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Elastic Wave Propagation in Periodic Cellular Structures

B.Y. Tian1, B. Tie1, D. Aubry1 and X.Y. Su2

Abstract: The present work is devoted to a theoretical analysis and numerical
modeling of elastic wave propagation firstly in a one-dimensional periodic elas-
tic rod structure and then in two-dimensional periodic elastic beam structures by
using Bloch wave theorem. The dispersion relation between Bloch wave vectors
and eigen frequencies is obtained and its dependency upon the micro-structural
characteristics of the periodic cellular structure is analyzed. Thanks to the Bloch
wave transforms, only the primitive cell is considered theoretically or numerically
and the phenomena of frequency band-gaps and the diffracted waves caused by the
periodic cells are modeled and analyzed.

Keywords: Periodic cellular structure, Bloch wave theorem, frequency band-gap,
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1 Introduction

Periodic cellular structures composed of topological isomorphic cells have been
widely used to make lightweight but high strength composite materials. Many cel-
lular shapes and connection methods have been developed for various engineering
applications, as for example the sandwich panels with a thin-walled honeycomb-
type core, which has a rigid-jointed in-plane two-dimensional hexagonal, square
or triangular cellular micro structure. Therefore there is a growing interest in
understanding the dynamic behaviors of those periodic structures under transient
loadings, especially the wave propagation behaviors within each cell and crossing
adjacent cells for the frequency ranges where the waves can interact with the cells.

Periodic cellular structures are discontinuous in geometry and in material proper-
ties. To model such a structure in the static or low frequency (LF) cases, homog-
enized models are generally used, by neglecting the micro-structural details and
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using an equivalent constitutive law with continuous mechanical characteristics in-
stead [Gibson and Ashby (1988); Burton and Noor (1997)]. The classical homoge-
nized models usually offer an efficient and reliable solution to investigate the static
or LF dynamic behaviors of the periodic structures. However our previous works
show that for the flexural wave propagation in the periodic honeycomb-type thin
layers in high frequency (HF) ranges, the homogenized models fail to give appro-
priate simulation results [Grédé (2006, 2009); Tie et al. (2009)]. Indeed, for the HF
ranges, the involved wavelength is as short as or even shorter than the cell’s charac-
teristic lengths, so interactions between the waves and the cells become important
and result in complex deformations of cellular walls, which cannot be taken into
account by the classical homogenized models. To make more accurate simulation,
Davini et al. proposed several improved methods to look for the equivalent me-
chanical characteristics of the homogenized models in dynamic cases [Davini et al.
(2011)]. However, it is believed that more appropriate modeling should consider
and integrate the effects of the microstructure of periodic structures.

It has been observed that special wave phenomena, such as frequency passing and
stop bands, exist when elastic wave propagating in periodic cellular structures [Bril-
louin (1953)]. The existence of the frequency band-gap highlights the fact that a
periodic cellular structure is anisotropic for the elastic waves propagating in it. This
anisotropy is due to the impedance mismatch generated by periodic discontinuities
in geometry or material properties within one cell or between adjacent cells and
therefore is frequency dependent [Langley (1997); Ruzzene (2003); Gonella et al.
(2008)]. As an important consequence, periodic cellular structures can be con-
sidered as frequency or spatial filters when giving different patterns or structure
designs [Sigmund and Jensen (2003)]. Some recent studies are concentrated on ex-
ploring the frequency band-gaps and some others focus on testing the wave direc-
tional characteristics of periodic cellular structures of different types, by using the
Bloch wave theorem [Srikantha Phani (2006); Spadoni (2009); Tee (2010); Jeong
et al. (2004)]. Indeed, the Bloch wave theorem is widely employed in quantum
mechanics, photonics crystal and mechanical system fields, benefit from which the
domain to be analyzed and modeled can be reduced from the entire periodic cellu-
lar structure to a primitive cell [Atkins et al. (2005); Brillouin (1953); Mead (1973,
1996)]. Otherwise, the influence of imperfections on frequency band-gap and in-
plane waves propagation has also been investigated [Martinsson et al. (2003)].

The present work is devoted to the theoretical analysis and numerical modeling of
elastic wave propagation in one-dimensional (1D) rod and two-dimensional (2D)
beam rectangular or hexagonal periodic cellular structures, by using Bloch wave
theorem. The dispersion relation between Bloch wave vectors and eigen frequen-
cies are obtained. Therefore, the frequency band-gap of each structure is obtained



Elastic Wave Propagation in Periodic Cellular Structures 219

and analyzed. For the studied 1D periodic structure, the dependency of the fre-
quency band-gap on the mismatch of the characteristic acoustic impedances within
a primitive cell is highlighted, for the studied 2D periodic structures, the influence
of the double thickness of cellular walls oriented in one direction on the frequency
band-gap is analyzed. Otherwise, the diffracted waves caused by the periodic cells
are simulated numerically and amplification phenomena are observed.

The paper is organized as follows: The direct/inverse Bloch wave transforms are
introduced in the section 2. The theoretical and numerical analyses of the elastic
wave propagation in 1D periodic rod structure is summarized in the section 3 and
the cases of 2D beam periodic structures are considered in the section 4. Finally
the main conclusions are given in the section 5.

2 Bloch wave theorem

Consider a periodic cellular structure Ω of space dimension N, a primitive cell Q0
and a set of basis vector {ei}i=1,...,N , called direct cell basis, are defined so that the
entire structure Ω can be obtained by repeating the primitive cell along the direct
cell basis. Dual to Q0 and {ei}i=1,...,N , a reciprocal cell Q∗0, called the first Brillouin
zone [Brillouin (1953)], and a reciprocal cell basis {e∗j} j=1,...,N , are also defined,
which satisfy the following relation:

ei · e∗j = δi j

vol(Q0)vol(Q∗0) = 1
(1)

where δi j is the Kronecker delta.

For any non-periodic function V(x) defined on Ω, the Bloch wave theorem states
that, for each wave vector k restricted in the first Brillouin zone, the Bloch wave
function or Bloch wave mode, V B(x, k), of V(x) is a periodic function that has the
same periodicity as the structure Ω:

V B(x, k) = ∑nV (x + niλiei)eik.(x + niλiei), f or ∀ k ∈ Q∗0 (2)

The equation (2) defines in fact the direct Bloch wave transformation, while the in-
verse Bloch wave transformation states that V(x) can be reconstituted by integrating
all the V B(x, k) in the Q∗0:

V (x) =
1

vol(Q∗0)

∫
Q∗0

V B(x, k)e−ik.x dk (3)

Therefore by virtue of the Bloch wave theorem, a non-periodic function in a pe-
riodic cellular structure can be decomposed into its Bloch wave functions having
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the same periodicity as the periodic structure. In other word, the wave propaga-
tion phenomena through the whole structure can be understood by investigating the
Bloch wave functions only in the primitive cell, so lots of efforts can be saved when
doing analysis and simulation.

3 Elastic wave propagation in a 1D periodic elastic rod structure

The first periodic cellular structure considered herein is a 1D periodic structure
made of elastic rods. Its primitive cell is composed by two rigid-jointed elastic
rods respectively of length l1 and l2, therefore the period of the structure is λ = l1
+ l2 (Figure 1).

 -l1 l2 0 

=l1+ l2 
Primitive cell 

 

Figure 1: 1D elastic rod periodic structure

The equilibrium eigen equation of the i-th rod (i=1, 2) reads as:

d
dx

[
Ei

dU (x)
dx

]
=−ρiω

2U (x) (4)

with (Ei, ρ i) the Young’s modulus and the density, ωØ the eigen frequency and U(x)
the corresponding eigen mode. By applying the direct Bloch wave transformation
to the equation (4), the following Bloch eigen equation is obtained:

Ei
∂ 2UB (x, k)

∂x2 −2ikEi
∂UB (x, k)

∂x
−Eik2UB (x, k) =−ρiω

2UB (x, k) (5)

with k ∈ Q∗0 = [0,2π/λ [ the Bloch wave vector and UB(x, k) the Bloch wave mode
of U(x). It is straightforward that the general solution of (5) has the following
analytical form:

UB
i (x, k) = aie

i
(

k+ ω

ci

)
x +bie

i
(

k− ω

ci

)
x (6)

where ci =
√

Ei/ρi is the wave velocity in the i-th rod. So solving (5) amounts to
determining the four constants (ai, bi)i=1,2.

Given a wave vector k, (ω , UB(x, k)) are searched for the eigen problem (5) within
the frequency range of interest and this solving results in the dispersion relation
between k and ω .
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3.1 Dispersion relation

Let us consider the primitive cell (Figure 2).

Figure 2: Interface conditions and periodic conditions

To calculate the constants (ai, bi)(i=1,2), the following interface conditions between
the two rods at their junction point and periodic conditions at the ends of the prim-
itive cell are considered:

UB(0−) = UB(0+), NB(0−) = NB(0+)
UB(−l1) = UB(l2), NB(−l1) = NB(l2)

(7)

where NB is the Bloch wave function of the axial force vector. Substituting the gen-
eral solution form (6) into (7), we get the following system of four linear equations:

UB(0−) = UB(0+), NB(0−) = NB(0+)
UB(−l1) = UB(l2), NB(−l1) = NB(l2)

(8)

with:

UB(0−) = UB(0+), NB(0−) = NB(0+)
UB(−l1) = UB(l2), NB(−l1) = NB(l2)

To ensure that the system (8) admits nontrivial solutions (ai, bi), its determinant
should vanish, which finally gives rise to a relation between k and ω , called disper-
sion relation. For the 1D rod structure, the dispersion equation can be put into the
following simple analytical form:

cos(λk) = cos(ωT1)cos(ωT2)− (
Z1

2Z2
+

Z2

2Z1
)sin(ωT1)sin(ωT2) (9)

where Zi = ρ ici is the characteristic acoustic impedance of the i-th rod and Ti =
li/ci the time for wave to pass through it. Based on the equation (9), for each given
frequency ω , the Bloch wave vector k = kr+ i kim can be found and result in the
following Bloch eigen mode in the i-th rod:

UB
i (x,k) = aie

i
(

kr+ ω

ci

)
xe−kimx +bie

i
(

kr− ω

ci

)
xe−kimx (10)
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Therefore, when k is real (kim = 0), the Bloch eigen mode UB
i is a propagating

mode: It is transmitted to the adjacent cells with the same amplitude and there is no
energy losing when propagating through the periodic structure. Otherwise, when
k is complex or pure imaginary (kim 6= 0), UB

i is an evanescent mode: It vanishes
rapidly when propagating to the adjacent cells and the pure energy exchanging
between periodic cells is equal to zero [Mead (1973)].

The frequency ranges that give real values of k is called passing band and the others
stop band. Figure 3 gives the frequency band-gap of the 1D periodic rod structure:
The red curves plot the two real solutions of k and indicate the passing bands,
while the blue curves plot the imaginary part kim of the two complex solutions of k,
jπ/λ + i kim, (j=0, 1) and so indicate the stop bands.
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Figure 3: Frequency band-gap (Z1/Z2 = 1)

We remark that the location and the width of the stop bands strongly depend on the
ratio between the two characteristic acoustic impedances Z1/Z2. The more the ratio
is far from 1, the larger is the stop band and the stronger is the attenuation (Figure
4).

For the special case where Z1/Z2 = 1, according to the equation (9), we get k =
ω/cavg, with cavg = (l1 + l2)/(T1 + T2) the average wave propagation velocity in the
primitive cell. In this case, all Bloch eigen modes are propagating and there is no
stop bands (Figure 5).

3.2 Diffracted wave analysis

Now, we consider an incident plane wave u0(x, t) = ei(k0x−ω0t), with the wave vector
k0 and the angular frequency ω0, and investigate how it propagates through the 1D
periodic structure and how it is perturbed by the periodic cells. To do this, the wave
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Figure 4: Influence of acoustic impedance ratio on the stop bands
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Figure 5: Frequency band-gap (Z1/Z2 = 1)

solution u(x, t) is decomposed into two parts in the following way:

u(x, t) =
[
eik0x +ud (x)

]
e−iω0t (11)

We are interested in finding ud (x), the diffracted wave caused by the periodic cells,
which indicate in fact the difference between the wave motion in a periodic struc-
ture and in a homogenous one. By substituting the equation (11) in the equilibrium
eigen equation (4), we get:

d
dx

[
Ei

dud(x)
dx

]
+
{

d
dx

[
Ei

du0(x)
dx

]
+ρiω

2
0 u0(x)

}
︸ ︷︷ ︸

fe

=−ρiω
2
0 ud(x) (12)
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where the second term of the left member is considered as an external loading fe

due to the incident wave. By expanding ud (x) as a linear combination of eigen
mode U(x):

ud(x) = ∑n αnUn(x) (13)

Using the Bloch wave transform, for each k, the Bloch diffracted wave mode uB
d

can be then expressed as a linear combination of the Bloch eigen modes UB
n (x, k),

already calculated:

uB
d (x, k) = ∑n αn(k)UB

n (x, k) (14)

So the aim now is to calculate the coefficient αn(k).

Substituting the equation (14) into the Bloch transform of the equilibrium equation
(12), we finally get:

∑n ρi(ω2−ω
2
0 )αn(k)UB

n (x, k) = f B
e (x, k) (15)

where f B
e is the Bloch transform of the external loading, also expanded in terms of

the Bloch eigen modes UB
n (x, k):

f B
e (x, k) = ∑n Fn(k)UB

n (x, k) (16)
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Figure 6: Wave amplification inside the primitive cell
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Figure 7: 2D elastic beam periodic cellular structures

Therefore αn(k) can be obtained in the following way:

αn(k) =
Fn(k)

ρi(ω2−ω2
0 )

(17)

Finally, the diffracted wave solution ud is obtained by combining the equations (14)
and (17), then by means of the inverse Bloch wave transformation.

In the present study, two incident waves with respectively two different frequen-
cies f0= 2.5kHz and f0 = 10kHz are considered. For these two incident waves, the
involved wavelength in the first rod, λ 0, is respectively 0.3 and 0.075 times of the
primitive cell’s size. Figure 6 presents the ratio of amplitude between the incident
wave u0 and the diffracted wave ud for the both cases. We observe firstly an im-
portant amplification phenomenon of wave amplitude due to the diffraction caused
by the periodic cellular structure. Secondly, we remark that the amplification level
seems not be significantly affected by the incident wave’s frequency f0.

4 Elastic wave propagation in 2D periodic elastic beam structures

In this section, we consider 2D elastic beam periodic structures with respectively
hexagonal or rectangular cells (Figure 7).

4.1 Periodic hexagonal cellular structure

The primitive cell of periodic hexagonal cellular structure is composed of five rigid-
jointed elastic beams (Figure 7(a), Figure 8). The Lamé coefficients and the den-
sity of all the beams are (λ , µ) and ρ , but the length s of the vertical beam B1 is
twice the length of the other four beams. The thickness of the beam B1 is H1 and of
the others is H0. Each beam is parameterized in its local coordinate system (s, n),
where the axis s is parallel to the beam and the axis n is perpendicular to the beam
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while the entire structure is considered in the global Cartesian coordinate system
(x, y) (Figure 8).

s

n 

H1
( , , )s

H0

B1 

B3 B2 

B5 B4 

A

B

C

E

D

F  

Figure 8: Primitive cell of the hexagonal structure

kx (m-1)

ky (m-1) 

- First Brillouin zone 
- Irreducible zone 

 
Figure 9: The first Brillouin zone and the irreducible zone of the hexagonal struc-
ture

The well-known Timoshenko kinematics for thick beams is used, so the displace-
ment u(s, t) in each beam reads as:

u(s, t) = u01(s)s+u02(s)n+ t u13(s)s (18)

where u01(s) and u02(s) are the displacement of the middle line in direction s and
n, u13(s) the rotation of the fibers and t the thickness variable. For each beam, the
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Bloch equilibrium eigen equations read as:

d2UB
01

ds2 −2i(k,s)
dUB

01
ds
− (k,s)2UB

01 =− ρω2

λ +2µ
UB

01

d2UB
02

ds2 −2i(k,s)
dUB

02
ds
− (k,s)2UB

02 +
dUB

13
ds

=−ρω2

µ
UB

02, (m = 0,1)

d2UB
13

ds2 −2i(k,s)
dUB

13
ds
−
[
(k,s)2 +

12µ

(λ +2µ)H2
m

]
UB

13−
12µ

(λ +2µ)H2
m

dUB
02

ds

=− ρω2

λ +2µ
UB

13

(19)

For this periodic structure, the first Brillouin zone Q∗0 is a hexagonal cell. Similar
to the analysis we did for the 1D periodic rod structure, giving k, we look for the
eigen frequencies ω and the corresponding Bloch eigen modes (UB

01, UB
02, UB

13) of
(19).

To get the dispersion equation, we write the interface conditions between the five
beams at the interior junction points and the following periodic conditions at the
ends of the primitive cell (Figure 8). For example, at the point A, we write the
continuity of the displacement and the equilibrium of the generalized beam forces
and moments:

Y B(1)
01 +UB(1)

02 = UB(2)
01 +UB(2)

02 = UB(3)
01 +UB(3)

02

UB(1)
13 = UB(2)

13 = UB(3)
13

NB(1) +QB(1) +NB(2) +QB(2) +NB(3) +QB(3) = 0

MB(1) = MB(2) = MB(3)

(20)

where NB is the Bloch axial force vector, QB is the Bloch transverse shear force
vector and MB is the Bloch bending moment. Similar junction conditions are also
written at the point B. As for the periodic conditions, they consist also in the con-
tinuity of the displacement et the equilibrium of the generalized beam forces. For
example, for the couple of points C and F, we have:

Y B(2)
01 +UB(2)

02 = UB(5)
01 +UB(5)

02

UB(2)
13 = UB(5)

13

NB(2) +QB(2) +NB(5) +QB(5) = 0

MB(2) = MB(5)

(21)

Similar periodic conditions should also be written for the couple of points D and E.
Hence, we get an eigen problem of 30 equations to be solved.
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Unfortunately, for the 2D studies, it is not possible to express the dispersion equa-
tion in an explicit analytical form as in the 1D case. Therefore we can only solve
numerically (19) and plot the dispersion surfaces. One interesting way to simplify
the numerical calculation and to observe more easily the frequency band-gap con-
sists in looking for the eigen frequencies and the Bloch eigen modes only for those
k locating on the contour of the irreducible zone instead of the whole first Brillouin
zone (Figure 9) [Kittel (1962)].

Due to the manufactory process of periodic hexagonal cellular structure materials,
usually the vertical beam B1 of the primitive cell has double thickness when com-
pared with the other beams. Therefore, two cases are considered in this study: The
first one with H1 = H0 and the second one with H1 = 2H0. The beam’s slenderness
of both cases is taken so that we have 2

√
3s/H0 ≈ 50.

Stop  
band 

 / 1 

 ky (m-1) 

/ 1

Space of k (m-1) 

Stop  
band 

 
 

Figure 10: Dispersion surface and dispersion curve, H1 = H0

In the first case with H1 = H0, we find out that the first frequency stop band of
the hexagonal cellular structure appears at the frequency that is about 5 times of the
first pinned-pinned flexural resonance frequency of the beam, ω1 = π2

√
EI/ρH0s4,

with I = 12/H3
0 (Figure 10). However, for the same frequency range, no obvious

stop band is observed in the second case, as the first stop band seems to move to
the higher frequency range (Figure 11).

4.2 Periodic rectangular cellular structure

The primitive cell of periodic rectangular cellular structure is composed of four
rigid-jointed elastic beams with the same length s (Figure 7(b), Figure 12). The
Lamé coefficients and the density of the beams are (λ , µ) and ρ . Denote the thick-
ness of the beams B1 and B2 by H1 and the one of the beams B3 and B4 by H0.
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Figure 11: Dispersion surface and dispersion curve, H1 = 2H0
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Figure 12: Primitive cell the periodic rectangular cellular structure

The Bloch equilibrium eigen equations are always given by (19). In this case, the
first Brillouin zone is a rectangular cell (Figure 13). For all the Bloch wave vectors
k included in the reciprocal cell, the corresponding eigen frequencies and Bloch
eigen modes are calculated.

By writing the interface conditions and the periodic conditions, we get an eigen
system composed of 24 equations, which can only be solved numerically. As in
the previous case, two kinds of primitive cells are considered: H1 = H0 and H1 =
2H0. Figure 14 and Figure 15 show the plots of the dispersion surfaces and of the
dispersion curves. As an important result, we remark that for the both rectangular
cellular structures, no frequency band-gap exists in the whole frequency domain.
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- First Brillouin zone 
- Irreducible zone 

 
Figure 13: The first Brillouin zone and irreducible zone of the rectangular structure
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Figure 14: Dispersion surface and dispersion curve, H1 = H0

5 Conclusions

Our previous work shows that the classical homogenized models fail to correctly
describe the HF flexural wave propagation phenomena of the periodic hexagonal
cellular structures. To get appropriate modeling, we cannot neglect no more the
effects coming from the interaction between the HF waves and the periodic mi-
crostructure. Hence, in this work, we propose to take the advantage of the Bloch
wave theorem, which allows to take into account the geometric and mechanical
characteristics of the cells, in order to optimize numerical models and save compu-
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Figure 15: Dispersion surface and dispersion curve, H1 = 2H0

tational costs.

Theoretical analyzing and FE numerical modeling tools based on the Bloch wave
theorem are developed and validated. They are at first applied to a 1D periodic
structure composed of elastic rods. By considering the sole primitive cell, the dis-
persion relation is obtained analytically and numerically, and the frequency passing
and stop bands calculated. The dependency of the frequency band-gap upon the ra-
tio between the different characteristic acoustic impedances is analyzed. When
an incident plane wave is injected in the periodic structure, diffracted waves are
triggered by the periodically placed cells and wave amplitudes are amplified. Our
numerical analyses show that this amplification phenomenon is independent on the
incident wave frequency.

Our methods are also applied to the 2D periodic hexagonal and rectangular cellu-
lar structures composed by elastic beams. The frequency band-gaps are evaluated
numerically and dispersion surfaces and curves are plotted. The influence of the
beam’s thickness on the frequency band-gap is considered. For the hexagonal cel-
lular structure it is found out that the double thickness of the vertical beams makes
the first stop band move to HF range. In the case of the rectangular cellular struc-
ture, no frequency stop band exists.
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