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A Meshless Hybrid Boundary Node Method for Kirchhoff
Plate Bending Problems

F. Tan1,2, Y.L. Zhang1, Y.H. Wang3 and Y. Miao3

Abstract: The meshless hybrid boundary node method (HBNM) for solving the
bending problem of the Kirchhoff thin plate is presented and discussed in the
present paper. In this method, the solution is divided into two parts, i.e. the
complementary solution and the particular solution. The particular solution is ap-
proximated by the radial basis function (RBF) via dual reciprocity method (DRM),
while the complementary one is solved by means of HBNM. The discrete equa-
tions of HBNM are obtained from a variational principle using a modified hybrid
functional, in which the independent variables are the generalized displacements
and generalized tractions on the boundary and the lateral deflection in the domain.
The moving least squares (MLS) method is employed to approximate the boundary
variables whereas the domain variables are interpolated by a linear combination
of fundamental solutions of both the biharmonic equation and Laplace’s equation.
The present method is a truly boundary type meshless one as it does not require the
‘boundary element mesh’, either for the purpose of interpolation of the variables or
for the integration of ‘energy’. Several numerical examples are presented to illus-
trate the implementation and performance of the present method. It is shown that
high accuracy can be achieved with a small node number for clamped and simply
supported edge conditions.

Keywords: Meshless method; Hybrid boundary node method; Dual reciprocity
method; Plate bending; Kirchhoff Plate.

1 Introduction

The analysis of the plates is a subject of great importance in engineering prac-
tice due to the very diffuse employment of these structural members. The thin
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plate bending problem has been approached by using both analytical and numerical
methods. However, realistic problems with complicated geometries and boundary
conditions can be solved only numerically. The most popular method is the finite el-
ement method (FEM) [Zienkiewic (1977)]. The boundary element method (BEM)
has also been applied by many researchers to solve the Kirchhoff plate problem.
The first contributions came from Jaswon and Maiti (1968) for plates with smooth
boundaries. Further works were proposed by Altiero and Sikarskie (1978), Stern
(1979), Paris and Leon (1986, 1987) and by Frangi and Bonnet (1998). More re-
cently Leonetti et al. (2009) proposed a symmetric boundary element model for
the analysis of Kirchhoff plates. However, meshing generation required in both of
these methods can be a very time-consuming and expensive task.

Compared with the mesh-based methods (e.g. FEM and BEM), meshless methods
do not require a mesh, and nodes can be easily added and deleted without a burden-
some remeshing. Therefore, meshless methods have been developed rapidly and
attracted more and more attention in recent years. According to the way of the dis-
cretization, meshless methods can be divided into two categories: the domain type
and the boundary type. Several domain type meshless methods, such as the element
free Galerkin (EFG) method [Belytchko et al. (1994, 1996)], the point interpolation
method (PIM) [Liu and Gu (2001); Leitao (2001); Wang and Liu (2002)] and the
meshless local Petrov-Galerkin method (MLPG) [Atluri (2004); Atluri and Shen
(2002a, b); Atluri and Zhu (1998, 2000); Gu and Liu (2001); Long and Atluri
(2002)] have been proposed and achieved remarkable progress in solving a broad
class of boundary value problems.

Based on boundary integral equations, many boundary type meshless methods are
developed, such as the local boundary integral equation (LBIE) method [Atluri et
al. (2000); Sladek et al. (2002); Zhu et al. (1998)], the boundary node method
(BNM) [Kothnur et al. (1999); Mukherjee and Mukherjee (1997a)], the boundary
particle method (BPM) [Fu and Chen (2009)], the boundary element free method
(BEFM) [Kitipornchai et al. (2005); Liew et al. (2006)] and the Galerkin boundary
node method (GBNM) [Li and Zhu (2009, 2011)]. Compared with the domain
type meshless methods, these methods require only a nodal data structure on the
boundary surface of a body whose dimension is one less than that of the domain
itself.

The aforementioned meshless methods do not need an element mesh for the in-
terpolation of the field or boundary variables, but some of them have to use back-
ground cells for integration. The requirement of background cells for integration
makes the methods being not ‘truly’ meshless.

Zhang and Yao (2001, 2004) proposed another boundary type meshless method: the
hybrid boundary node method (HBNM). The HBNM gets rid of the background el-
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ements and is a truly boundary type meshless method. It employs the moving least
squares (MLS) [Lancaster and Salkauskas (1981)] to approximate the boundary
variables, and the integration is limited to a fixed local region on the boundary. No
elements are needed either for interpolation or for integration, and at the same time
it has the advantage of dimensionality reduction. This method has been employed
to solve the potential problems [Zhang and Yao (2001); Zhang et al. (2002)], and
the elastostatics problems [Zhang and Yao (2004); Miao et al. (2005)]. Like the
BEM, it is not convenient for solving elastodynamics analysis because applying the
elastodynamics fundamental solution increases the computational effort and the do-
main integration is inevitable. To overcome these drawbacks, the dual reciprocity
method (DRM) [Patridge et al. (1992)] was introduced into HBNM by Miao et
al. (2009) and Yan et al. (2009), and a new truly meshless method Dual Hy-
brid Boundary Node Method (DHBNM) is proposed. However, for the thin plate
bending problems, the governing equation is the fourth order PDE, which makes it
difficult to employ the DHBNM directly.

In this paper, the dual hybrid boundary node method will be developed for solv-
ing the bending problem of a thin plate. The solutions in this method are divided
into two parts: complementary solution and particular solution. For the particular
solution, DRM has been used and the radial basis functions are applied to inter-
polating the inhomogeneous parts of the equations, i.e. the distributed load per
unit area normal to the plate, while the complementary one is solved by means of
HBNM. The discrete equations of HBNM are obtained from a variational principle
using a modified hybrid functional which is expressed in terms of five indepen-
dent variables. On the boundary these variables are the generalized displacements,
i.e. deflection and normal slope, and the generalized tractions, i.e. normal bend-
ing and effective shear force per unit length. In the domain the functional involves
the deflection only. In this approach, the boundary variables are approximated us-
ing MLS, whereas the domain variables are interpolated by a linear combination
of fundamental solutions of both the biharmonic equation and Laplace’s equation.
Numerical examples presented in the present paper for the solution of thin plate
bending problems demonstrate the validity and accuracy of the proposed approach.

The following discussions begin with the brief description of the Kirchhoff plate
bending theory in Section 2. The DHBNM for thin plate bending problems is de-
veloped in Section 3. Some numerical examples for thin plates having different
boundary conditions are shown in Section 4. Finally, the paper ends with conclu-
sions in Section 5.
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2 Kirchhoff plate bending theory

A thin plate, defined over the domain Ωdelimited by the boundaryΓ, is considered
(Fig. 1). In the Kirchhoff theory the assumption of negligible shear deformations
lead to the description of the plate bending only in terms of the transversal dis-
placement w(x,y) [Timoshenko and Woinowsky-Krieger (1959)]. The governing
equation is

D∇
4w = p (1)

where w is the deflection of the middle surface of the plate, p is the prescribed
distributed load per unit area normal to the plate, ∇4 is the biharmonic operator,
and D is the flexural rigidity being given as(E is the elastic modulus, µ is the
Poisson coefficient and t is the plate thickness)

D =
Et3

12(1−µ2)

The following general form of boundary conditions is considered:{
w = w̄ ∀x ∈ Γw

θn = θ̄n ∀x ∈ Γθ

(2)

{
Mnn = M̄nn ∀x ∈ ΓM

Vn = V̄n ∀x ∈ ΓV
(3)

where θn, Mnn and Vndenote the normal slope, bending moment and effective shear
force, respectively. The barred symbols denote prescribed boundary values.

The Eqs. (2)-(3) may also be expressed in terms of the deflection was follows

Normal slope:

θn =
∂w
∂n

= w, ini (4)

Normal bending moment and twist moment:

Mnn =−D[µw,ii +(1−µ)w,i jnin j] (5)

Mnt =−D(1−µ)w, i jnit j (6)

Normal shear force and effective shear force:

Qn =−Dw,i j jni (7)
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Vn = Qn +
∂Mnt

∂ s
=−D[w,i j jni +(1−µ)(w,i jknit jtk +ρ

−1w,i jtit j−ρ
−1w,i jnin j)] (8)

where n = [n1,n2] and t = [t1, t2] are the unit normal vector and tangential vector to
the boundary Γ, respectively; s is the arc length along the boundary; ρ is the radius
of curvature, with ρ−1 = 0 along a straight line boundary.

At any regular point of the boundary, two such boundary conditions must be as-
signed. For any well-posed boundary value problem,Γw ∩ΓV = 0, Γw ∪ΓV = Γ

and Γθ ∩ ΓM = 0, Γθ ∪ ΓM = Γ. Additionally, there are two kinds of boundary
conditions for some corner points:

wk1 = w̄k1 (k1 = 1,2, · · · ,kw) (9)

‖Mnt‖k2
= ‖M̄nt‖k2 (k2 = 1,2, · · · ,kp) (10)

where kw is the number of corner points which the deflections are prescribed, kp

is the number of corner points which the concentrated forces are prescribed and
‖Mnt‖denotes the fictitious corner force due to the jump of discontinuity of the
twist moment.

The boundary conditions that usually appear along the boundary are:

simply supported edge:

w = w̄; Mnn = M̄nn (11)

clamped edge:

w = w̄; θn = θ̄n (12)

free edge:

Mnn = M̄nn; Vn = V̄n (13)

3 Dual hybrid boundary node method for solving the bending problem of a
thin plate

In this paper, the solution variable w can be divided into complementary solution
wc and particular solution wp, i.e.

w = wc +wp (14)

The particular solution wp just needs to satisfy the inhomogeneous equation as
follows:

D∇
4wp = p (15)
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Figure 1: Variables of Kirchhoff plate model

And the complementary solution wc has to satisfy the biharmonic equation and the
modified boundary condition, i.e.

D∇
4wc = 0 (16){

wc = w̄c = w̄−wp ∀x ∈ Γw

θ c
n = θ̄ c

n = θ̄n−θ
p
n ∀x ∈ Γθ

(17)

{
Mc

nn = M̄c
nn = M̄nn−Mp

nn ∀x ∈ ΓM

V c
n = V̄ c

n = V̄n−V p
n ∀x ∈ ΓV

(18)

3.1 Dual reciprocity method

The DRM can be used in thin plate bending problem to transform the domain in-
tegral arising from the transversal load term into the equivalent boundary integrals.
Applying interpolation for inhomogeneous term, the following approximation can
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be proposed for the term p in Eq. (1) [Patridge et al. (1992)]

p≈
N+L

∑
j=1

f j
α

j (19)

where f j are the approximation functions, α j are a set of initially unknown coef-
ficients, N and L are the total number of the boundary nodes and total number of
interior nodes, respectively.

The particular solution wp can be written as follows

wp =
N+L

∑
j=1

α
jŵ j (20)

where ŵ j satisfies following equation

D∇
4ŵ j = f j (21)

The approximation function, f j, can be chosen as f j = 1 + r. Obviously, the par-
ticular solution ŵ j satisfying Eq.(21) can be obtained as

ŵ j =
1
D

(
1
64

r4 +
1

225
r5) (22)

The corresponding expressions for the normal slope θ̂ j, bending moment M̂ j and
effective shear force V̂ j can be obtained by Eqs. (4), (5) and (8). Solving Eq. (19),
one can obtain the particular solution in matrix form as

wp = ŴF−1p (23)

θ
p
n = Θ̂ΘΘF−1p (24)

Mp
nn = M̂F−1p (25)

Vp
n = V̂F−1p (26)

where vector p is the value of transversal load on each node, each column of F
consists of a vector f j containing the values of the function f j at the DRM colloca-
tion nodes, and Ŵ, Θ̂ΘΘ, M̂ and V̂ are the matrix forms of the basis type of particular
solutions.
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3.2 Development of the hybrid boundary node method

3.2.1 Variational principle

The total potential energy can be given as

Πp =
∫

Ω

1
2

Di jklw,i jw,kl dΩ

−
∫

Ω

pwdΩ+
∫

ΓM

M̄nnθn dΩ−
∫

ΓV

V̄nwdΓ−
kp

∑
k1=1
‖Mnt‖k1

wk1 (27)

where Di jkl is the matrix of the flexural rigidity. For the isotropic elastic thin plates,

Di jkl = Dµδi jδkl +D(1−µ)δilδ jk (28)

In this paper, the HBNM is based on a modified variational principle. For thin plate
problems, the functions to be independent are: deflection of the plate in the domain,
w; generalized displacement on the boundary, i.e. deflection, w̃ and normal slope,
θ̃n; generalized tractions on the boundary, i.e. normal bending, M̃nn and effective
shear force, Ṽn.

The modified variational functional is defined as

Π
∗
p = Πp−

∫
Γ

(w− w̃)Ṽn dΩ+
∫

Γ

(θn− θ̃n)M̃nn dΩ+
kw

∑
k2=1

(wk2− w̃k2)
∥∥M̃nt

∥∥
k2

(29)

For the complementary solution, Eq. (18) is satisfied where the inhomogeneous
term p = 0. And taking the variational of Eq. (29), we have

δ Π
∗
p =

∫
Ω

Dw,ii j jδwdΩ+
∫

Γ

(Vn−Ṽn )δwdΓ

−
∫

Γ

(Mnn− M̃nn)δθn dΓ+
∫

Γ

(θn− θ̃n)δM̃nn dΓ−
∫

Γ

(w− w̃)δṼn dΓ

−
∫

ΓM

(M̃nn− M̄nn)δθndΓ+
∫

ΓV

(Ṽn−V̄n)δwdΓ

−
kp

∑
k2=1

(‖Mnt‖k2
−‖M̄nt‖k2

)δwk2 +
kw

∑
k1=1

(wk1− w̃k1)δ
∥∥M̃nt

∥∥
k1

(30)

Letδ Π∗p = 0, the following integration equations can be obtained as∫
Ω

Dw,ii j jδwdΩ+
∫

Γ

(Vn−Ṽn )δwdΓ = 0 (31)
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∫
Γ

(Mnn− M̃nn)δθn dΓ = 0 (32)∫
Γ

(θn− θ̃n)δM̃nn dΓ = 0 (33)∫
Γ

(w− w̃)δṼn dΓ = 0 (34)∫
ΓM

(M̃nn− M̄nn)δθn dΓ = 0 (35)∫
ΓV

(Ṽn−V̄n)δwdΓ = 0 (36)

kp

∑
k2=1

(‖Mnt‖k2
−‖M̄nt‖k2

)δwk2 = 0 (37)

kw

∑
k1=1

(wk1− w̃k1)δ
∥∥M̃nt

∥∥
k1

= 0 (38)

If the generalized traction boundary condition and the corner points conditions are
imposed, Eqs. (35)-(38) will be satisfied and they would be ignored in the following
analysis.

Figure 2:  Local domain centered at node Js and source point of fundamental solution 

corresponding to node Is  

It can be seen that Eqs. (31)-(34) hold for any portion of the domain Ω , for example, in a sub-

domain sΩ , which is bounded by sΓ  and sL  (Fig. 2). Following Refs. [Atluri and Zhu (1998)], 

the weak forms on a sub-domain sΩ  and its boundaries sΓ  and sL  are used to replace Ω and Γ in 

Eqs. (31)-(34). The test function )(QvJ  is used to replace the variational part. They can be 

presented as 

0d)
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0d)
~

( =Γ− +Γ ss L
nn vθθ                                                              (41) 
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In Eqs. (39)-(42), the variable of w~ , nθ~  , nnM~  and nV
~

 on sL  are not defined. If )(QvJ  can be 

selected in such a way that the integral over sL  vanishes, the problem can be solved conveniently. 

Thus the sub-domain sΩ  is chosen as the intersection of the domain Ω  and a circle centered at a 

boundary node, Js  (Fig. 2), and the test function )(QvJ  can be written in the form 
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where Jd  is the distance between the integral point Q in the domain and the nodal point Js ; Jc is 

a constant controlling the test function shape, and Jr  is the radius of the sub-domain. From Eq. 

Q
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ΓΩΓ SS ∂=

IP

IS

Figure 2: Local domain centered at node sJ and source point of fundamental solu-
tion corresponding to node sI
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It can be seen that Eqs. (31)-(34) hold for any portion of the domain Ω, for example,
in a sub-domain Ωs, which is bounded by Γs and Ls (Fig. 2). Following Refs.
[Atluri and Zhu (1998)], the weak forms on a sub-domain Ωs and its boundaries Γs

and Ls are used to replace Ω and Γ in Eqs. (31)-(34). The test function vJ(Q) is
used to replace the variational part. They can be presented as∫

Ωs

Dw,ii j j vdΩ+
∫

Γs+Ls

(Vn−Ṽn )vdΓ = 0 (39)

∫
Γs+Ls

(Mnn− M̃nn)vdΓ = 0 (40)

∫
Γs+Ls

(θn− θ̃n)vdΓ = 0 (41)

∫
Γs+Ls

(w− w̃)vdΓ = 0 (42)

In Eqs. (39)-(42), the variable of w̃, θ̃n , M̃nn and Ṽn on Ls are not defined. If vJ(Q)
can be selected in such a way that the integral over Ls vanishes, the problem can
be solved conveniently. Thus the sub-domain Ωs is chosen as the intersection of
the domain Ω and a circle centered at a boundary node, sJ (Fig. 2), and the test
function vJ(Q) can be written in the form

vJ(Q) =

{
exp[−(dJ/cJ)2]−exp[−(rJ/cJ)2]

1−exp[−(rJ/cJ)2] 0≤ dJ ≤ rJ

0 dJ ≥ rJ
(43)

where dJ is the distance between the integral point Q in the domain and the nodal
point sJ; cJ is a constant controlling the test function shape, and rJ is the radius of
the sub-domain. From Eq. (43) it can be seen that vJ(Q) vanishes on the boundary
LS. Therefore, Eqs. (39)-(42) can be rewritten as follows∫

Ωs

Dw,ii j j vdΩ+
∫

Γs

(Vn−Ṽn )vdΓ = 0 (44)

∫
Γs

(Mnn− M̃nn)vdΓ = 0 (45)

∫
Γs

(θn− θ̃n)vdΓ = 0 (46)

∫
Γs

(w− w̃)vdΓ = 0 (47)
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3.2.2 Variables interpolation

As a truly boundary-type meshless method, the HBNM uses the MLS to approxi-
mate the boundary variables, and applies the fundamental solution interpolation to
obtain the solutions in the domain.

By using the MLS principle, the boundary variablesw̃, θ̃n , M̃nn and Ṽn can be
written as

w̃ =
N

∑
I=1

ΦIw̌I (48)

θ̃n =
N

∑
I=1

ΦI θ̌I (49)

M̃nn =
N

∑
I=1

ΦIM̌I (50)

Ṽn =
N

∑
I=1

ΦIV̌I (51)

where N stands for the number of nodes located on the boundary; w̌I , θ̌I , M̌I and V̌I

are the fictitious nodal values; ΦI is the shape function of the MLS, which is given
by

ΦI (s) =
m

∑
j=1

p j (s)
[
A−1 (s)B(s)

]
jI (52)

In the above equation, s is a curvilinear coordinate, p j (s) provide a basis function
of order m. In this study, m is taken as 3, i.e., pT (s) = [1,s,s2]. Matrices A(s) and
B(s) are defined as

A(s) = pT (s) w(s) p(s) (53)

B(s) = pT (s) w(s) (54)

In Eqs. (53) and (54), w(s) is the weight matrix. This is a diagonal matrix where the
diagonal elements arewI (s). In the study, the Gaussian weight function is chosen
and can be written as

wI(s) =

{
exp[−(dI/cI)2]−exp[−(d̂I/cI)2]

1−exp[−(d̂I/cI)2]
0≤ dI ≤ d̂I

0 dI ≥ d̂I

(55)
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where dI = |s− sI| is the distance between an evaluation point and node sI; cI is
a constant controlling the shape of the weight function wI (s); d̂I is the size of the
support for the weight function wI (s) and determines the support of node sI .

For the thin plate bending problems, the domain variablesw,θn,Mnn and Vn are inter-
polated by a linear combination of the fundamental solutions of both the biharmonic
equation and Laplace’s equation. They can be written as

w =
N

∑
I=1

(wI
1xI

1 +wI
2xI

2) (56)

θn =
N

∑
I=1

(θ I
1xI

1 +θ
I
2xI

2) (57)

Mnn =
N

∑
I=1

(MI
1xI

1 +MI
2xI

2) (58)

Vn =
N

∑
I=1

(V I
1 xI

1 +V I
2 xI

2) (59)

where wI
1 is the fundamental solution of the biharmonic equation and wI

2 is the
fundamental solution of the Laplace’s equation; xI

1 and xI
2 are unknown parameters.

The fundamental solutions are written as

wI
1 =− 1

8πD
r2 lnr (60)

wI
2 =− 1

2πD
lnr (61)

where r = r (Q,PI) =
√

(x(Q)− x(PI))
2 +(y(Q)− y(PI))

2; Q and PI are the field
point and source point, respectively. And PI is determined by

PI = SI +hξ n(SI) (62)

where h is the mesh size; n(SI) is the outward normal direction to the boundary at
node SI; ξ is the scale factor and plays an important role in the performance of the
present method.

Substituting the Eqs. (60) and (61) into Eqs. (4), (5) and (8), one can obtain the
corresponding expressions for θ I

1 , θ I
2 , MI

1, MI
2, V I

1 and V I
2 .
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As w is expressed by Eq. (56), the term w,ii j j in the left hand of Eq. (44) vanished.
By substituting Eqs. (48)-(51), (58)-(59) into Eqs. (44)-(47), and omitting the
vanished terms, we have

N

∑
I=1

∫
Γs

[
V I

1 V I
2
]{xI

1
xI

2

}
vJ (Q) dΓ =

N

∑
I=1

∫
Γs

ΦIV̌IvJ (Q) dΓ (63)

N

∑
I=1

∫
Γs

[
MI

1 MI
2
]{xI

1
xI

2

}
vJ (Q) dΓ =

N

∑
I=1

∫
Γs

ΦIM̌IvJ (Q) dΓ (64)

N

∑
I=1

∫
Γs

[
θ I

1 θ I
2
]{xI

1
xI

2

}
vJ (Q) dΓ =

N

∑
I=1

∫
Γs

ΦI θ̌IvJ (Q) dΓ (65)

N

∑
I=1

∫
Γs

[
wI

1 wI
2
]{xI

1
xI

2

}
vJ (Q) dΓ =

N

∑
I=1

∫
Γs

ΦIw̌IvJ (Q) dΓ (66)

Using the above equations for all nodes, one can get the system equations

Vx = HV̌c
(67)

Mx = HM̌c
(68)

ΘΘΘx = Hθ̌
c

(69)

Wx = Hw̌c (70)

where

VIJ =
∫

ΓI
s

[
V J

1 V J
2

]
vI (Q) dΓ

HIJ =
∫

ΓI
s

ΦJvI (Q) dΓ

MIJ =
∫

ΓI
s

[
MJ

1 MJ
2

]
vI (Q) dΓ

ΘIJ =
∫

ΓI
s

[
θ J

1 θ J
2

]
vI (Q) dΓ
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WIJ =
∫

ΓI
s

[
wJ

1 wJ
2

]
vI (Q) dΓ

x = [x1
1,x

2
1, · · · ,xN

1 ,xN
1 ]T

V̌c = [V̌1,V̌2, · · · ,V̌N ]T

M̌c = [M̌1,M̌2, · · · ,M̌N ]T

θθθ
c = [θ̌1, θ̌2, · · · , θ̌N ]T

w̌c = [w̌1, w̌2, · · · , w̌N ]T

The evaluation of the matrices V, M, ΘΘΘ and W is much simpler in this approach
than in BEM and BNM. No singular integrations are involved, because the source
points of the fundamental solutions are located at a distance from the boundary of
the domain.

3.3 Dual hybrid boundary node method

In the DHBNM, the MLS approximation is employed to construct the shape func-
tion. However, same as the EFG method, there is an issue of imposition of the
essential boundary conditions [Mukherjee and Mukherjee (1997b); Zhu and Atluri
(1998)].

For a well-posed problem, there should be two prescribed boundary values at each
node on the boundary. The corresponding fictitious nodal values w̌I , θ̌I ,M̌I and V̌I

can be obtained as follows

w̌I =
N

∑
J=1

RIJw̄cJ (71)
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θ̌I =
N

∑
J=1

RIJ θ̄cJ (72)

M̌I =
N

∑
J=1

RIJM̄cJ (73)

V̌I =
N

∑
J=1

RIJV̄cJ (74)

where RIJ = [ΦJ (sI)]
−1, and w̄cJ , θ̄cJ , M̄cJ and V̄cJ are the complementary solutions

of boundary node J.

Substituting Eqs. (23)-(26), (71)-(74) into Eq. (14), then substitute the result into
Eqs. (67)-(70), we can obtain

Vx+HRV̂F−1p = HRVn (75)

Mx+HRM̂F−1p = HRMnn (76)

ΘΘΘx+HRΘ̂ΘΘF−1p = HRθθθ n (77)

Wx+HRŴF−1p = HRw (78)

The number of unknown vector x is 2N. One can choose 2N equations from Eqs.
(75)-(78) which the boundary conditions are prescribed, rearrange them, and obtain
2N system equations in term of x only. The unknown vector x can be obtained by
solving the final system equations.

From the above derivation procedure, it can be seen that the present method is
a truly meshless method, as absolutely no boundary elements are needed, either
for the interpolation purpose or for the integration purpose. The points inside the
domain are needed just for the particular solution interpolation, which can not deny
the present method being a boundary type method. Besides, there is no singular
integral in the method, and no further integration is needed in the ‘post-processing’
step.

4 Numerical examples

In this section, some numerical examples are presented to show the accuracy and
the efficiency of the proposed method. The parameters that influence the perfor-
mance of the method are also investigated. The results of the present method are
compared with the analytical solutions or the results obtained by others numerical
methods (e.g. BEM or FEM).
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In all the following examples, the support size for the weight function d̂I in Eq.
(55) is taken to be 3.5h, and the corresponding parameter cI is taken to be such that
d̂I/cI = 4.0. The radius of the sub-domain rJ in Eq. (43) is chosen as 0.8h, and the
parameter cJ is taken to be such that rJ/cJ = 1.2. The scale factor ξ = 6.0 in Eq.
(62). Also, in all integrations, five Gauss points are used on each part of the two
sections of Γs. In order to deal with the discontinuities at the corners, the nodes are
not arranged at these places and the support domain for interpolation is truncated.
The material properties are: E = 2.1×1010Pa, µ = 0.3 and t = 0.1m.

4.1 A simply supported equilateral triangular plate

This example consists of analyzing a simply supported equilateral triangular plate
subjected to a constant normal moment along all edges (see Fig. 3).

a

3
a

32a

 

Figure 3: A simply-supported equilateral triangular plate loaded by moments Mnn

uniformly distributed along the boundary

In this case, a = 3m and Mnn = 500m ·N / m, and the analytical expression of the
deflection surface is [Timoshenko and Woinowsky-Krieger (1959)]:

w =
Mnn

4aD

[
x3−3y2x−a

(
x2 + y2)+ 4

27
a3
]

(79)

In the present calculation, three different nodes arrangements of 5, 10 and 20 nodes
on each edge are used to study the convergence of the present method. Because the
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plate is loaded by normal moments Mnn uniformly distributed along the boundary,
i.e. p = 0 and no internal points are required in DRM. The numerical results for
five points inside the domain are listed in Table 1 where 10 nodes on each edge
are used, and they are compared with the analytical solutions. Fig. 4 shows the
distribution of normal slope θn along the boundary AC. It can be seen that the good
accuracy is achieved even with a few nodes.

Table 1: Deflections, bending moments and their relative error inside the domain

Location
Deflection w(×D) Bending moment Mx

Numerical Analytical Relative Numerical Analytical Relative
solution solution error (%) solution solution error (%)

(-0.5, 0.0) 130.213142 130.2083 0.0037 499.9621 500.0 0.0025
(0.0, 0.0) 166.672478 166.6667 0.0035 412.4897 412.5 0.0024
(0.5, 0.0) 140.629667 140.625 0.0033 325.0078 325.0 0.0054
(1.0, 0.0) 83.334176 83.33334 0.0010 237.5129 237.5 0.0323
(1.5, 0.0) 26.051783 26.04167 0.0388 149.9515 150.0 0.1454

-2 -1 0 1 2
-0.20

-0.16

-0.12

-0.08

-0.04

0.00 ×10-3

 5 nodes on one edge
 10 nodes on one edge
 20 nodes on one edge
 Analytical solution

N
or

m
al

 sl
op

e 
θ n

y  ( m )  

Figure 4: Normal slope θn along the boundary AC

The relative errors of the deflectionw and bending moment Mxx at the central point
O with different scale factor ξ are shown in Fig. 5. It can be seen that the results
are all very accurate whenξ ≥ 2.0, and the numerical results of deflection w are
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(a) Relative error of the deflectionw  
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(b)  Relative error of the bending moment xxM  

 
Figure 5: Relative error at the central point O with different scale factor ξ for the
simply supported equilateral triangular plate



A Meshless Hybrid Boundary Node Method for Kirchhoff Plate Bending Problems 19

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.000

0.001

0.002

0.003

0.004

R
el

at
iv

e 
er

ro
rs

 (%
)

Sub-domain radius, rj (×Dh)

 Deflection w
 Bending moment  Mxx
 Bending moment  Myy

 

Figure 6: Relative error at the central point O with different sub-domain radius r j

for the simply supported equilateral triangular plate

more accurate than bending moment Mxx. However, too large value of ξ will lead
to ill-conditioned equations. Actually, further computations of this example show
that the biggest value of ξ which ensures that the present method is non-degenerate
is 20.0, and this value is independent of the boundary conditions while dependent
on the domain geometry and meshing.

The influence of the sub-domain radius r j is also examined. Fig. 6 shows the
relative errors of w, Mxx and Myyat the central point O with different sub-domain
radius r j. It should be noted that ∪Γsdo not cover the whole bounding surface when
r j < 0.5h, and will be overlapped when r j ≥ 0.5h. It is shown that the results are
in all cases accurate regardless that Γs are overlapped, or even uncover the whole
boundary.

4.2 Circle plate

A circular plate of radius a carries a load of intensity q uniformly distributed over
the entire surface of the plate (see Fig. 7). Because the load is symmetrically
distributed about the axis perpendicular to the plate through its center, the deflection
surface will also be symmetrical.

For the circular plate with clamped edges, the analytical solution of the deflection
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at a distance r from the center is [Timoshenko and Woinowsky-Krieger (1959)]:

w =
q

64D

(
a2− r2)2

(80)

For the circular plate with supported edges, the analytical solution is [Timoshenko
and Woinowsky-Krieger (1959)]:

w =
q
(
a2− r2

)
64D

(
5+ µ

1+ µ
a2− r2

)
(81)

                    

            (a) Clamped circular plate                       (b) Simply supported circular plate 

 

Figure 7: A circular plate of radius a subjected to a uniform transversal load q

The deflections and moment along the radius for the clamped and simply supported
circular plates subjected to a uniform load are shown in Figs. 8 and 9. In the present
calculation, the circular is discretized using 15 nodes, and 30 internal points are
used for interpolation. The comparison with analytical results indicates that the
solutions are in surprisingly good agreement for both boundary conditions.

Fig. 10 represents the relative error for the bending moment Mr along the radius for
clamped circular plate with different nodes arrangements. It can be observed that
the results are improved considerably with the increasing number of nodes.

4.3 Simply supported square plate under uniform load

Consider an uniformly loaded simply supported square plate (see Fig. 11). This
is a case for which there is an analytical solution in the form [Timoshenko and
Woinowsky-Krieger (1959)]:

w =
16q
π6D

∞

∑
m=1,3,···

∞

∑
n=1,3,···

sin mπx
a sin mπy

a

mn
(

m2

a2 + n2

a2

)2 (82)
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Figure 8: Deflection w along the radius (w0 = Dw/qa4)
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Figure 9: Bending moment Mr along the radius (M0
r = Mr/qa2)
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Figure 10: Relative error for the bending moment Mr along the radius for clamped
circular plate

 
Figure 11: Simply supported square plate
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The normal slope θn along the simply supported edge x = 0 is presented in Fig. 12.
For the case, 10 nodes are uniformly distributed on each segment of the boundary
and 20 additional internal points are used. A good agreement between the present
solution and the analytical solution has been achieved. It can be seen that the nu-
merical solutions are accurate even if near the boundary, and the ‘boundary layer
effect’ vanishes by using this method.
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Figure 12: Normal slope θn along the simply supported edge x = 0

To study the influence of internal points, different number of internal points is used.
In Fig. 13, the relative error of the bending moment Mxxon y = 0.5 is represented
with different number of internal points. It shows that the more the points are
arranged in the domain, the more accurate solution can be obtained.

4.4 Clamped square plate under uniform load

A square plate subjected to a uniform distributed load with all edges clamped (see
Fig. 14) is analyzed to demonstrate the versatility of the present method. In the
present calculation, 8 nodes are uniformly distributed on each edge; 5, 10, 20 and
40 points are taken in the domain as internal nodes. Table 2 provides results of the
present method for the central deflection and some important bending moments.
It can be seen from this table that the present results are in excellent agreement,
contrast with those obtained by Costa (1986) using BEM and the results solved by
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Figure 13: Relative error of the bending moment Mxxon y = 0.5 for simply sup-
ported square plate

 

Figure 14: A square plate with all edges clamped

FEM using the commercial package ANSYS, in which the domain is discretized
into 400 elements.

The deflections w along OB obtained by the present method and analytical solution
[Timoshenko and Woinowsky-Krieger (1959)] are shown in Fig. 15. It shows
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Table 2: Deflections and bending moments in a uniformly loaded square plate with
all edges clamped

Method Deflection
at the center
(×D/qa4)

Bending mo-
ment at the cen-
ter (×1/qa2)

Bending mo-
ment at half
of the edge
(×1/qa2)

Present method

L =5 0.001255 0.022708 -0.050714
L =10 0.001258 0.022751 -0.050737
L =20 0.001263 0.022851 -0.051138
L =40 0.001266 0.022922 -0.051371

FEM 0.001270 0.022603 -0.040820
BEM [Costa (1986)] 0.001255 0.02282 -0.05140

Analytical result 0.001265 0.022925 -0.051334
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Figure 15: Deflection w along OB
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that they agree well with each other. Compared with FEM and BEM, the present
method has higher accuracy and requires less computation effort.

4.5 Simply supported square plate under sinusoidal load

For a simply supported square plate (see Fig. 11), we assume that the load dis-
tributed over the surface of the plate is given by the expression

p = qsin
πx
a

sin
πy
a

(83)

in which q represents the intensity of the load at the center of the plate.

The analytical solution for this problem is [Timoshenko and Woinowsky-Krieger
(1959)]:

w =
q

π4D
( 1

a2 + 1
a2

)2 sin
πx
a

sin
πy
a

(84)

For the case, 10 nodes are uniformly distributed on each segment of the boundary
and 60 additional internal points are used.
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Figure 16: Deflection w of the simply supported square plate under sinusoidal load
along centerline x=0.5a

In Fig. 16, 17 and 18, the numerical results for the deflection, the bending moments
and the shear forces are plotted against the analytical solution. Even though the
lateral load is the complicated trigonometric function, the accuracy of both the
bending moments and the shear forces is great.



A Meshless Hybrid Boundary Node Method for Kirchhoff Plate Bending Problems 27

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 Mxx
 Myy
 Analytical solutionB

en
di

ng
 m

om
en

t (
×

1/
qa

2 )

y/a  

Figure 17: Bending moments of the simply supported square plate under sinusoidal
load along centerline x=0.5a
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Figure 18: Shear forces of the simply supported square plate under sinusoidal load
along centerline x=0.5a

5 Conclusions

In this work, a truly boundary type meshless method for the analysis of bending
of thin homogeneous plates has been presented. This meshless method combines
HBNM and DRM, where HBNM is used to solve the complementary solution of



28 Copyright © 2011 Tech Science Press CMES, vol.75, no.1, pp.1-31, 2011

the homogeneous biharmonic equation and DRM is employed to deal with the in-
homogeneous term and obtain the particular solution. Detailed formulations for
solving such problems are developed. The main advantages of the proposed tech-
nique are its meshless character and dimensionality reduction. These features make
the approach simple to implement and, consequently, computationally efficient.

The formulation has been assessed from the comparison of the results obtained by
the present method on a series of Kirchhoff plates with the analytical solution and
results of other numerical methods. The results show that the present approach is
sufficiently accurate and effective. Furthermore, the influences of some computa-
tion parameters are studied. It is observed that the accuracy can be improved by
increasing the number of internal points.

There are many aspects of the use of the present method for Kirchhoff plates to be
addressed and further developed. In the near future, efforts will be directed on the
dynamic analysis of thin elastic plates by employing the present approach.
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