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A Generalized FEM Model for Fiber Structural and
Mechanical Performance in Fabrication of Slender Yarn

Structures
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Abstract: Slender yarn structure made from natural fibers, nano-fibers, carbon
nanotubes or other types of fibrous materials is all formed by twisting an assembly
of short or long fibers and its performance is significantly influenced by the phys-
ical behavior of these fibers in the slender yarn forming region - a small triangle
area called spinning triangle. In this paper, a new generalized FEM model of spin-
ning triangle has been developed to theoretically analyze the fiber structural and
mechanical performance in fabrication of these slender yarn structures. In this pro-
posed model, a geometrical model of spinning triangle is developed and the initial
conditions are formulated together with algorithms for fiber buckling. Compared
with the earlier models, some important parameters ignored previously such as the
inclined angle of spinning tension and fiber torsional strains are considered. Fiber
tensions predicted by the model are in good agreements with earlier models while
the predicted torque of slender yarns is generally more close to experimental mea-
surements. In addition, the effect of the parameters neglected previously has also
been fully analyzed by using the proposed FEM model.
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1 Introduction

Fiber and slender yarn are the fundamental materials for making a broad range of
functional structures and textile composites such as geotextiles [Cartaud, Touze-
Foltz and Duval, 2005], 3D auxetics and protectors [Liu, Hu, Lam and Liu, 2010;
Miller, Hook, Smith, Wang and Evans, 2009], carbon nanotube and electro-spun
polymer yarns [Jiang, Li and Fan, 2002; Smit, Buttner and Sanderson, 2005; Za-
khidov, Nanjundaswamy, Obraztsov, Zhang, Fang, Klesch, Baughman and Zakhi-
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dov, 2007; Zhang, Atkinson and Baughman, 2004], and membranes [Oñate and
Kröplin, 2005]. The property of constituent fibers, together with their spatial dis-
tribution inside the slender yarn, play an important role in determining the physical
performance of yarns and their composites, such as the strength, internal torque
and regularity [Hearle, Grosberg and Backer, 1969]. Spinning is a process which
converts short or long fibers into a continuous yarn (see Fig. 1). For example,
Fig. 2 shows the scanning electron microscope (SEM) images of a carbon nan-
otube (CNT) yarn being pulled out (by a tension) from a super-aligned CNT array
grown on a silicon substrate [Zhang, Atkinson and Baughman, 2004]. The yarns
could be further twisted into two or four-ply CNT threads, or formed into a more
complicated knitted structure, as shown in Fig. 3.

 

Figure 1:  Scanning electron microscope (SEM) image of a yarn made by natural fibers 

     

Figure 2:  SEM images of (A) a carbon nanotube (CNT) yarn being pulled out and twisted 

from a nanotube array grown on a silicon substrate and (B) a magnified view of the spinning 

triangle of the CNT yarn [Zhang, Atkinson and Baughman, 2004] 

 

Figure 3:  SEM images of a carbon nanotube: (A) single yarn, (B) two-ply yarn, (C) 

four-ply yarn and (D) knitted structure [Zhang, Atkinson and Baughman, 2004] 

Yarn

Fibers 

CNTs

CNT yarn

Figure 1: Scanning electron microscope (SEM) image of a yarn made by natural
fibers

In the yarn fabrication process, the area between the front nip line (on the array)
and the twisting point is called a twisting triangle or spinning triangle (see Fig. 2
and Fig. 4) where fibers will be eventually twisted into the yarn. Therefore the
structural and physical properties of slender yarn will be greatly influenced by the
geometric shape and the fiber mechanical behavior of the spinning triangle.

Over the past years, the investigation on yarn fabrication process or the spinning tri-
angle has attracted an increasing interest of researchers and some valuable research
works have been carried out [Fujino, Uno, Shiomi, Yanggawa and Kitada, 1962;
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Figure 2: SEM images of (A) a carbon nanotube (CNT) yarn being pulled out and
twisted from a nanotube array grown on a silicon substrate and (B) a magnified
view of the spinning triangle of the CNT yarn [Zhang, Atkinson and Baughman,
2004]
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Figure 3: SEM images of a carbon nanotube: (A) single yarn, (B) two-ply yarn, (C)
four-ply yarn and (D) knitted structure [Zhang, Atkinson and Baughman, 2004]

Pavlov, 1965; Krause, Soliman and Tian, 1991; El-Shiekh, 1965; Najar, 1996;
Hua, 2006; Hua, Tao, Cheng and Xu, 2007]. In the earlier stage of studies, the
force method was the mainstream for the geometric and strength study of spinning
triangle. For instance, Fujino, Uno, Shiomi, Yanggawa and Kitada (1962) exam-
ined the twist irregularity of yarns with a theoretical consideration of force balances
in the spinning triangle. In a study of the fiber strength, structural transformations
of the fibers at the instant rupture in yarn formation were studied by Pavlov (1965).
Krause, Soliman and Tian (1991) also carried out a similar theoretical investigation
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Figure 4:  A sketch view of a symmetric spinning triangle. α is the half of spinning angle 
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Figure 4: A sketch view of a symmetric spinning triangle. α is the half of spinning
angle and β is the helix angle of the fiber distributed on the surface of the yarn.

on the strength of spinning triangle for yarns by taking different extensions of fiber
into consideration. Based on the photographic experiments [El-Shiekh, 1965; Na-
jar, 1996; Hua, 2006], the behavior of fibers, such as fiber buckling, fiber migration
and the profile of spinning triangle, were partially observed.

The theoretical models of spinning triangle currently in use were mainly based on
the energy method. The advantage of this method lies that the full description of
geometry is not required before hand. In those models [Najar, 1996; Hua, 2006;
Hua, Tao, Cheng and Xu, 2007], the total potential energy, composed of the total
elastic strain energy of fibers and the work done by the spinning tension, was min-
imized with respect to a generalized coordinate. Najar (1996) originally carried
out a theoretical study of the symmetric spinning triangle using the energy method.
The distribution of fiber tensions in the symmetric spinning triangle was systemat-
ically studied with respect to its influencing parameters of twisting angle, spinning
tension and yarn linear density. Hua (2006) and Hua, Tao, Cheng and Xu (2007)
further extended the work of Najar (1996) with the consideration of an asymmetric
spinning triangle. Although the above-mentioned models are somehow capable of
predicting fiber tension during yarn fabrication, because of the mathematical com-
plexity in formulating fiber strains inside the spinning triangle, only the fiber tensile
strain was considered and the spinning tension was assumed to be exactly vertical



A Generalized FEM Model in Fabrication of Slender Yarn Structures 37

to the front roller nip line of the spinning triangle (e.g. θ=0 in Fig. 5). In addition,
the fiber torsional strain was ignored due to the complexity.

with a circular outline (see Fig. 6).  It is further assumed that the stress-strain behavior of 

fibers in ring spinning triangle follows Hooke’s law as it is generally agreed [Najar, 1996; 

Hua, 2006; Hua, Tao, Cheng and Xu, 2007] that it is not beyond the linear region of initial 

modulus.  In addition, the effect of inter-fiber forces is ignored and the fiber ends are twisted 

together at an imaginary twisting point (O). 

 

Figure 5:  A geometric model of spinning triangle. d is the width of spinning triangle, H is 

the height of spinning triangle, fi , mi are the tension and elastic torque of ith fiber, respectively, 

αi is the angle between the ith fiber and the vertical axis of front roller nip line, Li is the length 

of ith fiber inside the spinning triangle, O is the twisting point, Fo is spinning tension, Mo is 

spinning torque, θ is the angle between the spinning tension of yarn and the vertical axis of 

front roller nip line and X, Y, Z are the global coordinates. 

 

Figure 6:  The ideal structure of a yarn (5 layers). (A) a 3D helical structure, (B) a 

cross-sectional view and (C) a layer structure. 

2.1  Initial height of spinning triangle 

In this analysis, for the geometry relationship shown in Fig. 5, the initial height of spinning 

triangle H can be expressed in terms of the half of the spinning angle α and the width of 
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Figure 5: A geometric model of spinning triangle. d is the width of spinning trian-
gle, H is the height of spinning triangle, fi, mi are the tension and elastic torque of
ith fiber, respectively, αi is the angle between the ith fiber and the vertical axis of
front roller nip line, Li is the length of ith fiber inside the spinning triangle, O is the
twisting point, Fo is spinning tension, Mo is spinning torque, θ is the angle between
the spinning tension of yarn and the vertical axis of front roller nip line and X, Y,
Z are the global coordinates.

With the rapid development of computer technology, the Finite Element Method
(FEM) becomes more widely used in analysis of textile structures. For instance,
numerical simulations of fabric performance including the buckling analysis of
knitted fabric [Zhang, Liu and Du, 2007], the impact analysis on a ballistic fab-
ric [Duan, Keefe, Bogetti and Powers, 2006], drape simulation of woven fabric
[Sze and Liu, 2007] and so on were carried out by using FEM. The FEM model
of fabric material was built up for numerical simulating the behavior of fabric ma-
terials [Bouzidi, Ravaut and Wielgosz, 2003; Tanaka, Noguchi, Fujikawa, Sato,
Oi, Kobayashi, Furuichi, Ishimaru and Nonomura, 2010; Wang, Zhang, Gao and
Wang, 2007]. Another application is theoretical modeling of composite materials
with textile reinforcement [Quek, Waas, Shahwan and Agaram, 2003; Sejnoha and
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Zemana, 2008; Tabiei and Jiang, 1999].

In practice, the actual performance of the spinning triangle is more complicated
than what have been modeled so far. For instance, the spinning tension of the yarn
always has a large or small angle with the vertical axis of the front roller nip line (θ ,
see Fig. 5), depending on the geometry and parameters adopted during spinning.
Some recent innovations in yarn spinning also exhibited purposely or inevitably
such a large angle for the improvement of yarn properties [Murrells, Tao, Xu and
Cheng, 2009; Tang, Xu and Tao, 2010; Xu, Murrells and Tao, 2008; Xu and Qu,
2001; Xu and Tao, 2003, Xu and Tao, 2008; Xu, Tao and Murrells, 2010; Yang,
Tao, Xu and Lam, 2007]. Thus in the present paper, a more generalized theoretical
model of ring spinning triangle will be developed using FEM by taking account of
the above-mentioned factors ignored previously. With the derivation of the initial
conditions and fiber buckling algorithm, the FEM model of spinning triangle will
be more close to the practical process.

In the following analysis, the FEM model of spinning triangle will be first devel-
oped in Section 2 with the derivations of the initial conditions and the algorithms
for fiber buckling effect. In Section 3, numerical simulations are carried out and
compared with those by earlier models [Najar, 1996; Hua, Tao, Cheng and Xu,
2007; Bennett and Postle, 1979a, 1979b]. Then, the effect of new spinning pa-
rameters such as the inclined spinning triangle and fiber torsional strains will be
examined. Finally the conclusions will be given in Section 4.

2 Theoretical analysis

A symmetric geometry model of the spinning triangle is shown in Fig. 5 in which
the fibers are uniformly distributed. In this study, the twisted yarn is assumed to
have an idealized helical structure with a single fiber core and open packing of
circular fibers, giving the yarn with a circular outline (see Fig. 6). It is further
assumed that the stress-strain behavior of fibers in ring spinning triangle follows
Hooke’s law as it is generally agreed [Najar, 1996; Hua, 2006; Hua, Tao, Cheng
and Xu, 2007] that it is not beyond the linear region of initial modulus. In addition,
the effect of inter-fiber forces is ignored and the fiber ends are twisted together at
an imaginary twisting point (O).

2.1 Initial height of spinning triangle

In this analysis, for the geometry relationship shown in Fig. 5, the initial height of
spinning triangle H can be expressed in terms of the half of the spinning angle α
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Figure 6: he ideal structure of a yarn (5 layers). (A) a 3D helical structure, (B) a
cross-sectional view and (C) a layer structure.

and the width of spinning triangle d:
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d
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× 1
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(1)

The width of spinning triangle d is considered as constant and the half of spinning
angle α can be formulated in the following way. As shown in Fig. 7, owing to
the finite flexural rigidity of the fiber, it has an angle ψ between the line of fiber in
spinning triangle and the tangent of the helical fiber in the yarn at the contact point.
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Figure 7:  Bending due to flexural rigidity of fiber. R is the yarn radius, ρf is the curvature 

radius of the nth fiber, fn is the fiber tension of the nth fiber in spinning triangle. 
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where γ is the distance measured along the line of the fiber, and B is the flexural rigidity of the 

fiber. 
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radius of curvature of the helical path of the fiber at this point. Thus: 

α
ρ

2sin

R
f =                                                              (4) 

And 
2cRB f=  [Morton and Hearle, 2008]                                     (5) 

where Rf is the specific flexural rigidity, yarn linear density 2Rc ρπ= , and ρ is yarn density. 
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Figure 7: Bending due to flexural rigidity of fiber. R is the yarn radius, ρ f is the
curvature radius of the nth fiber, fn is the fiber tension of the nth fiber in spinning
triangle.
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Substituting Eqs. (4) and (5) into the Eq. (3), it follows that: 
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Figure 8: A idealized helical fiber on the surface of yarn. h is the length of one turn of twist. 

As shown in Fig. 8, opening the helical yarn out flat, the helix angle of yarn can be expressed 

as: 

RTh
R ππβ 22tan ==                                                      (8) 

where T is yarn twist expressed by turns per meter (tpm). 

Substituting Eqs. (7) and (8) into the Eq. (1), the relation between yarn linear density, yarn 

twist and the height of spinning triangle can be written as follows: 

π
ρ

cT

d
H ×=

4
                                                          (9) 

Hence the initial height of spinning triangle is largely dependent on the yarn linear density c 

and yarn twist levels (T). 

2.2  Initial strain of fibers 

If all the fibers are twisted into the yarn and there is no fiber loss during spinning, the 

equation of mass conservation can be employed for the spinning triangle: 

yarnnnniii Rrrrr ρυπυρπυρπυρπυρπ 222
22

2
211

2
1 =+++++  ,                       (10) 

2πR 

h 

β 

Open out 
β 

Helical fiber 

Figure 8: An idealized helical fiber on the surface of yarn. h is the length of one
turn of twist.

The relation of the half of spinning angle α and the helix angle β (see Fig. 4 and
Fig. 6) of the fiber distributed on the surface of the yarn can be expressed as:

β = α +ψ (2)

As shown in Fig. 7, for an elastic body, the curvature radius ρ f of the nth fiber is
[Grosberg and Plate, 1969]:

1
ρ f

=
dψ

dγ
= 2

√
fn

B
sin(

ψ

2
) (3)

where γ is the distance measured along the line of the fiber, and B is the flexural
rigidity of the fiber.

As Emmanuel and Plate (1982) pointed out that the radius ρ f at the contact point
equals the radius of curvature of the helical path of the fiber at this point. Thus:

ρ f =
R

sin2
α

(4)

And

B = R f c2 [Morton and Hearle, 2008] (5)

where R f is the specific flexural rigidity, yarn linear density c = ρπR2, and ρ is
yarn density.
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Substituting Eqs. (4) and (5) into the Eq. (3), it follows that:

cosψ = 1−
R f c2 sin4

α

2 fnR2 (6)

In the second term R f c2 sin4
α

2 fnR2 of Eq. (6), R f , c and R are constants and the terms
vary with α and fn. In the analysis of low-twist yarns, the bending of fiber can be
ignored. Hence, in this study, the helical angle β of the fibers distributed on the
surface of the yarn is equal to the half of spinning angle in the initial conditions of
this model, as shown in Eq. (7).

ψ = 0, or α = β (7)

As shown in Fig. 8, opening the helical yarn out flat, the helix angle of yarn can be
expressed as:

tanβ = 2πR/h = 2πRT (8)

where T is yarn twist expressed by turns per meter (tpm).

Substituting Eqs. (7) and (8) into the Eq. (1), the relation between yarn linear
density, yarn twist and the height of spinning triangle can be written as follows:

H =
d

4T
×
√

ρ

cπ
(9)

Hence the initial height of spinning triangle is largely dependent on the yarn linear
density c and yarn twist levels (T ).

2.2 Initial strain of fibers

If all the fibers are twisted into the yarn and there is no fiber loss during spinning,
the equation of mass conservation can be employed for the spinning triangle:

πr2
1ρ1υ1 +πr2

2ρ2υ2 + · · ·+πr2
i ρiυi + · · ·+πr2

nρnυn = πR2
ρυyarn, (10)

where ri, ρ i and υ i are the radius, density and velocity of the ith fiber, respectively,
n is the total number of fibers, and υyarn is the velocity of the yarn.

The physical meaning shown in Eq. (10) is that the total mass of fibers entering
the spinning triangle per unit time is equal to that of fibers leaving the spinning
triangle in the form of yarn per unit time. With the same type of materials, it can
be reasonably assumed that, at the entering line (front roller nip line), all the fibers
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have the same circular cross section with ideal radius and density, and the fibers are
delivered at the same speed:

r1 = r2 = · · ·= rn = r, ρ1 = ρ2 = · · ·= ρn = ρ0, υ1 = υ2 = · · ·= υn = υ0 (11)

where r, ρ0 and υ0 are the radius, density and velocity of the fibers, respectively,

Substituting Eq. (11) into Eq. (10), we can obtain:

nπr2
ρ0υ0 = πR2

ρυyarn. (12)

In view of the delivery speed, Eq. (12) can be further written as:

υ0

υyarn
=

πR2ρ

nπr2ρ0
=

c
nc0

(13)

where c0 is linear density of a single fiber.

In formulation of the initial conditions, fiber initial strain can be considered as a
sum of two components. The first component can be understood as a “drafting”
result of spinning triangle because of pulling action and it is solely generated by
the difference of delivery velocity between fibers and yarn:

ε0 =
H−L0

L0
= 1− υ0

υyarn
= 1− c

nc0
(14)

where L0 is the initial length of fibers inside the spinning triangle.

According to Eq. (14), all fibers are equally extended, regardless of their posi-
tions in the spinning triangle and the triangle profile of spinning triangle. Then the
second component is purely resulted from the triangle profile of spinning triangle:

εi =
Li−H

H
(15)

Therefore the total initial strain of ith fiber in the spinning triangle can be obtained
by considering the two components in Eqs. (14) and (15):

ε
∗
i =

Li−L0

L0
= εi + εiε0 + ε0 ∼= εi + ε0 =

Li−H
H

+
(

1− υ0

υyarn

)
(16)

In practice, the strain ε0 in Eq. (16) can be considered as a correction factor and ob-
tained by measuring the total number of fibers, the linear densities of a single fiber
and yarn with Eq. (14). In this analysis, it is assumed that the delivery velocities of
fiber and yarn are the same (i.e. υ0=υyarn), so the total initial strain ofith fiber (ε∗i )
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in Eq. (16) just equals the fiber strain generated by the triangle profile. To imple-
ment the total fiber initial strains formulated in Eq. (16), an initial spinning tension
force will be exerted on the twisting point so that the central fiber is straight at zero
extension and the other fibers are extended. Under the initial fiber strains, if the
actual spinning tension is larger than the initial force, fibers in the spinning triangle
will be further elongated, otherwise, they will be contracted or remain unchanged.

Some examples of fiber initial strain distribution are shown in Fig. 9. Fig. 9(A)
illustrates a contour plot of fiber initial strain for a yarn of 58g/km (linear density
unit: grams per 1000m) with a twist level of 398tpm (unit: turns per meter). The
fiber initial strain curves under different yarn twists (398tpm, 436tpm, 486tpm,
523tpm) for the same yarn linear density of 58g/km are also shown in Fig. 9(B).
As shown in Fig. 9(B), the position of fibers along the front roller nip line (or the
width of spinning triangle) is normalized from -0.5 to 0.5 with the central point as
zero.
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Figure 9:  Examples of fiber initial strain (yarn with a linear density of 58g/km). (A) a 

contour plot of fiber initial strain (yarn twist: 398tpm) and (B) fiber initial strains at different 

yarn twist levels. 

2.3  FEM model of spinning triangle 

The constituent fibers in the spinning triangle are considered as 3-D beams with the tensile, 

compressive, torsional and bending capabilities.  In this study, it focuses on analyzing the 

effects of spinning parameters on the fiber structural and mechanical behavior, therefore the 

stationary model of spinning triangle will be developed, which is similar to the objectives of 

previous studies [Najar, 1996; Hua, 2006; Hua, Tao, Cheng and Xu, 2007].  As shown in 

Figure 5, the governing equations of the fibers in the spinning triangle are: 

Figure 9: Examples of fiber initial strain (yarn with a linear density of 58g/km).
(A) a contour plot of fiber initial strain (yarn twist: 398tpm) and (B) fiber initial
strains at different yarn twist levels.

2.3 FEM model of spinning triangle

The constituent fibers in the spinning triangle are considered as 3-D beams with the
tensile, compressive, torsional and bending capabilities. In this study, it focuses on
analyzing the effects of spinning parameters on the fiber structural and mechanical
behavior, therefore the stationary model of spinning triangle will be developed,
which is similar to the objectives of previous studies [Najar, 1996; Hua, 2006; Hua,
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Where Ri is the distance of the ith fiber from the yarn-axis in the yarn cross-section, E is the 

modulus of elasticity, A is the cross-section area of fiber, GIp is the torsional rigidity of fiber, 

ωi ,φi and ti are the axial deformation, torsion angle and axial direction variate of the ith fiber, 

respectively. 

The fibers in spinning triangle are divided into a set of 3-D beam elements based on 

Timoshenko beam theory and each end node has six degrees of freedom, as shown in Fig. 10. 

 

Figure 10:  The adopted beam element. W, V, and P are the nodes of the element, Le is the 

orientation node, x, y and z are the directions of element coordinate system. 

The shape functions for the selected 3-D beam element are: 
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Figure 10: The adopted beam element. W, V, and P are the nodes of the element, Le

is the orientation node, x, y and z are the directions of element coordinate system.
The shape functions for the selected 3-D beam element are:

Tao, Cheng and Xu, 2007]. As shown in Figure 5, the governing equations of the
fibers in the spinning triangle are:

n
∑

i=1
fi cosαi−Fo cosθ = 0

−
n−1

2
∑

i=1
fi sinαi +

n
∑

i= n+1
2

fi sinαi−Fo sinθ = 0

n
∑

i=1
mi cosαi +

n
∑

i=1
Ri fi sinαi−Mo cosθ = 0

−
n−1

2
∑

i=1
mi sinαi +

n
∑

i= n+1
2

mi sinαi−Mo sinθ = 0

EA dωi
dti
− fi(ti) = 0

GIp
dϕ i
dti
−mi(ti) = 0

(17)

WhereRiis the distance of the ith fiber from the yarn-axis in the yarn cross-section, E
is the modulus of elasticity, A is the cross-section area of fiber, GIp is the torsional
rigidity of fiber, ω i ,φ i and ti are the axial deformation, torsion angle and axial
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direction variate of the ith fiber, respectively.

The fibers in spinning triangle are divided into a set of 3-D beam elements based on
Timoshenko beam theory and each end node has six degrees of freedom, as shown
in Fig. 10.

The shape functions for the selected 3-D beam element are:

δ = 1
2 [δW (−s+ s2)+δV (s+ s2)+δP(1− s2)]

ζ = 1
2 [ζW (−s+ s2)+ζV (s+ s2)+ζP(1− s2)]

η = 1
2 [ηW (−s+ s2)+ηV (s+ s2)+ηP(1− s2)]

λx = 1
2 [λxW (−s+ s2)+λxV (s+ s2)+λxP(1− s2)]

λy = 1
2 [λyW (−s+ s2)+λyV (s+ s2)+λyP(1− s2)]

λz = 1
2 [λzW (−s+ s2)+λzV (s+ s2)+λzP(1− s2)]

(18)

where δ , ζ and η are the translations in the x, y, z directions under the element
coordinate system, respectively. λ x, λ yor λ z is the rotational angle about its corre-
sponding direction. s is a normalized coordinate, starting from -1.0 on one side of
the element to +1.0 on the other.

The overall stiffness matrix [K] can be obtained by:

[K] =
ne

∑
e=1

[K]e (19)

where ne is the number of elements, [K]e is the element stiffness matrix in the
global coordinate system.

Thus the static analysis of the FEM model will be a solution of the following equa-
tions:

[K]{u}= {F} (20)

where {u} and {F} are assembled nodal displacement and loading vectors, respec-
tively.

The degrees of freedom (DOFs) of the nodes which are on the front roller nip line
are all equal to zero, so the displacement boundary condition of the model can be
given by:

{uk}= {0} (21)

where k is the node on the front roller nip line.



46 Copyright © 2011 Tech Science Press CMES, vol.77, no.1, pp.33-55, 2011

The spinning tension Fo and spinning torque Mo are applied on the twisting point
O, thus the force boundary conditions of the model are as follows:

f j
X

f j
Y

f j
Z

m j
X

m j
Y

m j
Z


=



Fo sinθ

Fo cosθ

0
Mo sinθ

Mo cosθ

0


(22)

where j is the node on the convergence point.

The system of simultaneous linear equations generated by the finite element pro-
cedure is solved either using a direct elimination process or an iterative method.
In this study, the Sparse Direct Solver was employed. Eq. (20) was solved by
triangular decomposition of matrix [K] to yield the following equation:

[L][U ]{u}= {F} (23)

where [L] is the lower triangular matrix and [U] is the upper triangular matrix.

2.4 Element birth and death for fiber buckling

In the actual spinning process, fiber buckling is a very common phenomenon that
occurs in center fibers of spinning triangle, as shown in Fig. 11.

If the fiber is treated as an elastic thin rod under an axial compressive load with
both ends clamped, the critical compressive load required to cause fiber buckling is
given by [Timoshenko, 1961]:

Pcr =
4π2EI

l2
c

(24)

where I is the moment of inertia of the fiber with a circular cross-section of radius
r, and lc is the clamped length of fiber.

Then, the critical fiber strain beyond which fiber buckling occurs is given as:

εcr =
π2r2

l2
c

(25)

As the small term of εcr is approximately 10–6 [Hua, Tao, Cheng and Xu, 2007], the
element birth and death condition of the FEM can be employed to deactivate cer-
tain elements whose compressive strains are beyond the critical fiber strain. In the
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}{}]{][[ FuUL =                                                           (23) 

where [L] is the lower triangular matrix and [U] is the upper triangular matrix. 

2.4  Element birth and death for fiber buckling 

In the actual spinning process, fiber buckling is a very common phenomenon that occurs in 

center fibers of spinning triangle, as shown in Fig. 11. 

 

Figure 11:  Fiber buckling in spinning triangle 
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As the small term of εcr is approximately 10–6 [Hua, Tao, Cheng and Xu, 2007], the element 

birth and death condition of the FEM can be employed to deactivate certain elements whose 

compressive strains are beyond the critical fiber strain.  In the algorithm, a deactivated 

element physically remains in the model but contributes a near-zero stiffness value [K]e to the 

overall matrix of [K] in Eq. (19). 

With the above assumptions and deductions, the theoretical model of a symmetric ring 

spinning triangle using FEM has been developed. 
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In order to evaluate the validity of the proposed FEM model of spinning triangle, two 
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Figure 11: Fiber buckling in spinning triangle

algorithm, a deactivated element physically remains in the model but contributes a
near-zero stiffness value [K]e to the overall matrix of [K] in Eq. (19).

With the above assumptions and deductions, the theoretical model of a symmetric
ring spinning triangle using FEM has been developed.

3 Results and discussion

3.1 Fiber tension distribution compared with the energy method

In order to evaluate the validity of the proposed FEM model of spinning triangle,
two simulations of fiber tension distribution under different spinning tensions and
yarn twists will be carried out in comparison with the results by Najar (1996) and
Hua, Tao, Cheng and Xu (2007) using the energy method. With the same input
parameters by Najar (1996), the simulation results of fiber tension distributions
in spinning triangle under different spinning tensions are shown in Fig. 12. It
shows that as the spinning tension is increased, the fiber tension at each position
of spinning triangle is constantly increased. To compare with the results of sym-
metric geometry model by Hua, Tao, Cheng and Xu (2007), the simulation results
of fiber tension distribution at different yarn twists with fiber buckling considered
are shown in Fig. 13. It was noted that the gradient of fiber tension curve becomes
steeper and the maximum fiber tension is increased with the increase of yarn twist.

Comparing the FEM results with the energy method results by Najar (1996) and
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simulations of fiber tension distribution under different spinning tensions and yarn twists will 

be carried out in comparison with the results by Najar (1996) and Hua, Tao, Cheng and Xu 

(2007) using the energy method.  With the same input parameters by Najar (1996), the 

simulation results of fiber tension distributions in spinning triangle under different spinning 

tensions are shown in Fig. 12.  It shows that as the spinning tension is increased, the fiber 

tension at each position of spinning triangle is constantly increased.  To compare with the 

results of symmetric geometry model by Hua, Tao, Cheng and Xu (2007), the simulation 

results of fiber tension distribution at different yarn twists with fiber buckling considered are 

shown in Fig. 13.  It was noted that the gradient of fiber tension curve becomes steeper and 

the maximum fiber tension is increased with the increase of yarn twist. 
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Figure 12:  Fiber tensions under different spinning tensions. The twist of 25g/km yarn is 

418tpm, spinning tensions are 30cN, 60cN and 90cN. 
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Figure 13:  Fiber tensions (with fiber buckling) under different yarn twists.  Spinning 

tension of 58g/km yarn is 30cN, yarn twists are 398tpm and 523tpm. 
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Xu, 2007]. 

Figure 12: Fiber tensions under different spinning tensions. The twist of 25g/km
yarn is 418tpm, spinning tensions are 30cN, 60cN and 90cN.

simulations of fiber tension distribution under different spinning tensions and yarn twists will 

be carried out in comparison with the results by Najar (1996) and Hua, Tao, Cheng and Xu 

(2007) using the energy method.  With the same input parameters by Najar (1996), the 

simulation results of fiber tension distributions in spinning triangle under different spinning 

tensions are shown in Fig. 12.  It shows that as the spinning tension is increased, the fiber 

tension at each position of spinning triangle is constantly increased.  To compare with the 

results of symmetric geometry model by Hua, Tao, Cheng and Xu (2007), the simulation 

results of fiber tension distribution at different yarn twists with fiber buckling considered are 

shown in Fig. 13.  It was noted that the gradient of fiber tension curve becomes steeper and 

the maximum fiber tension is increased with the increase of yarn twist. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fiber position

Fi
be

r 
te

ns
io

n 
(c

N
)

 

 

30 cN
60 cN
90 cN
30 cN (Najar)
60 cN (Najar)
90 cN (Najar)

 

Figure 12:  Fiber tensions under different spinning tensions. The twist of 25g/km yarn is 

418tpm, spinning tensions are 30cN, 60cN and 90cN. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fiber position

F
ib

er
 te

ns
io

n 
(c

N
)

0.42 0.44 0.46 0.48 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fiber position

Fi
be

r 
te

ns
io

n 
(c

N
)

 

 

398 tpm
523 tpm

398 tpm (Hua)
523 tpm (Hua)

 

Figure 13:  Fiber tensions (with fiber buckling) under different yarn twists.  Spinning 

tension of 58g/km yarn is 30cN, yarn twists are 398tpm and 523tpm. 
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Figure 13: Fiber tensions (with fiber buckling) under different yarn twists. Spinning
tension of 58g/km yarn is 30cN, yarn twists are 398tpm and 523tpm.

Hua, Tao, Cheng and Xu (2007), it is noted that the results (both the trend of curves
and the numerical values of fiber tension distributions) obtained by the FEM pro-
posed in this paper are in good agreements with previous results by the energy
method [Najar, 1996; Hua, Tao, Cheng and Xu, 2007].
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Fig. 14 shows the results of total yarn torque obtained by the FEM model together with 

Bennett & Postle’s theoretical results and experimental measurements [Bennett and Postle, 

1979b].  In Fig. 14(A) (33g/km yarn), the theoretical torques obtained by the FEM are in 

better agreements with the experimental measurements than Bennett’s theoretical results 

below the twist level of 500tpm, while the situation becomes reverse in the twist range of 

500-1000 tpm.  From the developing trend of the curve, the result of this study is expected to 

be more close to the experimental measurements at the twist levels greater than 1000tpm.  In 

Fig. 14(B) (68g/km yarn), it is noted that the results of this study are generally in better 

agreements with the experimental measurements than Bennett & Postle’s theoretical 

calculations in the whole range of yarn twists except between 400 and 600 tpm. 
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A                                       B 

Figure 14:  The total yarn torque obtained by the FEM and Bennett & Postle (1979b): (A) 

the torque of 33g/km yarn and (B) the torque of 68g/km yarn. 

3.3  The effect of new parameters on fiber tension and torsion distributions 

Using the developed FEM model, the effects of the inclined spinning angle and fiber torsional 

strains which were ignored previously, can be evaluated.  The parameters in the analysis 

were: yarn linear density of 25g/km, yarn twist of 418tpm, spinning tension of 30cN, and the 

angles (θ) between yarn spinning tension and the vertical axis of the nip line is assumed as 

10°.  The simulation results are shown in Fig. 15. 

Figure 15:  Fiber mechanical behavior considering the inclined angle of spinning tension: (A) 

a contour plot of fiber tension (unit: cN) and (B) a contour plot of fiber torsion (unit: N m). 
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Figure 14: The total yarn torque obtained by the FEM and Bennett & Postle
(1979b): (A) the torque of 33g/km yarn and (B) the torque of 68g/km yarn.

3.2 Yarn torque compared with experimental and theoretical results by others

The spinning parameters of two yarns (yarn linear density: 33g/km and 68g/km)
will be employed to compare yarn torque obtained by the FEM model with those
from earlier experiments and model [Bennett and Postle, 1979a, 1979b]. The yarn
torque discussed here is composed of three components, namely the torques gener-
ated by fiber tension, fiber bending and fiber torsion [Bennett and Postle, 1979a]:

M = MT +MB +ME (26)

where MT is the yarn torque generated by fiber torsional stresses, MB is the yarn
torque generated by fiber bending stresses, and ME is the yarn torque generated by
fiber tensile stresses.

The yarn torque solely generated by the fiber tension can be calculated by consid-
ering a discrete distribution of fibers inside yarn [Hua, Tao, Cheng and Xu, 2010]:

ME =
n

∑
i=1

MEi =
n

∑
i=1

fiRi sinβi (27)

where MEi is the component of yarn torque due to ith fiber tension, β i is the helical
angle of the ith fiber within the yarn.

Previous study [Postle, Burton and Chaikin, 1964] showed that the yarn torques
generated by fiber bending (MB) and fiber torsion (MT ) are significantly smaller
than the torque by fiber tension (ME) and thus are ignorable in most cases. In this
study, the contribution of fiber bending and torsion to the total yarn torque will
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also be included. As the fiber bending and torsion are mainly dependent on the
spatial arrangement of fibers inside a yarn and yarn twist, the two components of
yarn torque (i.e. MT and MB) can be reasonably assumed to be the same in this
comparison since an ideal helical yarn structure is adopted in both methods. All
the components of yarn torque calculated by Bennett and Postle (1979b) and the
current FEM model are listed in Tab. 1.

Fig. 14 shows the results of total yarn torque obtained by the FEM model to-
gether with Bennett & Postle’s theoretical results and experimental measurements
[Bennett and Postle, 1979b]. In Fig. 14(A) (33g/km yarn), the theoretical torques
obtained by the FEM are in better agreements with the experimental measurements
than Bennett’s theoretical results below the twist level of 500tpm, while the situa-
tion becomes reverse in the twist range of 500-1000 tpm. From the developing trend
of the curve, the result of this study is expected to be more close to the experimen-
tal measurements at the twist levels greater than 1000tpm. In Fig. 14(B) (68g/km
yarn), it is noted that the results of this study are generally in better agreements with
the experimental measurements than Bennett & Postle’s theoretical calculations in
the whole range of yarn twists except between 400 and 600 tpm.

3.3 The effect of new parameters on fiber tension and torsion distributions

Using the developed FEM model, the effects of the inclined spinning angle and fiber
torsional strains which were ignored previously, can be evaluated. The parameters
in the analysis were: yarn linear density of 25g/km, yarn twist of 418tpm, spinning
tension of 30cN, and the angles (θ ) between yarn spinning tension and the vertical
axis of the nip line is assumed as 10˚. The simulation results are shown in Fig. 15.

As seen in Fig. 15(A), with the inclined spinning angle θ , the fibers which are
located on the right side of spinning triangle (i.e. the side opposite to the direction
of spinning tension) are subject to larger tensile loadings than the fibers on the other
side. For fiber torsional strains shown in Fig. 15(B), the fibers distributed in the
center of spinning triangle are subject to the largest torsional deformation and the
magnitudes of fiber torsion is gradually reduced from the center to both sides of
spinning triangle.

4 Conclusions

In this paper, FEM has been applied in the theoretical modeling of the spinning
triangle in order to develop a generalized theoretical model and address more com-
plicated yarn formation process. The initial strain of fibers and the algorithm of
element birth and death were employed with consideration of the inclined spinning
tension and fiber torsional strains. With the involvement of more influential facts
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Fig. 14 shows the results of total yarn torque obtained by the FEM model together with 

Bennett & Postle’s theoretical results and experimental measurements [Bennett and Postle, 

1979b].  In Fig. 14(A) (33g/km yarn), the theoretical torques obtained by the FEM are in 

better agreements with the experimental measurements than Bennett’s theoretical results 

below the twist level of 500tpm, while the situation becomes reverse in the twist range of 

500-1000 tpm.  From the developing trend of the curve, the result of this study is expected to 

be more close to the experimental measurements at the twist levels greater than 1000tpm.  In 

Fig. 14(B) (68g/km yarn), it is noted that the results of this study are generally in better 

agreements with the experimental measurements than Bennett & Postle’s theoretical 

calculations in the whole range of yarn twists except between 400 and 600 tpm. 
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Figure 14:  The total yarn torque obtained by the FEM and Bennett & Postle (1979b): (A) 

the torque of 33g/km yarn and (B) the torque of 68g/km yarn. 

3.3  The effect of new parameters on fiber tension and torsion distributions 

Using the developed FEM model, the effects of the inclined spinning angle and fiber torsional 

strains which were ignored previously, can be evaluated.  The parameters in the analysis 

were: yarn linear density of 25g/km, yarn twist of 418tpm, spinning tension of 30cN, and the 

angles (θ) between yarn spinning tension and the vertical axis of the nip line is assumed as 

10°.  The simulation results are shown in Fig. 15. 

Figure 15:  Fiber mechanical behavior considering the inclined angle of spinning tension: (A) 

a contour plot of fiber tension (unit: cN) and (B) a contour plot of fiber torsion (unit: N m). 

A B 

Figure 15: Fiber mechanical behavior considering the inclined angle of spinning
tension: (A) a contour plot of fiber tension (unit: cN) and (B) a contour plot of fiber
torsion (unit: N m).

in the theoretical model, the results will be more accurate and meaningful.

Numerical results were presented and compared with those by earlier models. The
comparative studies showed that the predictions by the developed FEM model were
in good agreements with those by Najar (1996) and Hua, Tao, Cheng and Xu (2007)
using the energy method. In addition, the yarn torques obtained by the FEM model
were generally more close to the experimental measurements compared with those
by Bennett and Postle (1979b). With this FEM model, numerical simulations were
also carried out to evaluate the effect of new spinning parameters ignored previ-
ously on the mechanical performance of spinning triangle.
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