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Applications of Parameter-Expanding Method to
Nonlinear Oscillators in which the Restoring Force is

Inversely Proportional to the Dependent Variable or in
Form of Rational Function of Dependent Variable

Canan Köroǧlu1 and Turgut Öziş2

Abstract: He’s parameter-expanding method with an adjustment of restoring forces
in terms of Chebyshev’s series is used to construct approximate frequency-amplitude
relations for a conservative nonlinear singular oscillator in which the restoring force
is inversely proportional to the dependent variable or in form of rational function
of dependant variable. The procedure is used to solve the nonlinear differential
equation approximately. The approximate frequency obtained using this procedure
is more accurate than those obtained using other approximate methods and the dis-
crepancy between the approximate frequency and the exact one negligible.
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1 Introduction

In nonlinear systems, perturbation methods are well-known traditional tools to
study various aspects of nonlinear problems. Surveys of the early literature with
numerous references, and useful bibliographies, have been given by Nayfeh (1973),
Mickens (1996). However, the use of perturbation theory in many significant prac-
tical problems is invalid, or it simply breaks down for parameters beyond a certain
specified range. Therefore, new analytical techniques should be developed to over-
come these shortcomings.

Such a new technique should work over a large range of parameters and yield accu-
rate analytical approximate solutions beyond the coverage and ability of the classi-
cal perturbation methods.

For nonlinear oscillators, some of these techniques include harmonic balance method,
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[Wu, Sun, and Lim(2006); Wu, Li (2001)]; variational iteration method [He(1999);
Ozis and Yildirim(2007)], homotopy perturbation method [He(2000); Ozis and
Yıldırım(2007)].Also there are some other method Surveys of the literature with
numerous references and useful bibliography and a review of these methods can
be found in detail in [He(2006)]. In this paper, we adapted He’s bookkeeping
parameter method [He(2001)] with an adjustment of restoring forces in terms of
Chebyshev’s series for nonlinear oscillators in which the restoring force is inversely
proportional to the dependent variable or in form of rational function of dependant
variable to obtain analytic approximate solutions.

2 Parameter-expanding methods

In case no small parameter exists in a nonlinear equation, traditional perturbation
methods cannot be directly applied. For this type of problem, [He (2001)] de-
veloped a technique where a bookkeeping parameter is introduced to the original
differential equation. Recently parameter-expanding methods [Xu(2007); Mohyud-
Din, Noor and Noor(2009)] including bookkeeping parameter method [He (2001)]
and modified Lindstedt-Poincaré methods [Ozis and Yıldırım(2007);Ramos(2007)]
have been caught much attention. The parameter expansion can also be applied to
homotopy perturbation method [Ozis and Akci(2011)].

However, there is a class of nonlinear oscillators represents a new class of nonlin-
ear oscillating systems which are called non-smooth oscillators play an important
role in non-linear dynamics. Conservative non-smooth oscillators such as the ones
considered here are governed by in which the restoring force is inversely propor-
tional to the dependent variable or restoring forces are in form of rational function
of dependent variable and they don’t include any small parameter. In this paper, we
apply He’s bookkeeping parameter method with an adjustment of restoring forces
in terms of Chebyshev’s series to the nonlinear oscillators to the category state
above.

Example 1: Mickens (1996) has recently analyzed the nonlinear differential equa-
tion

d2y
dt2 +

1
y

= 0, (1)

with initial conditions

y(0) = A, y′(0) = 0 (2)

This equation occurs in the modelling of certain phenomena in plasma physics
[Mickens(1996)]. Equation (1) clearly indicates that acceleration is unbounded
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when y = 0. What’s more, the Eq.(1) corresponds to a conservative single-degree-
of-fredom oscillator whose total energy is conserved, i.e.,

1
2

ẏ2 + lny = lnA

which shows that the velocity is also unbounded when y = 0.

Mickens showed that all the motions corresponding to equation (1) are periodic
[Mickens(2007)];

The system will oscillate within symmetric bounds [−A, A], and the angular fre-
quency and corresponding periodic solution of the nonlinear oscillator are depen-
dent on the amplitude A. [Mickens(2007)] also provided comparisons between the
results of harmonic balance method and those obtained by means of the application
of the homotopy perturbation method to Eq.(1), i.e.,

y”+w2y = p(w2y− y−1) (3)

0y”+1y = py”y (4)

and

y”+0y+ p(y”)2y = 0 (5)

which coincides with Eq(1) for p = 1 and where p is a homotopy parameter which
is set to unity at the end of the calculations.

If y(t) in Eq.(3) is expanded as

y(t) = y0 + py1 + .... (6)

the homotopy perturbation yealds the same frequency as that of harmonic balance
method of first order approximation[Mickens(2007) ] but if y(t) is expanded in
Eq.(6) and the coefficients 1 and 0 of Eq.(4) are expanded as [Ozis and Akçi(2011)]

1 = w2 + pa1 + ... (7)

0 = 1+ pb1 + ... (8)

respectively, then the homotopy perturbation method calculates the frequency as

w2 = 4/3A2 (9)

Moreover, if y(t) is expanded as in Eq.(6) and the coefficient 0 in Eq.(5) is expanded
as in Eq.(8), the homotopy perturbation calculates the same frequency as that of
Eq.(9).
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Recently, [ Shou(2009)] construct the homotopy of Eq.(1) as y”+w2y+ p[y(y”)2−
w2y] and calculates the frequency as in[Mickens(2007)].

It must be emphasized that the “expansion of constants” was first proposed by
[He(2006)]. However, various methods introduce an artificial parameter such as
modified Linstedt-Poincaré techniques , Homotopy perturbation method and book-
keeping parameter method etc. In these methods and their variants one first intro-
duces linear stiffness term and the artificial parameter then expands both the solu-
tion and the frequency of oscillation in terms of this artificial parameter which is
set to unity at the end of the calculations. Here we adapted bookkeeping parameter
method with an adjustment of restoring forces in terms of Chebyshev’s series.

We re-write the Eq.(1) in the form

y”y+0.y+1.y−1 = 0 (10)

Assume that the solution can be expressed as a power series in p:

y = y0 + py1 + p2y2 + ... (11)

where p is a bookkeeping parameter.

We also assume that the coefficients 0 and 1 in the left side of Eq. (10) can be,
respectively, expanded into a series in p:

0 = w2 + pw1 + p2w2 + ... (12)

1 = a1 p+a2 p2 + ... (13)

Substituting Eqs.(12) and (13) into Eq(10) and equating the terms with the identical
powers of p , we have

p0 : y”
0 +w2y0 = 0, y0(0) = A, y′0(0) = 0 (14)

p1 : y1”+w2y1 + y0w1 +a1
1
y0

= 0, (15)

The solution of (14) easily be obtained and is

y0 = Acos(wt) (16)

Substituting the solution (16) into Eq.(15) gives

y”
1 +w2y1 +(Acos(wt))w1 +a1.A−1.(cos(wt))−1 = 0 (17)
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The last term in the equation (17) is proportional to f (wt) = 1/cos(wt)which is
neither absolutely nor square integrable in [0,2π]. Moreover, f (wt) is unbounded
at wt = π/2 and wt = 3π/2. Therefore, the Fourier series expansion of f (wt)
does not convergence to f (wt) in the classical sense. This may be eased by using
Chebyshev series expansion. Therefore, we have

f (x) =
∞

∑
n=0

c2n+1T2n+1(x),

where x = cos(wt), T2n+1(x) = cos[(2n+1)wt] and the coefficients yield

c2n+1 =
2
π

1∫
−1

(1− x2)−1/2 f (x)T2n+1(x)dx.

For f (x) = 1
x where x = cosθ yields the coefficients

c2n+1 =
2
π

π∫
0

(cosθ)−1.cos[(2n+1)θ ]dθ

and for n = 0 gives

c1 =
2
π

π∫
0

1
cosθ

.cosθ .dθ =
2
π

. θ ]π0 =
2
π

.π = 2

Hence, it is easy to validate that c2n+1 = 2 for n = 2,4,6, ... and c2n+1 = −2 for
n = 1,3,5, ...

No secular terms in y1 requires

w1 =−w2, a1 = 1

and

Aw1 +a1A−1c1 = 0 or A(−w2)+A−1c1 = 0.

Hence, we obtain first –order approximation as

w2 =
1

A2 .2 or w =
√

2
A

=
1.414214

A
(18)
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which agrees with Mickens’ first-order harmonic balance solution [Mickens(2007)]
where exact value is

wex =
√

2π

2A
=

1.2533141
A

(19)

By utilizing modified generalized rational harmonic balance method [Beléndez ,
Méndez , Beléndez, Hernández and Alvarez(2008)] and [Beléndez, Gimeno, Fer-
nández,I Méndez and Alvarez (2008)] determined the second- order approximate
frequency as w(1)

2 ≈ 1.2193273A−1 and for the second order approximation, w(2)
2 ≈

1.2482546.A−1

Example 2: We, now, consider the Duffing-harmonic oscillator:

u′′+
u3

1+u2 = 0, (20)

with initial conditions

u(0) = A, u′(0) = 0 (21)

Note that for small u values, Eq. (20) reduces to the equation of motion of the
Duffing type nonlinear oscillator, while for large u values it reduces to the equation
of motion of a linear harmonic oscillator. Therefore, Eq. (20) is called a Duffing-
harmonic oscillator equation of motion. For example [Shou (2009) ], obtained the
frequency via the application of homotopy perturbation method by constructing the
homotopy in form of

u”+
1.u

1+(p1/2u)2 = 0

and expanding the coefficient 1 as 1 = w2 + pw1 + p2w2 + ... and calculate the
frequency as w = 1√

1+ 3A2
4

.

We re-write the Eq. (20) in the form

1.u′′+0.u+1.(u′′.u2 +u3) = 0 (22)

Assume that the solution can be expressed as a power series in p:

u = u0 + pu1 + p2u2 + ... (23)

where p is a bookkeeping parameter.
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We also assume that the coefficients 0 and 1 in the left side of Eq. (22) can be,
respectively, expanded into a series in p:

0 = w2 + pw1 + p2w2 + ... (24)

1 = a1 p+a2 p2 + ... (25)

Substituting Eqs.(24) and (25) into Eq(22) and equating the terms with the identical
powers of p , we have

p0 : u′′0 +w2u0 = 0, u0(0) = A, u′0(0) = 0 (26)

p1 : u′′1 +w2u1 +u0w1 +a1u′′0.u
2
0 +a1.u3

0 = 0, (27)

The solution of (26) easily be obtained and is

u0 = Acos(wt) (28)

Substituting the solution (28) into Eq.(27) gives

u′′1 +w2u1 +w1.Acos(wt)+(−a1.w2.A3 +a1.A3)cos3(wt) = 0 (29)

Using Chebyshev series expansion,

f (x) =
∞

∑
n=0

c2n+1T2n+1(x), where x = cos(wt), T2n+1(x) = cos[(2n+1)wt] and the

coefficients yield c2n+1 = 2
π

1∫
−1

(1− x2)−1/2 f (x)T2n+1(x)dx.

For f (x) = x3 where x = cosθ yields the coefficients

c2n+1 =
2
π

π∫
0

cos3
θ .cos[(2n+1)θ ]dθ

and for n = 0 gives

c1 =
2
π

π∫
0

cos4
θ .dθ =

2
π

.
3
8
.π =

3
4

No secular terms in u1 requires

w1A+(−a1w2A3 +a1A3)c1 = 0 and w1 =−w2,a1 = 1
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Hence, we obtain first –order approximation as

−w2A− c1w2A3 + c1A3 = 0, w2 =
c1A2

1+ c1A2

or

w =

√
3
4 A2

1+ 3
4 A2

(30)

which coincides with the one by [Lim and Wu(2003) ], and [ Belendez, Hernandez,.
Belendez, Fernandez, Alvarez, and Neipp (2007)].

Example 3: We, now, consider the following nonlinear oscillator;

u′′+
u√

1+u2
= 0, (31)

with initial conditions

u(0) = A, u′(0) = 0 (32)

We re-write Eq.(31) in the form

u′′+0.u+1.
u√

1+u2
= 0 (33)

Assume that the solution can be expressed as a power series inp:

u = u0 + pu1 + p2u2 + . . . (34)

where p is a bookkeeping parameter.

We also assume that the coefficients 0 and 1 in the left side of Eq.(33) can be
respectively expanded to a series in p:

0 = w2 + pw1 + p2w2 + · · · (35)

1 = a1 p+a2 p2 + · · · (36)

Substituting Eqs.(35) and (36) into Eq.(33) and equating the terms with the identical
powers of p, we have

p0 : u′′0 +w2u0 = 0, u0(0) = A, u′0(0) = 0 (37)
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p1 : u′′1 +w2u1 +w1u0 +a1.
u0√

1+u2
0

= 0 (38)

The solution of Eq.(37) can be easily obtained as

u0 = Acoswt. (39)

Substituting the result into Eq.(38) yields

u′′1 +w2u1 +w1Acoswt +a1.
Acoswt√

1+(Acoswt)2
= 0 (40)

Using Chebyshev series expansion, we have

f (x) =
∞

∑
n=0

c2n+1T2n+1(x), where x = cos(wt), T2n+1(x) = cos[(2n+1)wt]

and the coefficients yield c2n+1 = 2
π

1∫
−1

(1− x2)−1/2 f (x)T2n+1(x)dx.

For f (x) = x√
1+A2x2 where x = cosθ and n = 0 yields the coefficient c1

c1 = 2
π

1∫
−1

(1− x2)−1/2 x√
1+A2x2 xdx and for x = cosθ reads

c1 =
2
π

π∫
0

cos2 θ√
1+A2 cos2 θ

dθ ,θ = wt (41)

No secular terms in u1 requires

w1A+a1c1A = 0 (42)

If the first order approximation is adequate then set p = 1 and from (35) and (36)
we have

0 = w2 +w1, (43)

1 = a1 (44)

From Eqs.(42)-(44), we obtain

w =
√

c1 (45)

where c1 is defined by Eq.(41) which agrees well with ref. [ Shou and He(2007)]
as it is seen in Table 1. and it is noticeable that the obtained frequency is valid for
0 < A < ∞.
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Table 1: Comparisons of our results with [Shou and He (2007)] for various ampli-
tudes.

3 Conclusion

The parameter-expanding method with an adjustment of restoring forces in terms of
Chebyshev’s series for nonlinear oscillators in which the restoring force is inversely
proportional to the dependent variable or in form of rational function of dependant
variable proved to be a powerful mathematical tool to nonlinear oscillators. The
technology can be easily extended to higher order approximate solutions but it is,
for the time being, out of our consideration in this letter. The present approach
can be used as prototype for many other applications of nonlinear oscillators with
discontinuity in searching for period or frequency.
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Öziş, T.; Yildirim, A. (2007): Determination of periodic solution of a u1/3 force
by He’s modified Linstedt–Poincare’ method, J. Sound Vibr. vol. 301,pp. 415–419.

Ramos,J. I. (2007): On Linstedt–Poincare’ techniques for the quintic Duffing
equation, Appl. Math. Comput.,vol.193, pp.303-310.

Shou, D.H. (2009): The homotopy perturbation method for nonlinear oscillators,
Computers and Mathematics with Applications, vol.58, pp. 2456-2459.



234 Copyright © 2011 Tech Science Press CMES, vol.75, no.4, pp.223-234, 2011

Shou, D. H.; He, J.H. (2007): Application of Parameter-expanding Method to
Strongly Nonlinear Oscillators, International Journal of Nonlinear Sciences and
Numerical Simulation, vol.8, no.1,pp. 121-124.

Wu,B.S. ; Sun,W.P.; Lim,C.W. (2006): An analytical approximate technique for
a class of strongly non-linear oscillators, Int. J. Non-linear Mech. vol. 41, pp.
766–774.

Xu, L. (2007): He’s parameter-expanding methods for strongly nonlinear oscilla-
tors, Journal of Computational and Applied Mathematics, vol.207pp.148-154


