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A Dynamical Tikhonov Regularization Method for
Solving Nonlinear Ill-Posed Problems

Chein-Shan Liu1 and Chung-Lun Kuo2

Abstract: The Tikhonov method is a famous technique for regularizing ill-posed
systems. In this theory a regularization parameter α needs to be determined. Based-
on an invariant-manifold defined in the space of (x, t) and from the Tikhonov min-
imization functional, we can derive an optimal vector driven system of nonlinear
ordinary differential equations (ODEs). In the Optimal Vector Driven Algorithm
(OVDA), the optimal regularization parameter αk is presented in the iterative so-
lution of x, which means that a dynamical Tikhonov regularization method is in-
volved in the solution of nonlinear ill-posed problem. The OVDA is an extension
of the Landweber-Scherzer iterative algorithm. Numerical examples of nonlinear
ill-posed systems under noise are examined, revealing that the present OVDA has
a good computational efficiency and accuracy.

Keywords: Ill-posed systems, Tikhonov regularization, Dynamical Tikhonov reg-
ularization, Optimal vector driven algorithm (OVDA), Landweber-Scherzer itera-
tive algorithm

1 Introduction

In the scientific and engineering computation, it is a key matter to solve nonlinear
operator equations numerically in a stable way. In this paper we propose a ro-
bust and easily-implemented optimal vector driven method to solve the following
nonlinear ill-posed operator equations:

F̂(x) = y, (1)

where x is an unknown, y is given data or observations, and F̂ : D(F̂) ⊂ X 7→ Y
is a nonlinear operator; X and Y are both real Hilbert spaces, endowed with inner
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products (·, ·) and norms ‖ · ‖, respectively. We assume that the observation y is
attainable, and x is the solution of Eq. (1). Usually, the ill-posedness means that
a minor noise in the datum y will bring out a drastic impact on the solution x.
Therefore, we may encounter the problem that the numerical solution of Eq. (1)
may deviate from the exact one to a great extent, when the nonlinear operator F̂ is
severely ill-posed.

Due to the ill-posedness of Eq. (1), we need to seek some effective methods to
regularize it. The Landweber iteration [Landweber (1951)] is one of the most early
methods being studied extensively in the literature for the numerical solution of
nonlinear ill-posed problem. It can be viewed as the steepest descent method for
the minimization of

min
x∈D(F̂)

‖F̂(x)−y‖2, (2)

and can be written as

xk+1 = xk−
∂ F̂(xk)

∂x
[F̂(xk)−y], (3)

where xk denotes the numerical value of x at the k-th iterative step. Scherzer (1995)
has provided a convergence criterion by using the Landweber iteration to solve
nonlinear problem. Then, Scherzer (1998) further enhanced the stability of the
Landweber iteration by adding an extra term −αk(xk−ζ ):

xk+1 = xk−
∂ F̂(xk)

∂x
[F̂(xk)−y]−αk(xk−ζ ). (4)

To account of the sensitivity to noise it is usually using a regularization method to
solve the ill-posed problem [Engl (1987); Kunisch and Zou (1998); Wang and Xiao
(2001); Xie and Zou (2002); Resmerita (2005)], where a suitable regularization
parameter is used to depress the bias in the computed solution by a better balance
of approximation error and propagated data error. For a large-dimensional system
the main choice is using the iterative regularization algorithm, where a regulariza-
tion parameter is represented by the number of iterations. The iterative method
works if an early stopping criterion is used to prevent from reconstruction of noisy
components in the approximated solutions.

Regularization can be employed to solve Eq. (1), when the operator F̂ is highly ill-
posed. Hansen (1992) and Hansen and O’Leary (1993) have given an illuminative
explanation that the Tikhonov regularization of ill-posed problem is a trade-off
between the size of the regularized solution and the quality to fit the given data:

min
x∈D(F̂)

ψ(x) = min
x∈D(F̂)

[
‖F̂(x)−y‖2 +α‖x‖2] . (5)
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In this theory a regularization parameter α needs to be determined.

After the poineer work of Tikhonov and Arsenin (1977), there are a lot of tech-
niques developed to determine a suitable regularization parameter. We name a few,
the L-curve [Hansen (1992), Hansen and O’Leary (1993)], the discrepancy prin-
ciples [Morozov (1984,1966); Engl (1987)], and the iterative technique [Gfrerer
(1987); Kunisch and Zou (1998); Lukas (1998)].

2 An invariant manifold

Usually, we can seek a finite-dimensional realization of Eq. (1) as to be

F(x) = F̂(x)−y = 0, (6)

where x ∈ Rn is an unknown vector.

2.1 The evolution from a vector homotopy to a scalar homotopy

For solving the nonlinear algebraic equations (NAEs) in Eq. (6) the existent ho-
motopy method, as initiated by Davidenko (1953), represents a way to enhance
the convergence from a local convergence to a global convergence. The homotopy
method is based on the construction of a vector function, H(x,τ) which is called a
vector homotopy function. The homotopy function serves the objective of contin-
uously transforming a vector function G(x), whose zero points are easily detected,
into F(x) by introducing a homotopy parameter τ . The homotopy parameter τ

can be treated as a time-like fictitious variable, such that H(x,τ = 0) = G(x) and
H(x,τ = 1) = F(x). Hence we can construct an ODEs system from keeping H to
be zero vector, whose path is named the homotopic path, and which can trace the
zeros of G(x) to our desired solutions of F(x) = 0 while the parameter τ reaches to
1. Among the various vector homotopy functions that are generally used, the fixed
point vector homotopy function, i.e. G(x) = x−x0, and the Newton vector homo-
topy function, i.e. G(x) = F(x)−F(x0), are simple and powerful ones that can be
successfully applied to several different problems. The Newton vector homotopy
function can be written as

H(x,τ) = τF(x)+(1− τ)[F(x)−F(x0)], (7)

where x0 is a given initial value of x and τ ∈ [0,1]. However, the resultant ODEs
based-on vector homotopy function require an evaluation of the inversion of the
Jacobian matrix and the computational time is very expensive for its very slow
convergence of the vector homotopy function method.
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Liu, Yeih, Kuo and Atluri (2009) have developed a scalar homotopy function method
by converting the vector equation of F = 0 to a scalar equation ‖F‖= 0 through

F = 0↔‖F‖2 = 0, (8)

where ‖F‖2 := ∑
n
i=1 F2

i . Then, Liu, Yeih, Kuo and Atluri (2009) developed a scalar
homotopy function method with

h(x,τ) =
τ

2
‖F(x)‖2 +

τ−1
2
‖x−x0‖2 = 0 (9)

to derive the governing ODEs for x.

The scalar homotopy method retains the merits of the vector homotopy method,
such as the global convergence, but it does not involve the complicated computation
of the inversion of the Jacobian matrix. The scalar homotopy method, however,
needs a very small time step to reach the fictitious time, τ = 1, which results in
a slow convergence, in comparison with other methods. Later, Ku, Yeih and Liu
(2010) modified Eq. (9) to the Newton scalar homotopy function by

h(x, t) =
Q(t)

2
‖F(x)‖2− 1

2
‖F(x0)‖2 = 0, (10)

where the function Q(t) > 0 satisfies Q(0) = 1, monotonically increasing, and
Q(∞) = ∞. According to this scalar homotopy function, Ku, Yeih and Liu (2010)
could derive a faster convergent algorithm for solving the NAEs. As pointed out
by Liu and Atluri (2011a), Eq. (10) is indeed providing a differentiable manifold,
which confines the solution path being retained on that manifold.

2.2 A Newton scalar homotopic manifold

For the nonlinear algebraic equations (NAEs) in Eq. (6), as mentioned above we
can formulate a scalar Newton homotopy function:

h(x, t) =
1
2

Q(t)‖F(x)‖2− 1
2
‖F(x0)‖2 = 0, (11)

where we let x be a function of a fictitious time-like variable t, and its initial value
is x(0) = x0.

We expect h(x, t) = 0 to be an invariant manifold in the space of (x, t) for a dy-
namical system h(x(t), t) = 0 to be specified further. When Q > 0, the manifold
defined by Eq. (11) is continuous, and thus the following operation of differential
which being carried out on the manifold makes sense. As a consequence of the
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"consistency condition", and taking the time differential of Eq. (11) with respect to
t and considering x = x(t), we have

1
2

Q̇(t)‖F(x)‖2 +Q(t)(BTF) · ẋ = 0. (12)

We suppose that the evolution of x is driven by a vector u:

ẋ = λu, (13)

where

u = αx+BTF (14)

is a suitable combination of the state vector x and the gradient vector BTF. In terms
of the Tikhonov regularization, we indeed take the gradient of the functional ψ

as defined in Eq. (5) to be the forcing term as presented by u. Here, the parame-
ter α can be viewed as a regularization parameter. Upon comparing with Eq. (4)
the present driven vector u bears a certain similarity with the modification of the
Landweber iteration made by Scherzer (1998). Through many studies, e.g., Hanke,
Neubauer and Scherzer (1995), Neubauer (2000), Ramlau (1998), Jin (2001), Li,
Han and Wang (2007), Wang, Han and Li (2008), it is known that although the
Landweber iteration has a better stable property than other regularization methods,
it is convergent very slowly. In the present paper we attempt to resolve this problem
from a different approach.

Inserting Eq. (13) into Eq. (12) we can derive

ẋ =−q(t)
‖F‖2

FTv
u, (15)

where

A := BBT, (16)

v := Bu = v1 +αv2 = AF+αBx, (17)

q(t) :=
Q̇(t)
2Q(t)

. (18)

Hence, in our algorithm if Q(t) can be guaranteed to be a monotonically increasing
function of t, we may have an absolutely convergent property in solving the NAEs
in Eq. (6):

‖F(x)‖2 =
C

Q(t)
, (19)
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where

C = ‖F(x0)‖2 (20)

is determined by the initial value x0. We do not need to specify the function Q(t)
a priori, but

√
C/Q(t) merely acts as a measure of the residual error of F in time.

Hence, we impose in our algorithm that Q(t) > 0 is a monotonically increasing
function of t. When t is quite large, the above equation will force the residual error
‖F(x)‖ to tend to zero, and meanwhile the solution of Eq. (6) is obtained approxi-
mately.

3 Dynamics of the present regularization method

3.1 Discretizing, yet keeping x on the manifold

Now we discretize the foregoing continuous time dynamics into a discrete time
dynamics:

x(t +∆t) = x(t)−β
‖F‖2

FTv
u, (21)

where

β = q(t)∆t (22)

is the steplength. Eq. (21) is obtained from the ODEs in Eq. (15) by applying the
Euler scheme.

In order to keep x on the manifold defined by Eq. (19) we can consider the evolution
of F along the path x(t) by

Ḟ = Bẋ =−q(t)
‖F‖2

FTv
v. (23)

Similarly we also use the Euler scheme to integrate Eq. (23), obtaining

F(t +∆t) = F(t)−β
‖F‖2

FTv
v, (24)

Taking the square-norms of both the sides of Eq. (24) and using Eq. (19) we can
obtain

C
Q(t +∆t)

=
C

Q(t)
−2β

C
Q(t)

+β
2 C

Q(t)
‖F‖2

(FTv)2 ‖v‖
2. (25)
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Thus we can derive the following scalar equation by dividing both the sides by
C/Q(t):

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (26)

where

a0 :=
‖F‖2‖v‖2

(FTv)2 . (27)

As a result h(x, t) = 0, t ∈ {0,1,2, . . .} remains to be an invariant manifold in the
space of (x, t) for the discrete time dynamical system h(x(t), t) = 0, which will be
explored further in the next four sections. Liu and Atluri (2011a) first derived the
formula about a0 in Eq. (27) for a gradient-vector driven dynamical system, i.e.,
α = 0.

3.2 A trial discrete dynamics

Now we specify the discrete time dynamics h(x(t), t) = 0, t ∈ {0,1,2, . . .}, through
specifying the discrete time dynamics of Q(t), t ∈ {0,1,2, . . .}. Note that the dis-
crete time dynamics is an iterative dynamics, which amounts to an iterative algo-
rithm.

We first try the Euler scheme:

Q(t +∆t) = Q(t)+ Q̇(t)∆t. (28)

Then from Eq. (18) we have

β = q(t)∆t =
1
2
[R(t)−1]. (29)

where the ratio R(t) is defined by

R(t) =
Q(t +∆t)

Q(t)
. (30)

As a requirement of Q̇(t) > 0, we need R(t) > 1.

Thus, through some manipulations, Eq. (26) becomes

a0R3(t)− (2a0 +4)R2(t)+(a0 +8)R(t)−4 = 0, (31)
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which can be further written as

[R(t)−1]2[a0R(t)−4] = 0. (32)

Because R = 1 is a double-root and does not satisfy R > 1, we have to take another
solution:

R(t) =
4
a0

=
4(FTv)2

‖F‖2‖v‖2 . (33)

By using Eq. (29), Eq. (21) can now be written as

x(t +∆t) = x(t)− 1
2
[R(t)−1]

‖F‖2

FTv
u. (34)

Notice, however, that this algorithm has an unfortunate fate that when the iterated
a0 starts to approach to 4 before it grows up to a large value, the algorithm stag-
nates at a point which is not necessarily a solution. We will avoid to follow this
kind of dynamics by developing a better dynamics as follows. This indicates that
the vector-driven algorithm will face this fate to lose its dynamic force if we insist
the iterative orbit as being located on the manifold defined by Eq. (19). This point
has been first explored in-depth by Liu and Atluri (2011a) for a gradient-driven al-
gorithm.

3.3 A better discrete dynamics

Let

s =
Q(t)

Q(t +∆t)
=
‖F(x(t +∆t))‖2

‖F(x(t))‖2 , (35)

which is an important quantity to assess the convergence property of numerical
algorithm for solving the NAEs. A convergent algorithm must guarantee s < 1
step-by-step, such that the residual norm ‖F‖ can tend to zero gradually, and thus
the solution x of F(x) = 0 can be obtained.

From Eqs. (26) and (35) it follows that

a0β
2−2β +1− s = 0, (36)

where

a0 =
‖F‖2‖v‖2

(FTv)2 ≥ 1, (37)
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by using the Cauchy-Schwarz inequality:

FTv≤ ‖F‖‖v‖.

From Eq. (36), the solution of β is found to be

β =
1−
√

1− (1− s)a0

a0
, if 1− (1− s)a0 ≥ 0. (38)

Let

1− (1− s)a0 = γ
2 ≥ 0, (39)

s = 1− 1− γ2

a0
. (40)

Thus, from Eq. (38) it follows that

β =
1− γ

a0
, (41)

and from Eqs. (21) and (27) we can obtain the following algorithm:

x(t +∆t) = x(t)−η
FTv
‖v‖2 u, (42)

where

η = 1− γ. (43)

Here 0 ≤ γ < 1 is a parameter. Later, in the numerical examples we will explain
that γ plays a major role for the bifurcation of discrete dynamics. Under the above
condition we can prove that the new algorithm satisfies

‖F(t +∆t)‖
‖F(t)‖

=
√

s < 1, (44)

which means that the residual error is absolutely decreased.

It is interesting that in the above algorithm ∆t is no longer required. Furthermore,
the property in Eq. (44) is very important, since it guarantees the new algorithm to
be absolutely convergent to the true solution.
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3.4 Optimization of α

In the algorithm (42) we do not specify how to choose the parameter α , which is
appeared in u = αx + BTF and v = αBx + AF. One way is that α is chosen by
the user. However, this strategy does not always be effective. Alternatively, we can
determine a suitable α such that s defined in Eq. (40) be minimized with respect
to α , because a smaller s will lead to a faster convergence as shown in Eq. (44).
The idea of optimizing α was first developed by Liu and Atluri (2011b) for other
algorithm.

Thus, by inserting Eq. (37) for a0 into Eq. (40) we can write s as to be

s = 1− (1− γ2)(F ·v)2

‖F‖2‖v‖2 , (45)

where v as defined by Eq. (17) includes a parameter α . Let ∂ s/∂α = 0, and through
some algebraic operations we can solve α by

α =
(v1 ·F)(v1 ·v2)− (v2 ·F)‖v1‖2

(v2 ·F)(v1 ·v2)− (v1 ·F)‖v2‖2 . (46)

Remark 1: For the usual three-dimensional vectors a, b, c ∈ R3, the following
formula is famous:

a× (b× c) = (a · c)b− (a ·b)c. (47)

Liu (2000a) has developed a Jordan algebra by extending the above formula to
vectors in n-dimension:

[a,b,c] = (a ·b)c− (c ·b)a, a,b,c ∈ Rn. (48)

Thus α in Eq. (46) can be expressed in a neater form via

α =
[v1,v2,F] ·v1

[v2,v1,F] ·v2
. (49)

The above parameter α can be called the optimal α , because it brings us a new
strategy to select the best orientation u = αx + BTF and the best steplength F ·
[αBx+AF]/‖αBx+AF‖2 to search the solution of NAEs. Furthermore, we have
an explicit form to implement α into the numerical program, and thus it is very
time-saving for finding the unknown solution vector x.
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3.5 An optimal vector driven algorithm

Since the fictitious time variable is now discrete, t ∈ {0,1,2, . . .}, we let xk denote
the numerical value of x at the k-th step. Thus, we arrive at a purely iterative
algorithm by Eqs. (42) and (43):

xk+1 = xk− (1− γ)
FT

k vk

‖vk‖2 uk. (50)

Consequently, the following optimal vector driven algorithm (OVDA) can be de-
rived:

Step 1: Select 0≤ γ < 1, and give an initial x0.

Step 2: For k = 0,1,2 . . . we repeat the following calculations:

vk
1 = AkFk, (51)

vk
2 = Bkxk, (52)

αk =
[vk

1,v
k
2,Fk] ·vk

1

[vk
2,v

k
1,Fk] ·vk

2
, (53)

uk = αkxk +BT
k Fk, (54)

vk = Bkuk, (55)

xk+1 = xk− (1− γ)
Fk ·vk

‖vk‖2 uk. (56)

If xk+1 converges according to a given stopping criterion with ‖Fk+1‖ < ε , then
stop; otherwise, go to Step 2.

In summary, we have derived a thoroughly novel algorithm for solving the NAEs.
While the parameter γ is chosen by the user for a problem-dependent manner, the
parameter αk is exactly given by Eq. (53). Indeed these two parameters play the dif-
ferent roles of bifurcation parameter and optimization parameter, respectively. Up
to here we have successfully derived a drastical novel algorithm from the Tikhonov
regularization method, which is based on the bifurcation and optimal parameter of
α . Indeed, without the help from the formula (37) we cannot perform such a pow-
erful result. The influences of these two parameters are analyzed below through
numerical examples.

Because the Tikhonov parameter α derived here is a dynamical one, which is evolv-
ing with the solution path, we may also call the present method as being a Dynam-
ical Tikhonov Regularization Method, which can be used to solve the nonlinear
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ill-posed problem. The concept of Dynamical Tikhonov Regularization Parame-
ter is the first time developed in this article, which is quite different from those
determined by other methods, like as, L-curve, Morozov discrepancy princile and
iterative solution; correspondingly, they are all of the static ones, whose determina-
tion needs a prior or a posterior information about the nonlinear operator equation.

4 Numerical examples

4.1 Example 1

In this example, the following nonlinear Fredholm integral equation of the first-kind
is considered:∫ 1

0
x(s)x(t)dt = c1 cos(c2s) =: h(s), c1 > 0, (57)

where c1 and c2 are constants fixed to be c1 = 1 and c2 = 3. Two exact solutions
exist: x(s) =±cos(3s)

√
3/sin3 [Polyanin and Manzhirov (2008)].

Let us discretize the interval of [0,1] into n− 1 subintervals by noting ∆t = 1/n
and ∆s = 1/n. Let x j := x(t j) be a numerical value of x at a grid point t j, and let
hi = h(si), where t j = ( j− 1)∆t and si = (i− 1)∆s. Through a trapezoidal rule,
Eq. (57) can be discretized into

xi

[
∆t
2

x1 +∆t
m1

∑
j=2

x j +
∆t
2

xn

]
= hi, i = 1, . . . ,n, (58)

which are nonlinear algebraic equations denoted by:

F̂(x) = b1. (59)

Here, b1 = (h1, . . . ,hn)T, and x = (x1, . . . ,xn)T is the vector of unknowns. The data
h j are corrupted by a random relative noise, such that:

ĥ j = h j[1+σR( j)]. (60)

Under a fixed convergence criterion ε = 10−10 and starting from an initial condi-
tion xi = 0.5, we use the following parameters m = 50 and γ = 0 in the OVDA to
calculate the numerical solution under a noise with σ = 0. Through only 15 steps
it is convergent to the true solution with a maximum error being 6.92× 10−4 as
shown by the solid lines for showing the residual error, a0 and the numerical error,
respectively, in Figs. 1(a), 1(b) and 1(c).
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Figure 1: By applying the OVDA to example 1: (a) comparing the residual errors, (b) 
a0, and (c) numerical errors. 
 
 

Figure 1: By applying the OVDA to example 1: (a) comparing the residual errors,
(b) a0, and (c) numerical errors.
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When σ = 0.01 is added in the data, we reduce m to 30, and use the following pa-
rameter γ = 0.005 in the OVDA to calculate the numerical solution. Through only
17 steps it is convergent with a maximum error being 5.39×10−2 as shown by the
dashed lines for showing the residual error, a0 and the numerical error, respectively,
in Figs. 1(a), 1(b) and 1(c). Then we use γ = 0 in the OVDA to calculate the nu-
merical solution. Through 376 steps it is convergent with a maximum error being
5.39×10−2 as shown by the dashed-dotted lines for showing the residual error and
a0, respectively, in Figs. 1(a) and 1(b).

It is obvious that when we use γ = 0 in the OVDA it is much slow convergence
than that using γ = 0.005. Now, we explain the parameter γ appeared in Eq. (50).
In Fig. 1(b) we compare a0 obtained by OVDA with γ = 0 and γ = 0.005. From
Fig. 1(b) it can be seen that for the case with γ = 0, the values of a0 tend to a
constant and keep unchanged. By Eq. (37) it means that there exists an attracting
set for the iterative orbit of x described by the following manifold:

‖F‖2‖v‖2

(F ·v)2 = Constant. (61)

Upon the iterative orbit is approached to this manifold, it is slowly to reduce the
residual error as shown in Fig. 1(a) by the dashed-dotted line for the case of OVDA
with γ = 0. Conversely, for the case γ = 0.005, a0 is no more tending to a constant
as shown in Fig. 1(b). Because the iterative orbit does not be attracted by an attract-
ing manifold, the residual error as shown in Fig. 1(a) by the dashed line for the case
of OVDA with γ = 0.005 can reduce very fast. Thus we can observe that when γ

varies from zero to a positive value, the iterative dynamics given by Eq. (50) under-
goes a Hopf bifurcation, like the ODEs behavior observed by Liu (2000b, 2007).
The original stable manifold existent for γ = 0 now becomes a ghost manifold for
γ = 0.005, and thus the iterative orbit generated from the present algorithm with
the case γ = 0.005 does not be attracted by that manifold again.

4.2 Example 2

In this example, the following nonlinear Fredholm integral equation of the first-kind
is solved:∫ 2

0
[x(s)− x(t)]2dt = 2s4 +

16
3

s2 +
32
5

, s ∈ [0,2]. (62)

The exact solution is x(t) = t2.

Under a fixed convergence criterion ε = 10−4 and starting from an initial condi-
tion xi = 1, we use the following parameters m = 50 and γ = 0.1 in the OVDA
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to calculate the numerical solution under a noise with σ = 0. Through only 33
steps it is convergent to the true solution with a maximum error being 6×10−4 as
shown by the solid lines for showing the residual error, a0 and the numerical error,
respectively, in Figs. 2(a), 2(b) and 2(c).

When σ = 0.01 is added in the data, we use the following parameter γ = 0.1 in the
OVDA to calculate the numerical solution. Through only 37 steps it is convergent
with a maximum error being 2.45×10−2 as shown by the dashed lines for showing
the residual error, a0 and the numerical error, respectively, in Figs. 2(a), 2(b) and
2(c). In Fig. 3 we compare the optimal α obtained from these two cases.

4.3 Example 3

We consider a nonlinear backward heat conduction equation:

ut = k(x)uxx + k′(x)ux +u2 +H(x, t), (63)

k(x) = (x−3)2, H(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (64)

with a closed-form solution being u(x, t) = (x− 3)2e−t . The boundary conditions
and a final time condition are available from the above solution. It is known that
the nonlinear backward heat conduction problem is highly ill-posed. In order to
test the stability of OVDA we also add a relative noise in the final time data with
an intensity σ = 0.01.

By applying the new algorithm to solve the above equation in the domain of 0 ≤
x ≤ 1 and 0 ≤ t ≤ 1 we fix ∆x = 1/n1 and ∆t = 1/n2, where n1 = 14 and n2 = 10
are numbers of nodal points used in a standard finite difference approximation of
Eq. (63):

k(xi)
ui+1, j−2ui, j +ui−1, j

(∆x)2 +k′(xi)
ui+1, j−ui−1, j

2∆x
+u2

i, j +H(xi, t j)−
ui, j+1−ui, j

∆t
= 0.

(65)

Because a0 defined in Eq. (27) is a very important factor of our new algorithm we
show it in Fig. 4(b) for the OVDA with γ = 0.15, while the residual error is shown
in Fig. 4(a), and α is shown in Fig. 4(c). We let the OVDA run 2000 steps, which
attains an accurate solution with a maximum relative error being 1.785× 10−3 as
shown in Fig. 5. The present result is better than that computed by Liu and Atluri
(2011b).
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Figure 2: By applying the OVDA to example 2: (a) comparing the residual errors, (b) 
a0, and (c) numerical errors. 
 

Figure 2: By applying the OVDA to example 2: (a) comparing the residual errors,
(b) a0, and (c) numerical errors.

4.4 Example 4

We consider a nonlinear Calderón inverse problem:

O · [σ(x,y)Ou(x,y)] = 0, (x,y) ∈Ω, (66)

u(ρ,θ) = f (x,y), (x,y) ∈ ∂Ω, (67)

σ(x,y)un(x,y) = g(x,y), (x,y) ∈ ∂Ω. (68)
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Figure 3: By applying the OVDA to example 2 comparing α for (a) no noise, and (b) 

with a noise. 

 

 

 

 

 

 

 

 

 

Figure 3: By applying the OVDA to example 2 comparing α for (a) no noise, and
(b) with a noise.

Both u(x,y) and the conductivity function σ(x,y) are unknown, but the boundary
conditions are provided and over-specified.

The following exact solutions are taken from [Farcas, Elliott, Ingham and Lesnic
(2004)]:

u(x,y) =
xy

1+0.2x+0.4y+0.15xy
, (69)

σ(x,y) = (1+0.2x+0.4y+0.15xy)2, (70)

and the boundary shape of the computation domain is described in the polar coor-
dinates by

ρ(θ) =
√

cos2θ +
√

1.1− sin2 2θ . (71)

Thus according to the suggestion by Liu and Atluri (2009) we can employ the
following modified polynomial expansion method to express the solution of u(x,y)
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Figure 4: By applying the OVDA to example 3 showing (a) the residual error, (b) a0, 
and (c) optimal α. 
 

Figure 4: By applying the OVDA to example 3 showing (a) the residual error, (b)
a0, and (c) optimal α .

and σ(x,y):

u(x,y) =
m

∑
i=0

i

∑
j=0

a ji

(
x

X0

) j( y
Y0

)i− j

, (72)

σ(x,y) =
m

∑
i=0

i

∑
j=0

b ji

(
x

X0

) j( y
Y0

)i− j

, (73)
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Figure 5: By applying the OVDA to example 3 showing the relative error of u over 
the plane of (x,t). 
 
 
 
 
 
 

Figure 5: By applying the OVDA to example 3 showing the relative error of u over
the plane of (x, t).

where m is the highest-order of the polynomial, X0 and Y0 are the characteristic
lengths, and a ji and b ji are unknown coefficients. Inserting Eqs. (72) and (73) into
Eqs. (66)-(68) we can obtain a nonlinear system of algebraic equations to solve a ji

and b ji.

We apply the OVDA to solve the resultant over-determined nonlinear system of al-
gebraic equations with parameters m = 5, X0 = 1.5 and Y0 = 0.6. We collocate 288
interior points to satisfy the governing equation and 100 boundary points to sat-
isfy the boundary conditions. The initial guesses of a ji and b ji are all zero except
b00 = 1. For this example we choose γ = 0.15 and consider a 5% random noise
being added to the boundary conditions. We let OVDA run 10000 steps, and show
a0, s, the optimal α and the residual error in Figs. 6(a)-(d). The final regularization
parameter is α = −8.2851× 10−6. We also compare the exact solution and the
numerical solution of u and σ in Fig. 7. Even under a large noise with an intensity
5%, the results are also accurate and stable. The maximum relative error of σ is
6.82%.
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Figure 6: By applying the OVDA to example 4 showing (a) a0, (b) s, (c) optimal α, 

and (d) the residual error. 
 
 

Figure 6: By applying the OVDA to example 4 showing (a) a0, (b) s, (c) optimal
α , and (d) the residual error.

5 Conclusions

A residual-norm based and optimization based algorithm, namely an Optimal Vec-
tor Driven Algorithm (OVDA), where ẋ = λu(α) with u = αx + BTF the driving
vector involving an optimal value of α and Bi j = ∂Fi/∂x j, was established in this
paper to solve F = 0. In the iteration process the driven vector uk = αkxk +BT

k Fk is a
dynamical Tikhonov regularization vector, which is an optimal vector involving an
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Figure 7: By applying the OVDA to example 4 showing (a) –(c) the exact solution, 
present result, and the absolute error of u, respectively; and (d)-(f) the exact solution, the 
present result, and the relative error of σ , respectively. 
 
 

Figure 7: By applying the OVDA to example 4 showing (a)-(c) the exact solu-
tion, present result, and the absolute error of u, respectively; and (d)-(f) the exact
solution, the present result, and the relative error of σ , respectively.

optimal parameter αk. It is interesting that when the solutions were found, the op-
timal parameters αk as shown by all numerical examples were also tending to zero;
hence, the driven vector uk was lost its dynamical force. The parameter γ is a very
important factor, which is a bifurcation parameter, enabling us to switch the slow
convergence to a new situation that the residual-error is quickly decreased. The
optimal parameter αk was derived exactly in terms of the Jordan algebra, and thus
it is very time saving to implement the optimization technique into the numerical
program. We have proved that the present algorithm is convergent automatically,
and it is easy to implement, and without calculating the inversions of the Jacobian
matrices. Several numerical examples of nonlinear ill-posed equations, including
a nonlinear backward heat conduction problem, and a nonlinear Calderón inverse
problem, were solved by the OVDA with good performance. We can conclude
that this is the first time that a Dynamical Tikhonov Regularization Method is well-
developed to solve the nonlinear ill-posed problem.
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