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Investigation on the Singularities of Some Singular
Integrals
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Abstract: In a boundary element method, the treatment of all the possible sin-
gular integrals is very important for the correctness and accuracy of the solutions.
Generally, the directional derivative of a weakly singular integral is computed by
an integral in the sense of Cauchy principal value if the directional derivative of
the weakly singular integral kernel is strongly singular or in the sense of Hadamard
finite part integral if it is hypersingular. In this paper, we try to discover how the
strongly singular and hypersingular integrals are generated and propose an idea
to avoid the appearance of such kind of strongly singular and hypersingular inte-
grals. This idea is termed as the ’exact derivation’ of the directional derivative of
a weakly singular integral. Using some simple examples, we proof that the di-
rectional derivative of a weakly singular integral found by this idea can still be a
weakly singular integral. That is none strongly or hypersingular integrals are gen-
erated in such a process. Therefore, Cauchy principal value and Hadamard finite
part integral are not indispensable.

Keywords: weakly singular integral, strongly singular integral, hypersingular in-
tegral, Cauchy principal value, Hadamard finite part, improper integral

1 Introduction

To date, the boundary element method (BEM)[Banerjee (1994)] is a very popular
numerical approach. It can be applied in many scientific and engineering fields. It
has the merit that meshes need only to be generated on the boundary and the integral
form will have better accuracy than the differential form. However, there are two
main difficulties to generate a high efficiency and high accuracy BEM program.

One difficulty is due to the drawback that the final coefficient matrices in a con-
ventional BEM are dense. Therefore, a great deal of computer memory and com-
putational time is required to run a conventional BEM program. Fortunately, in the
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past few years, several fast BEMs had been developed to overcome this problem.
Among these fast BEMs, the fast multipole expansion method (FMM) [Greengard
& Rokhlin (1987), Liu & Nishimura (2006)] and the pre-corrected fast Fourier
transform method (pFFT) [Phillips & White (1997), Ding & Ye (2004), Yan, Zhang,
Ye & Yu (2010), Yan, Zhang & Ye (2010), Yan (2010)] are well-known and widely
applied. Generally, the constant element is employed in such kinds of fast BEMs.
Recently, Yan & Liu (2010) presented a pFFT method with higher order boundary
elements. Their extension to the pFFT approach should be very important for the
broad application of this method.

The other difficulty is the computation of the weakly singular, nearly singular,
strongly singular and hypersingular integrals [De Klerk (2005)] appearing in the
various kinds of boundary integral equations. To date, a lot of research has been
done on the treatment of such kinds of integrals, especially the hypersingular inte-
grals [Tanaka, Sladek & Sladek (1994), Chen & Hong (1999)]. One of the well-
known hypersingular integrals is that occurring in the composite Helmholtz integral
equation proposed by Burton & Miller (1971) for the exterior acoustic problems.
In 2003, Yan, Hung & Zheng investigated the fast computation of this hypersingu-
lar integral using a regularization relationship. For the boundary integral equations
in elasticity, hypersingular integrals may appear in the differentiation of the dis-
placement boundary integral equations. To obviate the appearance of such kinds of
hypersingular integrals, Okada, Rajiyah, & Atluri (1988, 1989, 1990, 1994) pro-
posed some novel non-hypersingular boundary integral equations for velocity or
displacement gradients that were directly derived from a weak form of the momen-
tum balance equations. After that, Han & Atluri (2003) presented some weakly
singular traction boundary integral equations for solids undergoing small defor-
mations and then they presented a systematic derivation of the weakly singular
boundary integral equations in 2007. The idea of directly deriving the gradient of
the boundary integral equations was extended to acoustic problems by Qian, Han &
Atluri (2004). In recent years, there are still many works on evaluation of various
kinds of singular integrals. For example, Gao, Yang & Wang (2008) presented an
algorithm for the evaluation of some weakly, strongly and hypersingular integrals
in 2D problems by a semi-analytical method.

There are several books on the subject of the singular integrals. The book com-
piled by Sladek V. & Sladek J. (1998) presents many approaches to treat the sin-
gular, strongly singular and hypersingular integrals in the boundary element meth-
ods developed before 1998. The book written by Lifanov, Vainikko, Poltavskii &
Vainikko (2004) focuses on the hypersingular integrals and their applications.

Generally, the so-called strongly and hypersingular boundary integrals are created
from the derivation of a directional derivative of a boundary integral with weakly
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singular integral kernels. In the past, nearly all the researchers derived the direc-
tional derivative of a boundary integral with a weakly integral kernel by finding the
limit of the directional derivative from the domain to its boundary. That is to find
the directional derivative in the domain firstly and then to find its limit to the bound-
ary of the domain. They said that on the boundary the differential symbol could not
be taken into the integral symbol directly due to the weakly singular integral ker-
nel [Gray, Glaeser & Kaplan (2004)]. Therefore, few researchers had investigated
how to take the differential symbol into the integral symbol just on the boundary
directly.

While we doubt the above reason and insist that there must have some approaches
to take the differential symbol into the integral symbol just on the boundary di-
rectly, because it is well known that the Dirac Delta function δ is derivable even
though it is singular. Besides, since a weakly singular integral is actually inte-
grable, if we find the boundary integral first then the result should be derivable
provided that the derivative is a finite value (That is to exclude the cases such as
d
√

x/dx at x = 0). In this process, no limit to the boundary is applied yet. We
know that if the numerator is a finite value then in the common sense the denom-
inator cannot be a zero (except the generalized function Dirac Delta). Otherwise
an unlimited value ∞ will appear. For a weakly singular boundary integral, no ∞

will appear in the integral kerkel because it is actually integrable. For example, for
the weakly singular integral

∫ 1
0 lnxdx, the integral kernel lnx→ ∞ as x→ 0. How-

ever, with a variable substitution x = t2, we have
∫ 1

0 lnxdx = limε→0
∫ 1

ε
lnxdx =

limε→0
∫ 1

ε
ln t2dt2 = 4limε→0

∫ 1
ε

t ln tdt =−1. Obviously, as t→ 0 the integral ker-
nel t ln t already limits to 0 too. That is the integral is none singular after a variable
transformation and a weakly singular integral is integrable in the sense of improper
integral. In the improper integral, the limit is taken to the singular point along the
integral boundary rather than the limit to the boundary technique usually applied
in the treatments of hypersingular integrals. While for strongly singular integrals
and hypersingular integerals, ∞ must appear in the integral kernel if none regular-
izations are implemented. Therefore we tend to investigate the problem of how to
take the differential symbol into the integral symbol for the directional derivative
of a weakly singular integral in the sense of the generalized functions, improper
integral and generalized derivatives [Franssens (2009)].

In this paper, we will derive the directional derivatives of several boundary integrals
with weakly singular kernels to see how to avoid the so-called strongly singular
integral and hypersingular integrals. The idea is different from that proposed by
Okada, Rajiyah, & Atluri (1988, 1989) for the derivation of the direct boundary
integral equation for displacement gradients. They avoided finding the directional
derivatives directly by deriving the boundary integral equation from a weak form



208 Copyright © 2011 Tech Science Press CMES, vol.75, no.3, pp.205-222, 2011

of the momentum balance equations. However, we will just focus on the direct
derivation of the directional derivatives of the boundary integral equations.

2 Cauchy principal integral and Hadamard finite part integral

Usually, a strongly singular integral should be integrated in the sense of a Cauchy
principal value (CPV) integral. For instance, for a one dimensional strongly sin-
gular boundary integral

∫ b
a f (x)(x− y)−1dx, a < y < b, its CPV [Martin & Rizzo

(1996), Monegota (2009)] is defined as,

CPV
∫ b

a

f (x)
x− y

dx = lim
ε→0+

[∫ y−ε

a

f (x)
x− y

dx+
∫ b

y+ε

f (x)
x− y

dx
]

(1)

It can also be expressed by the form of the directional derivative of a weakly sin-
gular integral as [Carley (2007), Monegota (2009)],

CPV
∫ b

a

f (x)
x− y

dx =− ∂

∂y

∫ b

a
ln |x− y| f (x)dx, a < y < b (2)

This expression tells us that the direcitonal derivative ∂

∂y

∫ b
a ln |x− y| f (x)dx as a <

y < b should be computed by the CPV of a strongly singular integral,−CPV
∫ b

a
f (x)
x−y dx.

However, a hypersingular boundary integral should be generally integrated in the
sense of a Hadamard finite part (FP) integral [Martin & Rizzo (1996), Mone-
gota (2009)]. For example, for a one dimensional hypersingular boundary inte-
gral

∫ b
a f (x)(x− y)−2 dx, a < y < b, its FP is defined as [Martin & Rizzo (1996),

Monegota (2009)],

FP
∫ b

a

f (x)
(x− y)2 dx = lim

ε→0

[∫ y−ε

a

f (x)
(x− y)2 dx+

∫ b

y+ε

f (x)
(x− y)2 dx− 2 f (y)

ε

]
(3)

It can also be expressed by the form of a directional derivative of the CPV of a
strongly singular integral as [Carley (2007), Monegota (2009)],

FP
∫ b

a

f (x)
(x− y)2 dx =− ∂

∂y

[
CPV

∫ b

a

f (x)
(x− y)

dx
]
, a < y < b (4)

Substituting the expression (2) into the above formulation, then the above FP inte-
gral can be further expressed by the form of a second-order directional derivative
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of a weakly singular boundary integral as,

FP
∫ b

a

f (x)
(x− y)2 dx =

∂

∂y

[
∂

∂y

∫ b

a
ln |x− y| f (x)dx

]
=

∂ 2

∂y2

∫ b

a
ln |x− y| f (x)dx, a < y < b (5)

Monegota (2009) also presented the finite part expressions for boundary integrals
with supersingular integral kernels. However, in this paper only the boundary in-
tegrals with at most hypersingular integral kernels will be concerned, because su-
persingular boundary integrals seldom appear in the practical boundary element
applications.

From the above description, we can see that a weakly singular integral is inte-
grable in the normal sense; A strongly singular integral should be integrated in the
sense of the CPV; And a hypersingular integral should be integrated in the sense of
Hadamard FP integral.

Obviously, both of the integrals
∫ b

a f (x)(x− y)−1dx in the formulation (2) and∫ b
a f (x)(x− y)−2dx in the formulation (5) will have at least strongly singular in-

tegral kernels. That is when the numerators of the integral kernels are non-zero, the
corresponding denominators will sometimes be zero and the final integral does not
exist in the normal sense. This is just the reason why the CPV and the FP were
proposed.

However, we know a fact that the denominator cannot be a zero when the numerator
is a finite value (Dirac Delta function is an exception). Then we wonder whether
the integral forms, such as the strongly singular integral

∫ b
a f (x)(x− y)−1dx and

the hypersingular integral
∫ b

a f (x)(x− y)−2dx exist indeed. If they do not exist,
then how are they created and can we avoid the appearance of such kind of singular
integrals? In the following, we will try to answer this question through some simple
derivations. It should be pointed out that we do not want to deny the importance of
the CPV and the Hadamard FP and we just try to find a direct means to avoid the
appearance of such kinds of strongly singular and hypersingular integrals.

3 The weakly singular forms of the expressions on the right hand side of the
formulations (2) and (5)

Now let us consider how to take the differential symbols on the right hand side of
the formulation (2)

∂

∂y

∫ b

a
ln |x− y| f (x)dx, a < y < b
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and (5)

∂ 2

∂y2

∫ b

a
ln |x− y| f (x)dx, a < y < b

into the integral symbols directly. That is how to exchange the differential symbol
and the integral symbol as the integral kernel is weakly singular.

In 1992, Guiggiani, Krishnasamy, Rudolphi & Rizzo proposed a method to com-
pute the hypersingular integrals directly without using the Hadamard finite part
integral. The main difference between the present method and their approach is
that in the present method, all the processes of differential and integral are carried
out on the boundary only and no limit to the boundary is needed.

Now, let us derive the following three directional derivatives of three weakly sin-
gular integrals respectively to show how to take the differential symbols into the
integral symbols directly. Cases (b) and (c) are just the objectives in this session.

(a)

∂

∂x0

∫ x2

x1

1√
|x− x0|

dx, x1 < x0 < x2 (6)

(b)

∂

∂y

∫ b

a
ln |x− y| f (x)dx, a < y < b (7)

(c)

∂

∂y

[
∂

∂y

∫ b

a
ln |x− y| f (x)dx

]
, a < y < b (8)

3.1 Derivation of the formulation (6)

Generally, this form of integral should be computed by a strongly singular integral
in the sense of CPV. In the following, we will derive this formulation regardless of
the CPV.

For convenience, we set,

f (x0) =
∫ x2

x1

1√
|x− x0|

dx, x1 < x0 < x2.

Using the definition of the improper integral, we find that

f (x0) = 2
(√

x2− x0 +
√

x0− x1
)
.
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Therefore, the directional derivative of f (x0) with respect to x0 is,

∂ f (x0)
∂x0

=
1√

x0− x1
− 1√

x2− x0
(9)

This result is obtained through the process of finding the weakly singular integral
first and then finding the final directional derivative. For simplicity, we term this
process as ID. In practical boundary element application, the weakly singular inte-
grals are very hard or impossible to be integrated analytically. Therefore, the above
process may not be finished easily in most of the practical applications. Then the
problem is can we find the result through the process of taking the differential sym-
bol into the integral symbol first and then finding the final integral? Yes, we can.
For simplicity, we term this process as DI. Now we will finish this process using
two approaches.

In the first approach of DI, we will find the directional derivative of the integral
f (x0) through the process of finding the derivative to both the integral kernel and
the upper and lower limits. To do so, we must emphasize that the variable x0 is in
the range (x1,x2). Therefore, the integral can be divided into two parts as,

f (x0) =
∫ x2

x1

1√
|x− x0|

dx =
∫ x0

x1

1√
x0− x

dx+
∫ x2

x0

1√
x− x0

dx, x1 < x0 < x2

In this formulation, each part of the integrals is a weakly singular integral and its
value exists in the normal sense or in the sense of the improper integral. In the
following derivation, we will neglect the limit process in the calculation of the
improper integrals for simplicity. Then, the directional derivative of f (x0) with
respect to x0 can be found as,

∂

∂x0

∫ x2

x1

1√
|x− x0|

dx =
∂

∂x0

∫ x0

x1

1√
x0− x

dx+
∂

∂x0

∫ x2

x0

1√
x− x0

dx

=
1√

x0− x

∣∣∣∣
x=x0

+
∫ x0

x1

∂

∂x0

[
1√

x0− x

]
dx− 1√

x− x0

∣∣∣∣
x=x0

+
∫ x2

x0

∂

∂x0

[
1√

x− x0

]
dx

Clearly, we have taken the differential symbol into the integral symbol successfully.
One may say that there are still two indefinite terms 1√

x0−x

∣∣∣
x=x0

and 1√
x−x0

∣∣∣
x=x0

in

this formulation. Never mind, these terms can be canceled by the integral by part
of the integrals following them. Then we can find the result by an integral as,

∂

∂x0

∫ x2

x1

1√
|x− x0|

dx =
1√

x0− x

∣∣∣∣
x=x0

−
∫ x0

x1

∂

∂x

[
1√

x0− x

]
dx
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− 1√
x− x0

∣∣∣∣
x=x0

−
∫ x2

x0

∂

∂x

[
1√

x− x0

]
dx

=
1√

x0− x

∣∣∣∣
x=x0

−
[

1√
x0− x

]x=x0

x=x1

− 1√
x− x0

∣∣∣∣
x=x0

−
[

1√
x− x0

]x=x0

x=x1

=
1√

x0− x1
− 1√

x2− x0

Obviously, we find the same result using the different processes. In the above
process, we have emphasized that the critical step is separating the range of the
integral into two parts about the variable x0.

However, in the second approach of DI, we will firstly do coordinate transformation
about the integral f (x0), then carry out the directional derivative and finally find the
integral.

Similarly, since x1 < x0 < x2, we have

∂

∂x0

∫ x2

x1

1√
|x− x0|

dx =
∂

∂x0

∫ x0

x1

1√
x0− x

dx+
∂

∂x0

∫ x2

x0

1√
x− x0

dx (10)

Now begin to investigate the part ∂

∂x0

∫ x0
x1

1√
x0−x dx firstly. Let us do a variable sub-

stitution x = (1−η)x1 +ηx0 and set J = x0− x1.

Then we have dx = Jdη . And therefore,

∂

∂x0

[∫ x0

x1

1√
x0− x

dx
]

=
∫ 1

0

∂

∂x0

[
J√

x0− x

]
dη

=
∫ 1

0

[
J

∂

∂x0

(
1√

x0− x

)
+

1√
x0− x

∂J
∂x0

]
dη

Clearly, we have taken the differential symbol into the integral symbol successfully.
Then, the result can be found by an integral as,

∂

∂x0

[∫ x0

x1

1√
x0− x

dx
]

=
∫ 1

0

J
−1

2
√

(x0− x)3

∂

∂x0
(x0− x)+

1√
x0− x

dη

=
∫ 1

0

J
−1

2
√

(x0− x)3

(
1− ∂x

∂x0

)
+

1√
x0− x

dη

=
∫ 1

0

J
−1

2
√

(x0− x)3
(1−η)+

1√
x0− x

dη
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=
1√

x0− x1

∫ 1

0

1
2
√

1−η
dη =

1√
x0− x1

(11)

Similarly, we can find the other part,

∂

∂x0

∫ x2

x0

1√
x− x0

dx =− 1√
x2− x0

(12)

Finally, we obtained,

∂

∂x0

∫ x2

x1

1√
|x− x0|

dx =
1√

x0− x1
− 1√

x2− x0

Again, we find the same result through different processes.

The second approach is very important because of its broadly potential application
in the numerical implementation of the boundary element method. This process
also tells us how to avoid the appearance of the strongly singular integral. That is
after a coordinate transformation both the integral kernel and the Jacobian determi-
nant should be differentiated when the differential symbol is taken into the integral
symbol [Yan (2009)].

3.2 Derivation of the formulation (7)

Generally, this form of integral should be computed by a strongly singular inte-
gral in the sense of Cauchy principal value. In the following, we will derive this
formulation regardless of the CPV.

For convenience, we set,

g(y) =
∫ b

a
ln |x− y| f (x)dx, y ∈ (a,b) (13)

Then, because of y ∈ (a,b), we have

∂g(y)
∂y

=
∂

∂y

∫ y

a
ln |x− y| f (x)dx+

∂

∂y

∫ b

y
ln |x− y| f (x)dx (14)

Using the processes similar to those applied in the previous case, for the first part
on the right hand side of the above formulation we have,

∂

∂y

∫ y

a
ln |x− y| f (x)dx = [ln |x− y| f (x)]x=y +

∫ y

a

∂ ln |x− y|
∂y

f (x)dx

= [ln |x− y| f (x)]x=y +
∫ y

a

[
−∂ ln |x− y|

∂x

]
f (x)dx
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= [ln |x− y| f (x)]x=y− [ln |x− y| f (x)]x=y
x=a +

∫ y

a
ln |x− y| f ′ (x)dx

=
∫ y

a
ln |x− y| f ′ (x)dx+ ln |a− y| f (a) (15)

Similarly, for the second part we have,

∂

∂y

∫ b

y
ln |x− y| f (x)dx =

∫ b

y
ln |x− y| f ′ (x)dx− ln |b− y| f (b) (16)

Therefore, the final result for formulation (7) is,

∂

∂y

∫ b

a
ln |x− y| f (x)dx =

∫ b

a
ln |x− y| f ′ (x)dx− [ln |x− y| f (x)]x=b

x=a (17)

This expression is very interesting and important, because it is a weakly singular
integral and can be integrated normally regardless of the sense of the Cauchy prin-
cipal value. While in the past, most of the researchers regarded that the formulation
(7) must be integrated in the sense of the Cauchy principal value.

The following derivation shows that the formulation (17) is the same as the expres-
sion (2) presented in the reference Monegota (2009) with a minus sign (notice that
the expression just below the equation (2) in that reference missed a minus sign).

∫ b

a
ln |x− y| f ′ (x)dx− [ln |x− y| f (x)]x=b

x=a

= [ln |x− y| f (x)]x=b
x=a−

∫ b

a

f (x)
x− y

dx− [ln |x− y| f (x)]x=b
x=a

=−
∫ b

a

f (x)− f (y)
x− y

dx− f (y)
∫ b

a

1
x− y

dx

=−
∫ b

a

f (x)− f (y)
x− y

dx− f (y) [ln |x− y|]x=b
x=a

=−
∫ b

a

f (x)− f (y)
x− y

dx− f (y) ln
b− y
y−a

(18)

The difference of the minus sign is due to that,

∂

∂y

∫ b

y
ln |x− y| f (x)dx =−CPV

∫ b

a

f (x)
x− y

dx
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3.3 Derivation of the formulation (8)

Generally, this form of integral should be computed by a hypersingular integral in
the sense of Hadamard finite part integral. In the following, we will derive this
formulation to an integral form regardless of the Hadamard finite part integral and
the CPV.

Based on the formulation (17), we have,

∂

∂y

[
∂

∂y

∫ b

a
ln |x− y| f (x)dx

]
=

∂

∂y

[∫ b

a
ln |x− y| f ′ (x)dx− [ln |x− y| f (x)]x=b

x=a

]
=
∫ b

a
ln |x− y| f ′′ (x)dx−

[
ln |x− y| f ′ (x)

]x=b
x=a−

[
f (x)
y− x

]x=b

x=a
, a < y < b

(19)

This expression is more important due to that a so-called hypersingular integral is
now proved to be at most a weakly singular integral and no CPV and Hadamard
FP are required in the derivation. However, in the past, most of the researchers
concluded that such kind of integrals must integrate in the sense of Hadamard FP
[Carley (2007), Monegota (2009)].

The following derivation shows that the formulation (19) is the same as the ex-
pressions (27) and (28) presented in the reference Monegota (2009) with a minus
sign.

∫ b

a
ln |x− y| f ′′ (x)dx−

[
ln |x− y| f ′ (x)

]x=b
x=a−

[
f (x)
y− x

]x=b

x=a

=−
∫ b

a

f ′ (x)
x− y

dx−
[

f (x)
y− x

]x=b

x=a

=−
∫ b

a

f (x)
(x− y)2 dx

=−
∫ b

a

f (x)− f (y)
(x− y)2 dx− f (y)

∫ b

a

1

(x− y)2 dx

(20)

The minus sign is due to that,

∂

∂y

[
∂

∂y

∫ b

a
ln |x− y| f (x)dx

]
=−

∫ b

a

f (x)
(x− y)2 dx, a < y < b

As an example, f (x) = 1 , a =−1, b = 1 and |y| 6= 1, we can easily found the value
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of expression (8) from the formulation (19). That is,

∂

∂y

[
∂

∂y

∫ 1

−1
ln |x− y|dx

]
=−

[
1

y− x

]x=1

x=−1

=− 2
y2−1

, −1 < y < 1

(21)

And compared with the formulation (20), we have,∫ 1

−1

1

(x− y)2 dx =− ∂

∂y

[
∂

∂y

∫ 1

−1
ln |x− y|dx

]
=

2
y2−1

, −1 < y < 1

Therefore,∫ 1

−1

1

(x− y)2 dx =
2

y2−1
, −1 < y < 1 (22)

Formulation (22) is just identical to the equation (2.2b) presented by Carley (2007)
or the equation (25) presented by Monegota (2009) as −1 < y < 1.

4 Validation of the expression (19) by several numerical computations

To validate the expression (19), two special cases about the integral 1
2π

∫ a
−a

f (x)
x2 dx, a =

1
30 will be computed by numerical methods.

case 1: f (x) = 1;

case 2: f (x) =
√

x+2a.

According to the expression (19), for the case one we have

1
2π

∫ a

−a

1
x2 dx =

1
aπ

=
30
π

While in the numerical simulation, we use the fundamental solution of 2D potential
problems G0 = −lnr/(2π). Therefore, on an element located on the x axis, the
hypersingular integral operator is reduced to,

N0 f =
∫ a

−a

∂ 2G0

∂np∂nq
f (q)dxq =

1
2π

∫ a

−a

f (x)
x2 dx (23)

To calculate the hypersingular integral (23) numerically, the regularization rela-
tionship technique presented by Yan, Hung and Zheng (2003) is employed with the
constructed boundary as follows,
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Figure 1: Illustration of a 2D boundary discretization with 24 nodes.

This boundary is composed of two segments of length 6a and two semi-circles
with radius 3a. It is discretized using three-nodded curvilinear quadratic elements.
There are 12 elements and 24 nodes in total. The nodes marked by hollow circle
are located at the centres of the corresponding elements. The element represented
by dashed line is just the integral domain of the expression (23).

Then we use the regularization relationship technique presented by Yan, Hung and
Zheng (2003) to find the matrix D0 for the integral operator N0 . On the same time,
the direct integral about the integral operator N0 as the point p is located at the node
2 is computed on the boundary excepting the element marked by dashed line using
Gaussian quadrature and stored in a vector B. As a result, the value of expression
(23) is obtained by,

1
2π

∫ a

−a

f (x)
x2 dx =

24

∑
j=1

(D0 [2, j]−B [ j])∗ f j (24)

Tab.1 presents the numerical results for two integrals
∫ a
−a 1/x2dx and

∫ a
−a
√

x+2a/x2dx
as a = 1/30. Two kinds of numerical methods corresponding to the expressions
(24) and (19) are employed to compute these integrals. To validate the conver-
gence of the numerical methods, two discretizations of the model shown in Fig. 1
with 12 elements and 36 elements are applied in the simulation. For the integral∫ a
−a 1/x2dx, a = 1/30, it has an analytical solution similar to that given by the

expression (22). Clearly, both of the numerical results with 36 elements are very
close to the analytical solution. Moreover, in this case the numerical result found by
the expression (19) is just the analytical solution due to that the second derivative



218 Copyright © 2011 Tech Science Press CMES, vol.75, no.3, pp.205-222, 2011

of the function f (x) = 1 is 0. This example validates the numerical methods and its
convergence. Then the integral

∫ a
−a
√

x+2a/x2dx further validate the convergence
of the numerical methods.

5 Summary & Conclusion

We try to find a general way to avoid the occurring of the strongly singular and
hypersingular integrals. On the same time, we try to discover the reason why such
kind of singular integrals are created. Using the derivation of several simple exam-
ples, we find a way to avoid the occurring of the strongly singular and hypersingular
integrals. That is, when the differential symbol is taken into the integral symbol of
an integral with a weakly singular integral kernel, the range of this integral must be
regarded as a function of the differential variable. The result will help us to form
a new approach to overcome the strongly and hypersingular integrals occurring in
the boundary element method. The description of the derivations presented in this
paper may not be very strict mathematically. To form a general theory, a lot of
research should be done in the future.
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