary with
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the distance from the nearest fracture or, in other words, the equipotential surfaces
are equally distanced from the nearest fracture. This leads to the partitioning of
the flow domain into computational volume elements where all interfaces between
the volume elements are parallel to the nearest fracture, similar to a matryoshka
nesting doll. Fig. 1 shows the basic idea of this method. Conceptually similar mod-
els, where the flow in matrix blocks is resolved at fine scale, were developed for
double porosity media using asymptotic homogenization [Douglas and Arbogast
(1990); Lewandowska, Szymkiewicz, Burzynski, and Vauclin (2004)]. However,
the key aspect of the MINC method remains, as in every DP model, the estimation
of the effective permeabilities and, in addition to that, the subdivisions of the matrix
domain. The classic concept is using the idealized representation of the fractured
reservoir (i.e. sugar cube model) and the inter-porosity flow parameters are cali-
brated at a later time. In the recent years, the hydraulic and geologic description
of fractured reservoirs has progressed considerably. Therefore, if sufficient infor-
mation is available regarding the fracture distribution in the studied reservoir, the
upscaled parameters have to be determined based on the underlying geometry of the
fractures. Neglecting them and using the same transfer terms for the whole domain
might lead to less accurate results. The aim is to benefit from the complexity of
the DFMs and the computational simplicity of the CFMs. For instance, Bourbiaux,
Cacas, Sarda, and Sabathier (1997) present a method to derive the equivalent block
sizes and to compute the equivalent permeabilities from single-phase, steady-state
flow computations by using a 3D resistor network method and specific boundary
conditions. Later on, Sarda, Jeannin, Basquet, and Bourbiaux (2002) developed,
from the double-porosity model, an optimized explicit representation of the frac-
tured medium by assigning a matrix volume to the nearest fracture, according to the
distance. Basquet, Bourbiaux, and Cohen (2005) proposes a homogenization pro-
cedure on a discrete fracture network to reduce the number of fracture nodes from
the model of Sarda, Jeannin, Basquet, and Bourbiaux (2002), while keeping the
same hydraulic properties. Unsal, Matthéi, and Blunt (2009) describe a multiphase
flow fracture-only simulator where they model the fracture geometry explicitly and
the inter-porosity flow by using empirical transfer functions. Similar approaches of
using subgridding techniques were proposed by Naimi-Tajdar, Han, Sepehrnoori,
Arbogast, and Miller (2007), who developed a parallel simulator for large-scale
naturally fractured reservoirs based on the MINC method. Zyvoloski, Robinson,
and Viswanathan (2008) developed a MINC-type model where the number of sub-
grid blocks associated with a coarse block varies in space. Famy, Bourbiaux, and
Quintard (2005) proposes an improvement to the subgridding technique so that it
predicts more accurately the matrix-fracture exchanges. Karimi-Fard, Durlofsky,
and Gong (2006) introduced an upscaling methodology as an extension to the pre-
vious MINC subgridding procedure, which derives the effective parameters from
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detailed fracture characterization (i.e. the subgrids are constructed for each coarse
block using the isopressure curves obtained from local pressure solutions of a DFM
over the block). Some of the main problems regarding the upscaling of fractured
reservoirs are summarized in Vitel and Souche (2007). They argue that the bound-
ary conditions imposed on a coarse block do not consider the dynamic behavior
further away from the block, which may constitute a source of error. The stan-
dard upscaling approaches are facing difficulties in dealing with the entry pressure
effects. In the context of a new emerging field of application, i.e. CO; storage
in geological formations, this research extends the applicability range investigated
by Karimi-Fard, Durlofsky, and Gong (2006); Gong, Karimi-Fard, and Durlofsky
(2008) by considering non-wetting phase migration in a saturated wetting domain.

The goal of this work is the development of a workflow that allows the study of
multiphase flow in fractured reservoirs based on the improved MINC approach with
the upscaling procedure proposed by Karimi-Fard, Durlofsky, and Gong (20006),
that includes a conceptual model and a numerical simulator. The paper is structured
as follows: the next section describes the mathematical and numerical model of the
extended MINC model; Section 3 will introduce the workflow followed by some
numerical experiments, and finally, by the conclusions.

2 Model Concepts
2.1 General two-phase flow equations

The conservation of mass in a multiphase flow context can be written for each fluid
phase « as follows:

9(90Sapa)

o1 +V-(VaPa) = Paga =0 (D

where the velocity v, is given by the extended expression of Darcy’s law to multi-
phase flow:

K,
Va = _JK‘ (Vpa - Pag) (2)

o

After inserting Eq. 2) in Eq. 1) the general two-phase flow equations for porous
media are obtained [Helmig (1997)]:

9 (9Sapa) _v. (Kkrtx

ot

(01

pa(vpa - potg)> —Pago =0 (3
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2.2 Constitutive relationships

The constitutive relationships in fracture and matrix domains can be formulated
according to Brooks and Corey (1964) who proposed the following relationship for
the effective saturation:

A
Sw — Swr (Pd)
Se=—"7T"=|— 4

¢ 1_Swr Pc ( )

The relative permeability is a parameter that accounts for the increased resistance
to flow for a given phase due to the presence of the other phase. The Brooks-Corey
model is applied together with the Burdine theorem:

2431
A

ke = S.

2 5
kyp = (1—56)2<1—Sf> ©)

The coupling between saturation and pressure is achieved with the closing relations:

Sw+S, =1

6
Pn—DPw = Pc ()

2.3 DFM model

The DFM will be used as a reference solution for the extended MINC model. The
construction of this model starts with a common assumption that Darcy’s law is
valid for fractures, which allows us to use Eq. 3 for both matrix and fracture do-
mains. The fractures are represented as lower-dimensional entities (1-D lines in
2-D domain). Any heterogeneity supposes a sudden change in the rock properties
(permeability, porosity etc. ). This means that across the fracture-matrix interfaces
there might appear a discontinuity in the primary variables (saturation and pres-
sure), which can be solved by introducing an interface condition. The extended
capillary pressure-saturation interface condition (e.g. Reichenberger, Jakobs, Bas-
tian, and Helmig (2006); Niessner, Helmig, Jakobs, and Roberts (2005)) proposed
by Duijn, Molenaar, and Neef (1995) is going to be used. Its first requirement is
the fluid conservation. The second requirement is the continuity of the intensive
state variables, like the capillary pressure, which can be only achieved if there is a
discontinuity in the saturation.
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2.4 Extended MINC model
2.4.1 Basic equations

The coarse-scale model is described by equations with the general form like Eq. 3):
for fracture continuum (F):

8(¢Sapa)F_v ) K kg
— o VFF

Pa(Vpa _Pocg)) - (P(an)F —Trm =0, @)

o F

for matrix continua (M) with k =1, .¢":

a((PSapa)Mk _v . Keffkra
at MM

Pa(Vpa — Pag)) - (PaQa)Mk +Trm =0, (8)

o Ml(

The transfer term, Tgys is the exchange between the matrix and the fracture and is
governed by the solution of the local matrix flow equation. (K¢//) M, represents the
effective (upscaled) matrix permeability of continua M.

2.4.2 Upscaling procedure

In most of the double-porosity models and the classical MINC approach there is
no systematic procedure to determine the effective parameters from the DFM. One
typical way to determine the parameters is to construct the “sugar-cube” model
and calibrate it to the field tests. In order to improve the accuracy of the classical
MINC method by means of better accounting for the spatial variability of the matrix
blocks, and of the dynamics within the blocks an upscaling methodology has been
developed by Karimi-Fard, Durlofsky, and Gong (2006) as an extension to the pre-
vious MINC subgridding procedure. The upscaling procedure can be summarized
to the following steps.

* To determine the internal block transmissibilities between the nested volume
elements, a single phase compressible flow equation is solved considering
no-flow boundary conditions and the flow exchange is calculated between
fracture network and matrix (Fig. 2a).

* The upscaled inter-block transmissibilities are determined using a two-point
approximation technique by setting a permeameter-type boundary condition
for every two neighboring coarse cells and solving again a steady state one
phase flow equation (Fig. 2b).

Before starting the description of the upscaling procedure the following assump-
tions have to be considered:
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* the fracture network is sufficiently well connected throughout the considered
fractured porous domain;

* if there are regions with reduced connectivity, these do not have to be pre-

dominant even though the upscaling procedure can be applied for limited
zones.

2.4.3 Intra-coarse-block transmissibilities

The determination of the fracture network and matrix connections and those within
a coarse block between the nested volume elements (Fig. 1 (4) a) and c)) is made

by solving a compressible single-phase flow equation with the DFM for each indi-
vidual coarse block:

ap pK B
¢E—V‘ (TVP) =gq, )

\ FE mesh

\ FV mesh

\ fractures

Isopressure
lines

Figure 2: Vertex centered finite volume discretization of the coarse scale model
showing coarse blocks Q; and Q; a) Pressure profile and iso-pressure lines at quasi-
steady state for local block Q; represented at fine-scale and the construction of
the idealized sugar-cube block’s nested volume elements Q’i,Qé, ...,Qg; b) Inter-

coarse-block transmissibility 7;; determination (i.e. between coarse block ; and
Q))
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The boundary conditions of the isolated coarse block are set to no-flow everywhere
while there is a constant injection rate in the connected fracture network. The
pressure in the block will increase and will reach a pseudo-steady state where the
change of the ratio aa—‘t) is smaller than a certain threshold (1e — 02 for our case), so
that it can be considered constant. The pressure in the fracture network is approx-
imately the same and in the matrix it has a diffusion like profile. Fig. 2a illustrates
a square block with two perpendicular fractures that is the fine scale representation
of the coarse block Q' with the resulting isopressure line profiles. This coarse block
is used in Section 4 to determine the effective parameters for the idealized periodic
fracture reservoir examples. The pressure profile is independent of the injection
rate and of the fluid properties. It depends only on the fracture network geometry
and on porous matrix properties. Using the isopressure lines resulted from the pres-
sure solution we can determine the volume of each nested volume element and the
transmissibilities between them, which are going to be used by the MINC model.
We calculate first the minimum and maximum pressures in the coarse-block, Qi
pinin’ respectively, p’. . and we subdivide this interval into %", which is the num-
ber of nested volume elements, or continua, of the coarse-block. The subregions
located in between these isopressure curves are usually not connected to each other
and do not overlap. Their union designates the coarse block:

. (%/ .
o =9 (10)
k=1

Depending on the pressure value resulted from the fine-scale single-phase solution,
each vertex is assigned to one of the .# subregions. The bulk volume of each
subregion, Vki, is calculated by summing up all the vertex centered volumes within
that subregion:

vi=Y v, (11)

JjeQ

The average porosity of subregion is also calculated with:

—i Zjeszi Vig; (12)
L= Lk T
)y jeQ Vi
The mass accumulation within a subregion is:
. ap;
A= Y Vidi5 (13)

JjeQi
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and can also be expressed as the difference between the flow in and out of the
subregion, i:

A= 15— Qs (14)

For the last subregion, 7", Eq. 14 becomes:

=0% 10 (15)

Starting with the last subregion we calculate the mass flow rates between subre-
gions, 0; . ;, and the inner-block transmissibilities, accordingly:

. o
Jhﬂzq<¥%?f (16)
Pk(Pk“Pk+1)

where ﬁf( is the average pressure in the subregion.

2.4.4 Inter-coarse-block transmissibilities

The transmissibilities between the coarse blocks (Fig. 1 subfigure(4)a and Fig. 2b)
are calculated with a two point upscaling technique. The setup shown in Fig. 2b
considers two adjacent coarse blocks i and j taken together, with the upper and
lower boundaries set to no-flow and a pressure gradient from left to right bound-
aries, which are Dirichlet. The flux Q% between the two blocks is calculated over
their interface. The transmissibility results:

Q™

Tl7'] —_ -
p (P —7)

a7
In the above procedures the transmissibilities only depend on the coarse discretiza-

tion. The capillary pressures and the relative permeabilities are used directly from
the fine-scale to the coarse-scale.

2.4.5 Discretization Scheme - Vertex Centered Finite Volume Method

The geometrical complexity of the fracture network systems, kept intact in the
DFMs, imposes the utilization of unstructured grids as spatial discretization. The
numerical scheme to be used has to take into account the unstructured grids and
the sharp fronts that can occur between the fracture and the matrix. This imposes
the utilization of the locally mass conservative method, the vertex centered finite
volume method (VCFVM) which is also found in literature under the name of sub-
domain collocation finite volume method or box method (Helmig (1997), Reichen-
berger, Jakobs, Bastian, and Helmig (2006)). For the MINC method the same
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VCFVM is used considering this time the structured grid (Fig. 2a). The time dis-
cretization for both models is a first order fully-implicit backward Euler scheme
which generates a large non-linear system of equations. These systems are lin-
earized using the Newton-Rhapson method. Considering the vector of gravitation
g = (0,0,2) to act only in the vertical direction the total potential can be formu-
lated: Wy = po — Pagz, where z is the geodetic height. The discretized form of
the two-phase flow equations for extended MINC method can be written for the
fracture continuum as:

+A Vi
((Smeq)F"pa,F")t — (Sa,Ff‘PFiPa,Fi)t) Ai‘
L. Fu, ij
S ID I A (l}fi:?f _\ygﬁég) (18)

IEE; jen;

g BIVE = Yy T (P2 = P ) =0,
where E; is the set of elements / which have vertex i as a corner, 1); is the set of
nodes j neighboring node i that share a subcontrol volume edge with the control
box Vi, VL] is the volume of the control volume (box) corresponding to node i.
Indices ¢ and Az stand for the time discretization and Ay ; j is the mobility term of
the phase o¢ = w,n. We use the fully upwind (FU) finite volume method for the
mobilities. Term 1/2 is introduced as the flux between block i and j is equally
splitted between the two subcontrol volumes that share edge ij. They add up to
unity after computing the sums over elements. As for the matrix continuum M, the
discretized flow equations in the interior of the coarse block i are:

_ t+Ar _ t |V,{,,k\
(Sem@uiPent) = (SaaOmiPn;) ) 7

_FU i I+Ar A (19)
Aalelcle’wrlTk’kH (pOC*M/I; pa,M,’;H)

FU i A AT
A Tk (Pa,M;_l pa,M;;> =0

and for the last matrix continuum, M :

_ t+A _ t |V/{/11<|
Semi, Ori Pt = (So.ni, @aii P o pai, At

FU i A A
+A<X,M}'<,,,M}'(TK—1-,K (pa,M}'Gl poc,M;'() =0

(20)

3 Workflow

The numerical simulation of multiphase flow in fractured porous media is con-
structed on several modules which interact as shown in Fig. 3. This kind of flow
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chart can also be encountered for other applications and it is not necessarily specific
to fracture flow alone. However, fractured reservoirs differ from other systems due
to an increased level of geometric complexity, reflected in the necessity of using
unstructured grids and adaptive meshing. This, in turn implies higher complexity
for code development and for computation.

We will first introduce the modeling system and later we will describe the simula-
tion environment components.

3.1 DuMu* modeling system

DuMu*® is a free and open-source simulator for flow and transport processes in
porous media developed on the Distributed and Unified Numerics Environment
(DUNE). A description of the DuMu* modeling system, its capabilities, together
with an overview on software related aspects is given in Flemisch, Darcis, Er-
bertseder, Faigle, Lauser, Mosthaf, Miithing, Nuske, Tatomir, Wolff, and Helmig
(2011), Flemisch, Fritz, Helmig, Niessner, and Wohlmuth (2007). DuMu* and
DUNE consist of a series of modules which can be combined loosely to achieve
the best characterization of the problem. The previously described two phase frac-
ture flow models, DFM and MINC model, are implemented in DuMu* under the
names, 2pDFM and 2pMINC and belong to the so called extended models category
[Flemisch, Darcis, Erbertseder, Faigle, Lauser, Mosthaf, Miithing, Nuske, Tatomir,
Wolff, and Helmig (2011)]. The approach used at their implementation is fully
implicit and fully coupled.

3.2 Geometric modeling

The first step in the modeling system is to generate the domain geometry. In real
life applications, information about the exact location of each individual fracture
is most probably unknown. This challenging step of obtaining a reasonable ap-
proximation of the fracture network system is often done with a fracture generator.
FRAC3D is a two- and three-dimensional fracture generator, developed by Hem-
minger (2002) and Assteerawatt (2008) which offers three different approaches:
deterministic, statistic and geo-statistic fracture generation. The domains created
have “.art” or “.bnd” extensions. The “.art” file format consists of three parts:
a) Vertices which have the cartesian coordinates on x, y, z directions; b) Edges
having a boundary id, an id of the first node and an id of the second node. The
fractures are specified with negative boundary ids; ¢) Faces having the face id and
the boundaries which belong to each face. In case the geometric information about
the fracture system is provided in a file format common to the commercial simula-
tors (e.g. CAD, Rhino, ICEM) there are several file format converters which allow
conversions in both directions.
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Figure 3: Schematic description of the modeling system
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The second step is to generate the grid from the domain “.art” file. Several auto-
matic grid generators can be used (e.g. ART3D developed by Fuchs (2001), or the
commercial ICEM from Ansys). The lower dimensional fracture model has the
advantage of fast grid generation compared to the equi-dimensional concept where
the fractures are represented as thin layers. In the same time, adaptive grid gener-
ation prevents the creation of an unreasonably large number of elements. ART3D
allows adaptive meshing for both lower and equi-dimensional fracture geometries.
Having the discrete fracture network geometry earlier obtained either with the geo-
statistical fracture generator or directly from field measurements, one intermediate
step before the mesh generation can be the overlapping of the coarse grid over the
fracture network system then followed by the creation of the fine scale grid over the
entire fracture domain (see Fig. 4). This procedure prevents coarse elements to have
non-rectangular shapes or to have fine scale finite elements contained in two distinct
coarse elements. DUNE allows the use of several grid implementations such as UG

(b)
Figure 4: Exemplification for fine and coarse scale grid construction for the whole
fractured reservoir. Fracture pattern obtained with the geo-statistical fracture gen-
erator FRAC3D

[Bastian, Birken, Johannsen, Lang, Neuss, Rentz-Reichert, and Wieners (1997)],
Alberta [Schmidt and Siebert (2005)], or ALU-Grid [Dedner (2004)], etc. The au-
tomatic grid generation process may lead to creation of poor quality elements. This
requires a “mesh quality check” and the correction of those elements. One easy
way to perform corrections is by using the automatic “mesh quality check” tool of
ANSYS ICEM CFD. The next step after the creation of the grid in DuMu* is the
mapping of the fractures, which are lower dimensional entities and in the same time
element edges. A vertex and an edge mapper are constructed, such that they pro-
vide the information about each global index of a vertex, or edge, if it is a fracture
or matrix. Both pieces of information are stored in two separate vector data struc-
tures. This step is essential for the later implementation of the interface conditions
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and for the calculation of the flux and storage terms.

3.3 Coarse scale effective parameters

The calculation of the coarse scale effective parameters belongs to the preprocess-
ing stage and consists of solving single phase problems in the shape of Eq. 9
for each coarse block at the fine scale with the 2pDFM simulator. The proce-
dure is continued as described in Section 2.4.2. Each coarse block of the MINC
model is provided with the volumetric fractions and the inner-transmissibilities of
the nested volume elements, and with the transmissibilities with the neighboring
coarse-blocks. The advantage of this upscaling procedure is that the effective pa-
rameters are calculated only once in this preprocessing step, with a rather simple
procedure. Now, the flow at the coarse scale can be modeled with the 2pMINC
simulator.

3.4 Postprocessing

The preprocessing steps of geometric modeling, mesh generation and process-
ing and the postprocessing steps of result visualization are loosely coupled to the
DuMu* simulation environment. The results are usually visualized with the open-
source, multi-platform data analysis and visualization application ParaView. It is
also possible to view the results and grids with Tecplot.

4 Numerical Examples

In this section, we compare the results obtained by explicitly modeling the frac-
tured porous domain with the DFM and the ones obtained with the extended MINC
method. In this way, we are able to validate and test the accuracy of the 2pMINC
simulator and to present the individual steps of the modeling process linked to the
stages of the workflow. Three examples are presented: the first two examples are
considering a simplified idealized representation of a fractured reservoir which are
easier to implement and solve; the last one is a real natural fractured reservoir with
a high network fracture connectivity. It is worth mentioning that the 2pDFM flow
simulator was compared to other simulators - TOUGH2 and MSFLOW [Wu, Pan,
and Pruess (2004)] and MUFTE-UG [Reichenberger, Jakobs, Bastian, and Helmig
(2006)] and to published laboratory experimental results from [Kazemi (1976)],
who ran a series of laboratory experiments of water imbibition into fractured ma-
trix cores to displace oil. A series of verification studies were performed to test the
lower-dimensional DFM with the equi-dimensional one. Here we extend the range
of application investigated by Karimi-Fard, Durlofsky, and Gong (2006) who con-
sidered oil-recovery applications by injecting water into an oil saturated media, to
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non-wetting phase infiltration into a wetting saturated domain. These applications
are most valuable for estimating the migration of contaminant in the ground water
aquifers, or of the CO, storage in geological formations.

4.1 Two phase flow in an idealized periodic fracture system

We consider modeling the migration of a contaminant DNAPL (TCE) through a
simple idealized fracture network consisting of a periodic pattern of orthogonal
fractures. The resulting enclosed square matrix blocks are 1 x 1 meters. The
whole domain is 20 x 20 meters and all fractures have the width of 3.91e — 04
meters. The problem description and the material properties are given in Tab. 1.
The idealized periodic geometry is rather simple to implement directly as “.art”
format and therefore it does not require a CAD program for construction or further
conversions. In the next preprocessing step, ART3D generates a triangular mesh as
depicted by Fig. 5.

Figure 5: Fine-scale model discretization

4.1.1 Test problem 1: "Permeameter type" experiment

For simplicity, the gravity effects were neglected and the capillary pressure curves
and the porosities of the fractures and matrix are chosen to be the same. The relative
permeability of the rock matrix is calculated with the Brooks Corey relations (Eq. 4)
and a A exponent of 2, which is a value usually applied to highly nonuniform
materials Helmig (1997).

The primary variables are chosen p,, and S, so the initial non-wetting saturation is
setas S, =0.20 and a wetting pressure, p,, = 1.0e+05 [Pa]. The boundary conditions
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Table 1: Material properties and problem description for “Permeameter type” ex-
periment.

Domain Properties

matrix fracture

Permeability, K [m?] 1.0e — 15 b*/12
Eff. porosity, ¢ [-] 0.5 0.5
Entry pressure, pgy [Pa] 2000 2000
Pore size dist. idx.A [-] 2.0 2.0
Residual saturation S,,, [-] 0.01 0.01
Residual saturation S,,, [-] 0.01 0.01
Fracture aperture b [m] - 3.915¢—4

Fluid Properties
Viscosity Water, U,, [kg/ms] 1.0e —3
Density Water, p,, [kg/m?] 1000
Viscosity DNAPL, u, [kg/ms] 57¢—4
Density DNAPL, p,, [kg/m?] 1460

Boundary Conditions
Left[Dirichlet]: p,, , S, [Pa]l, [-] Pw = 2.0e 405 S, =0.80
Right[Dirichlet]: p,, , S,  [Pal, [-] Pw = 1.0e 405 S, =0.20

Top & Bottom [No Flow]

Initial Conditions
Pw » Sn [Pal, [-] pw = 1.0e+05 S, =02

are considered similar to a permeameter experiment where the pressure heads are
specified at in-and out-flow sections and no flow is occurring through the lateral
walls. We fix on the left boundary the p,, = 2.0e+05 [Pa] and the S, = 0.80, and on
the right boundary p,, = 1.0e+05 [Pa] and S,, = 0.20. The top and bottom boundaries
are set no-flow.

In the next stage of preprocessing, the calculation of the effective upscaled parame-
ters is performed on coarse blocks of 2 x 2 meters (Fig. 2a, for the inner-block and
two adjacent coarse blocks Fig. 2b), for the inter-coarse-block. The resulting coarse
block effective permeability is 5.01e-13 m?. We choose each coarse block to con-
tain a number of 6 nested volume elements: one fracture continuum and five matrix
continua. To make the calculation independent of the choice of the MINC grid size
we compute the effective permeabilities instead of the effective transmissibilities.
The permeability between the fracture and the matrix continua is calculated as the
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harmonic mean.

In the post processing visualization step, the results are presented in terms of non-
wetting-saturation profiles along the diagonal (lower left corner to upper right cor-
ner) at different times (Fig. 6). All simulations were performed on a processor
Intel(R) Core(TM)2 Quad CPU Q9300 @ 2.50GHz and 8GB RAM. Simulation
time for 2pDFM is 15517.6 seconds on a grid with 37269 nodes, and for 2pMINC
on a grid with 121 nodes and 6 nested volume elements is only 421.3 seconds.
Fig. 6 illustrates the non-wetting saturation profiles of the two simulations: DFM
(upper), MINC (lower) and their plot over the diagonal line (lower left - upper right
corners). As, the main flow direction is along the horizontal fractures and perpen-
dicular to the vertical ones, we can distinguish two periods of interest during the
simulation. The first one is from the beginning of the non-wetting phase infiltration
until it reaches the opposite boundary (Fig. 6 (a-c)), and the second one is the slow
increase of non-wetting saturation in the whole domain. The fine-scale reference
solution (DFM) is represented by the irregular, “zig-zag” line (SN_2pDF M), where
the peaks of the curve result at the point where the diagonal intersects a fracture and
the low values are in the center of each matrix block. The continuous lines, named
SN_0 to SN_5 are obtained with the MINC model, “0” being the fracture contin-
uum and “5” the furthest from the fractures, or the inner-most matrix continuum.
It can be seen that the MINC model can correctly represent both the front propaga-
tion through the fractured network system (Fig. 6 (a-c)) and the infiltration into the
matrix blocks (Fig. 6 (d-f)). At steady state the non-wetting saturations of the two
models converge to the same value and are in perfect agreement (Fig. 6f).

4.1.2 Test problem 2: Quarter five-spot problem

For the second test we use the same fracture network system as in the previous ex-
ample. We consider a contamination spill of TCE (D-NAPL) from a point source
which is infiltrating into a fractured ground water reservoir (Fig. 7). This is similar
to a quarter five-spot problem, commonly encountered in reservoir engineering. In
comparison to the previous test, the location of the source and the fracture con-
figuration leads to an anisotropic permeability tensor which should be captured by
the upscaled MINC model. We also include the influence of capillary forces and
we concentrate on the effect of the entry pressure which is used both for the fine-
and the coarse-scale models. Voluntarily, the capillary pressure saturation p. — S,
curves are chosen close to each other: entry pressure in the matrix p; = 1200 [Pa]
and entry pressure in the fracture p; = 1000 [Pa]. To keep the problem simple and
maintain the focus on the entry pressure effect we consider that the porosities of
the two materials are the same (Tab. 2).

The boundary conditions are set to no-flow on all boundaries except the lower left
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Figure 6: Permeameter type example: Non-wetting phase saturation profiles plot-
ted over the diagonal. The upper left plot in each subfigure represents the spatial
saturation distributions obtained with the reference DFM model (SN curve), while
the lower left plot is the extended MINC model (SN_O is fracture continuum, SN_1
matrix continuum 1,etc.).
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Figure 7: Quarter five spot example: non-wetting saturation profiles plotted over
the diagonal line (white color) at different time steps. The DFM spatial distributions
of saturations (SN curve) is plotted in the upper left part of each subfigure above
the MINC (SN_0, SN_1, ..,.SN_6).
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Table 2: Material properties and problem description for “Quarter Five-spot” ex-
periment.

Domain Properties

matrix fracture

Permeability, K [m?] 1.0e — 15 b*/12
Eff. porosity, ¢ [-] 0.5 0.5
Entry pressure, pgy [Pa] 1200 1000
Pore size dist. idx.A [-] 0.5 0.5
Residual saturation S,,, [-] 0.01 0.01
Residual saturation S,  [-] 0.01 0.01
Fracture aperture b [m] - 3.915¢—4

Fluid Properties
Viscosity Water, U,, [kg/ms] 1.0e —3
Density Water, p,, lkg/m?] 1000
Viscosity DNAPL, 1,  [kg/ms] 5.7¢e—4
Density DNAPL, p,, lkg/m?] 1460

Boundary Conditions
LowerLeft[Neumann]:
Gw > Gn lkg/ms] gw =0 gn =2.0e — 02
UpperRight[Dirichlet]:
Pw > Sy [Pa], [-] pw = 1.0e+05 S, =0.20

ELSE [No Flow]

Initial Conditions
DPw > Sy [Pal, [-] pw = 1.0e+05 S, =0.2

corner where a constant injection rate of non-wetting phase 2.0e-2 kg/s.m is chosen,
and the upper right corner, Dirichlet, with p,,=1.0e5 [Pa] and S,,=0.2, which are also
the initial values inside the domain. The coarse blocks of the MINC model are sub-
gridded with a number of 6 continua. The dimensions in the determination of the
upscaled effective parameters are the same as in the “Permeameter” example, i.e. 2
x 2 meters. Also for this case, it can be seen that the MINC model can accurately
represent the front propagation (Fig. 7 (a-c)) as well the infiltration into the matrix
blocks, which starts occurring when the matrix entry pressure is overcome (Fig. 7
(d-f)). The non-wetting saturation profiles plotted over the diagonal line show that
the fracture continuum always fits the peaks of the DFM model. Considering the
observation of Zimmerman, Hadgu, and Bodvarsson (1996) the MINC approach
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should be employed with matrix blocks discretized into ten or more nested con-
tinua. For the previous examples, we have performed a sensitivity analysis using
different infiltration rates, finer or coarser discretizations and different numbers of
interacting continua for the coarse blocks. The DFMs can be accurately approxi-
mated with an upscaled MINC model having a coarse grid refinement of 10 x 10
and a subgridding of 3 nested volume elements.

4.2 Test problem 3: Two-phase flow in a layerd fractured carbonate model
BED3

In the following example we present a naturally fractured domain, having the pat-
terns mapped on a wave platform along the southern margin of the Bristol Channel
coast, United Kingdom. The geometry has previously been investigated with the
numerical framework complex system platform (CSP) BED3 [Belayneh, Masihi,
Matthai, and King (2006)] and later in several single- and multi-phase problems
[Geiger, Cortis, and Birkholzer (2010); Geiger and Emmanuel (2010); Matthai,
Nick, Pain, and Neuweiler (2010)]. Domain dimensions are 18 x 8 m? (Fig. 8) and
it mainly consists of limestone rocks interbedded with shales having vertical joints
that connect the horizontal fractures. The reservoir is represented in high detail
and has a strong fracture connectivity. The material parameters for both matrix and
the fracture domains are given in Tab. 3. We employ the same capillary-pressure-
saturation curves as in the “quarter five-spot” example but this time we consider
that fractures and matrix have different porosities, i.e. 0.9 for fractures and 0.3 for
the rock matrix.

For this example, we are using two fluids with considerably different viscosities:
water and air. The boundary and initial conditions are the same as in Test problem
1: on the left boundary p,, = 2.0e+05 [Pa] and the S,, = 0.80, on the right boundary
pw = 1.0e+05 [Pa] and S,, = 0.20, and the top and bottom boundaries are set no-
flow; initial conditions: non-wetting saturation S, = 0.20 and a wetting pressure,
Pw = 1.0e+05 [Pa]. In the preprocessing step, the geometry of the fracture system is
given as a CAD format. We generate the finite element grid with ICEM and convert
the mesh file using csp2art into “.ner”. We use this geometry to calculate the
reference solution with 2pDFM simulator. For the 2pMINC model, another geometry
file consisting only of the fracture system is created. The file is converted to .art
and the coarse grid mesh is overlapped on the fracture network (Fig. 8 upper). The
vertical and horizontal new inner lines are assigned with boundary ids bigger than
one, which ensures that the fracture mapper (artreader) will recognize them as
non-fractures. Using ART3D we create an adaptive mesh with higher refinement
around the fractures as illustrated by Fig. 8 (lower). The next step is the creation
of the UG grid readable by DuMu* and mapping of each individual fracture. The
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Table 3: Material properties and problem description for “Bristol” experiment.

Domain Properties

matrix fracture

Permeability, K [m?] 1.0e — 15 b*/12
Eff. porosity, ¢ [-] 0.3 0.9
Entry pressure, py [Pa] 1200 1000
Pore size dist. idx.A [-] 0.5 0.5
Residual saturation S,,, [-] 0.0 0.0
Residual saturation S,,,  [-] 0.0 0.0
Fracture aperture b [m] - 3.915¢—4
Temperature T [°K] 293.15 293.15

Fluid Properties
Viscosity Water, U,, [kg/ms] 1.0e —3
Density Water, p,, lkg/m?] 1000
Viscosity Air, U, [kg/ms] f(p,T)~1.6e—5
Density Air, p, lkg/m?] p[’g]T”

Boundary Conditions
Left[Dirichlet]:
DPw > Sy [Pa], [-] pw=2.0e+05 S, =0.80
Right[Dirichlet]:
Dw > Sy [Pa], [-] pw = 1.0e+05 S, =0.20

ELSE [No Flow]

Initial Conditions
DPw > Sn [Pal, [-] pw = 1.0e+05 S, =0.20

coarse blocks chosen for the calculation of the effective parameters are 2 x 2 meters
(Fig. 8) each containing a number of 6 nested volume elements. After solving
the single phase flow problems between the coarse blocks the inter-coarse-block
effective permeabilities result ranging between 2.42¢-12 and 4.78e-12 m?. These
parameters are given to the 2pMINC flow simulator for the processing step.

In Fig. 10 we can see as in the previous examples, that the model predicts the sat-
uration distributions for the whole simulation spectrum correctly (front arrival to
the other boundary, non-wetting phase infiltration into the matrix blocks and un-
til the steady sate). As the fracture system is not periodic, the fracture continuum
curve SN_0 of the MINC model is not touching all the peaks but it gives a rea-
sonably good approximation. This is also valid for all the rock matrix continua
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Figure 8: Test problem 3: Domain description and an example for the subdivision
of the Bristol fracture system in coarse blocks (two cells) and their unstructured
gridding.

which remain in between the saturation limits obtained with the discrete model. As
expected, the fractures dominate flow and the non-wetting front travels very fast
through the fracture network to the left boundary (Fig. 10 (a-c)). Next, it starts
infiltrating into the rock blocks (Fig. 10 (c-e)), until the steady state is reached
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(Fig. 10(f)). The saturation in the fracture domain both in the DFM and the MINC
model reach the value 0.8 while in the matrix they are slightly smaller 0.78. With
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Figure 9: Test problem 3: Mass fluxes of wetting and non-wetting phase plotted
over time at line (x = 1.8m) obtained with 2pDFM and 2pMINCsimulators

the result visualization step we have successfully closed the last cycle in the work-
flow. The simulation environment is practical and flexible as it allows the user to
choose between accuracy and computational speed. Another point for flexibility
is the ability to manipulate the geometries with our developed software as well as
more productive commercial tools. 2pMINC model correctly reproduces not only
the saturation profiles, but also the mass fluxes (Fig. 9) and is able to capture the
capillary effects. It shows a good accuracy and a very good efficiency in com-
putation speed. Tab. 4 compares the simulation times for the 2pDFM and 2pMINC,
together with the number of elements and vertices.

5 Summary and Conclusion

We have developed a practical tool to simulate two phase flow in large-scale frac-
tured reservoirs. The simulation method is general because it allows handling of
densely fractured systems with irregular geometries as well as of the regions where
fractures have lower connectivity. It is also flexible because it benefits from both
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Table 4: Simulation times and grid specifications for the numerical experiments

Experiment Model | Vertex No | Element No | Sim. Time [sec]
Ex.1: Permeameter 2pDFM 37269 73847 15517.6
2pMINC 11x11 10x10 421.3
Ex.2: Fivespot 2pDFM 37269 73847 122483.6
2pMINC 11x11 10x 10 2046
. 2pDFM 42490 84348 331364
Ex.3: Bristol 2§MINC 19x9 188 180

the fracture complexity of the DFM and the computational simplicity of the CFM,
which is a compromise between accuracy and computation speed. Considering the
advantage of the extended MINC method over the classical MINC method (like
Pruess (1992)) which is the derivation of the effective parameters from detailed hy-
drodynamic and geometric properties of the fracture system, we have introduced a
workflow for efficient solving of two-phase flow in fractured porous media. It starts
with the geometrical modeling of the fracture network system which is/can be cre-
ated with a geostatistical fracture generator, then the generation of the optimal fine-
and coarse-mesh, and ends with the numerical simulator and the post-processing.
The tests showed that the 2pMINC simulator can represent the fluxes and saturation
profiles obtained with the discrete 2pDFM simulator, giving very good speedup fac-
tors. We can also conclude that both the matrix-fracture transfer and entry pressure
effects are correctly estimated and are based on a physical approach. It is clear that
if geologic data are available the most accurate solutions are obtained with a DFM
approach. Considering the increase in computational power and the possibility of
doing multiple core calculations this may represent the best choice for the future,
however an accurate, practical tool based on a generalized double porosity concept
with high flexibility still remains a good alternative.
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