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Abstract: Rock surrounding the circular roadway with uniform and local support
is one of the most common phenomenons in roadway support engineering, which
needs to be studied thoroughly at the theoretical level. The existing literatures on
stress field function of rock surrounding the roadway is largely restricted to analyt-
ical solutions of stress for roadways with a uniform support or no support at all, the
corresponding stress solution under conditions of local support has not been pro-
vided. Based on the mechanical models of uniform support and local support, the
methods of the complex variable function and the complex Fourier series, using the
boundary integral equations which is obtained by the natural boundary reduction,
this paper obtains the rock surrounding’s Airy stress functions of the circular road-
way with the whole equilibrium uniform support and the non-equilibrium partial
local support respectively, as well as the analytical and numerical solutions to the
each stress field functions. We also analyze the rules of different distribution for
the two stress fields varying with the lateral pressure coefficient and the support
angle by comparison. The results of calculation show that, with the increasing of
the lateral pressure coefficient and the support angle of the circular roadway with
local support, the peak value of the compressive stress declines, thus the stability
of the overlaying strata is improved.
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1 Introduction

In mining engineering, the stress distribution inside rock surrounding is an impor-
tant foundation from which to study the stability of roadways under a variety of
supporting loads. Deep underground roadways of various shapes can be simplified
as holes in the infinitely elastic body, usually by plane strain models to analyze the
rock stress and deformation fields in the rock surrounding. The analysis of stress
and deformation in rock surrounding is the key important basis theory to determine
the stability of the roadway.

For the circular roadway, the stress analysis of rock surrounding is generally treated
as the problems of plane outside the circle [Bowie (1956), Gao and Zhang (2000),
Kubair and Bhanu-Chandar (2008),Wang and Gao (2008), Yang et al. (2008), Yang,
Gao and Chen (2010)], but which usually only provide the analytical or numerical
solution of stress for rock surrounding the roadway with primary hole (no support)
and uniform support, and no stress solution (analytical and numerical) for the road-
way is local support.

In theory, it is convenient to analyze the problems of rock surrounding the circu-
lar roadway under various boundary conditions (including the roadway with local
support) using the natural boundary element method (BEM).

The natural BEM [Yu (1993)] is a branch of a number of BEMs, based on a com-
plex variable method, a method using a Fourier series, or a Green functional method
to induce a Dirichlet boundary value problem as a differential equation into Pois-
son integration equation of the studied area or to induce Neumann boundary value
problem of differential equation into a strong singular boundary integral equation
[Yu (1993)]. The natural BEM is widely used to solve problems of a circular in-
terior and exterior domain and other plane and engineering problems [Hartmann
(1989), Rencis and Jong (1989), Brebbia and Dominguez (1992), Jou and Liu
(1999), Soares Jr. and Vinagre (2008), Zalewski and Mullen (2009a,b)]. Sev-
eral researchers [Yu and Du (2003), Liu and Yu (2008)] have investigated coupling
methods between natural BEM and finite element methods. Based on the natural
BEM on the boundary value problem of a bi-harmonic equation of a circular ex-
terior domain, a boundary integration equation of the Airy stress function in polar
coordinates is obtained.

This paper uses the surface forces on the roadway boundary to calculate the stress
function and its normal derivative, which are substituted into the integration equa-
tion, thus obtained the specific expression of a stress function under various bound-
ary (supporting) conditions, thus permits the analysis of stress and related deforma-
tion inside the rock surrounding, and then the rules of different distribution for the
two stress fields varying with the lateral pressure coefficient and the support angle
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are analyzed.

2 Boundary integration equation of stress function in rock surrounding the
circular roadway with uniform support

2.1 Mechanical model with uniform support

 

Figure 1: Mechanical model of circular roadway with uniform support

The stress function of rock surrounding the circular roadway with uniform support
can be deduced using natural BEM [Yu (1993)]. In order to facilitate the analysis,
we assume the radius of the roadway to be unit one. As shown in Fig. 1, the
roadway boundary is supported by the balance of uniform load, we can obtain the
boundary integration equation of stress function based on Gu Sa formulas and the
complex Fourier series with natural boundary reduction method [Yu (1993), Xu
(2005)] as Eq. (1).

φ(r,θ)uni =
(

C
2

cos2θ − D
2

sin2θ

)
(r−2 + r2−2)+(2E +d0)

(
r2−1

2
− lnr

)
+ f (r,θ), (r > 1) (1)

where, C,D and E are determined by the principal stresses σ1,σ2 in infinity and the
angle α between the principal stress σ1 and the x-axis [Xu (2005)], namely,

C + iD =−1
2
(σ1−σ2)e−2iα , (2)
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E =
1
4
(σ1 +σ2), (3)

f (r,θ) =∫ 2π

0

{
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2π[1+ r2−2r cos(θ −θ ′)]2

φ0(θ ′)−
(r2−1)2φn(θ ′)

4π[1+ r2−2r cos(θ −θ ′)]

}
dθ
′,

(4)

d0 =
1

2π

∫ 2π

0
φn(θ)dθ . (5)

In Eqs. (4) and (5), φ0(θ) and φn(θ)are the stress function of the roadway boundary
and the normal derivative of the stress function on the roadway boundary, respec-
tively, and the numerical values can be obtained by the known surface force X̄ and
Ȳ on the roadway boundary.

The Eq. (1) is the boundary integration equation of stress function in rock sur-
rounding the circular roadway with uniform support, and the numerical solutions
can be obtained as the following calculation example.

2.2 Calculation of the boundary stress function

In Fig 1, let rock surrounding the circular roadway with uniform support is q at the
hole boundary, with an infinite vertical ground stress p and infinite lateral stress
λ p, where λ is the lateral pressure coefficient and let 0≤ λ ≤ 1.

By analyzing Fig. 1, we obtain: σ1 =−λ p > σ2 =−p, the positive angle is α = π

between the principal stress σ1 and the x-axis, substituting it into Eqs. (2) and (3),
we obtain:

C =−1−λ

2
p, D = 0, E =−1+λ

4
p. (6)

Now, we need to determine the boundary stress function φ0(θ) and its normal
derivative φn(θ) according to the known surface force X̄ and Ȳ on the roadway
boundary. Firstly, a base point A is selected on the roadway boundary [Xu (2005)],
namely

φA = 0,

(
∂φ

∂x

)
A

= 0,

(
∂φ

∂y

)
A

= 0. (7)

Then for a random point B on the boundary, we have

φ0(θ) = φB =−
∫ B

A
(x− xB)Ȳ ds−

∫ B

A
(yB− y)X̄ds, (8)
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φn(θ) = (−cosθ)
(
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)
B
+(−sinθ)

(
∂φ
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)
B

=−cosθ

∫ B

A
Ȳ ds+ sinθ

∫ B

A
X̄ds.

(9)

Because rock surrounding the circular roadway with uniform support is q at the
hole boundary, so φ0(θ) and φn(θ) can be rewritten as:

φ0(θ) = φB =−
∫

θ

0
qR2 sin(θ −α)dα = q(cosθ −1), (10)

φn(θ) =−cosθ

∫
θ

0
qRsinαdα + sinθ

∫
θ

0
qRcosαdα = q(1− cosθ). (11)

Substituting Eqs. (10) and (11) into Eq. (4), and the integral becomes:

f (r,θ) = q
(

r cosθ − r2 +1
2

)
. (12)

Based on Eq. (5), we have:

d0 =
1

2π

∫ 2π

0
φn(θ)dθ = q. (13)

So, based on Eq. (1), we obtain the stress function:

φ(r,θ)uni =

− p−λ p
4

(
r−2 + r2−2

)
cos2θ +

p+λ p
2

(
lnr− r2−1

2

)
+qr cosθ−q(1+ lnr) .

(14)

The stress function φuni(r,θ) at any point inside the surrounding rock can be ob-
tained by the following equations:

σr =
1
r

∂φ

∂ r
+

1
r2

∂ 2φ

∂θ 2 , (15)

σθ =
∂ 2φ

∂ r2 ,τrθ =− ∂

∂ r

(
1
r

∂φ

∂θ

)
.

Thus the related stress analysis can be carried out [Xu (2005)]. Especially, in Eq.
(14), if q = 0, namely, the analytical stress solution of the rock surrounding can be
directly obtained for the excavated roadway without any boundary support. Fig.
2 shows the variation of the normal radial stress of roadway boundary σθ /p with
angle θ at p = 15q, for different lateral pressure coefficient λ , respectively.
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Figure 2: Variation of the normal radial stress of roadway boundary σθ /p with
angle θ

3 Boundary integration equation of stress function in rock surrounding the
circular roadway with local support

3.1 Mechanical model with local support

Fig. 3 is a schematic diagram of the roadway under the conditions with local bound-
ary support, in order to facilitate the analysis, we assume the radius of the roadway
to be unit one. In Fig. 3, X and Y are principal vectors of the surface force on the
roadway boundary along the x-axis and y-axis directions, while X = 0,Y 6= 0, with
an infinite vertical ground stress p and infinite lateral stress λ p. So we can obtain
the boundary integration equation of stress function with local support by natural
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Figure 3: Mechanical model of circular roadway with local support

BEM as Eq. (16).

φ(r,θ)loc =

rθ cosθ

2π
Y +

(2−2µ) lnr− (3−µ)
8π

rY sinθ +
r−1 sinθ

4π
Y
(

1−µ

2
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+
(
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2
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)(
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)
+(2E +d0)

(
r2−1

2
− lnr

)
+ f (r,θ) , (r ≥ 1) (16)

where, C,D,E and f (r,θ) can be obtained by Eqs. (2), (3) and (4). Thus the d0 and
f̄ (r,θ) are determined as Eqs. (17) and (18).

d0 =
1

2π

∫ 2π

0

[
φn(θ)+

θ cosθ

2π
Y
]

dθ . (17)

f̄ (r,θ) =−
∫ 2π

0

(r2−1)3

4π[1+ r2−2r cos(θ −θ ′)]2
θ ′ cosθ ′

2π
Y dθ

′. (18)

It can be seen from stress function of rock surrounding the circular roadway with
local support, namely, Eq. (16) has four more polynomials than stress function of
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rock surrounding the circular roadway with uniform support, Eq. (1). Namely,

φ(r,θ)loc = φ(r,θ)uni +
rθ cosθ

2π
Y +

(2−2µ) lnr− (3−µ)
8π

rY sinθ

+
r−1 sinθ

4π
Y
(

1−µ

2
+ r2

)
+ f̄ (r,θ) .(r ≥ 1) (19)

Obviously, from Eq. (16), φ(r,θ)loc = φ(r,θ)uni if the principal vector Y = 0,
namely, Eq. (16) can be determined as the stress function of rock surrounding the
circular roadway with uniform support Eq. (1).

3.2 Calculation of the boundary stress function

In Fig 3, let rock surrounding the circular roadway with local support on the road-
way boundary within the range of angle 2δ and its supporting surface force is q,
with an infinite vertical ground stress p and infinite lateral stress λ p.

We can calculate the principal vector Y of the roadway boundary load as:

Y =−
∫

δ

−δ

qcosαdα =−2qsinδ . (20)

Based on the similar computational method as part 2.2, we obtain:

C =−1−λ

2
p, D = 0, E =−1+λ

4
p. (21)

For a random point B on the boundary, we can obtain the stress function φ0(θ) and
its normal derivative φn(θ):

φ0(θ) = φB =

{
−q [1+ sin(δ +θ)] , 3

2 π−δ ≤ θ ≤ 3
2 π +δ

−2qsinδ cosθ , 3
2 π +δ ≤ θ ≤ 2π

(22)

φn(θ) =
∂φ

∂n

∣∣∣∣
B

=

{
q [1+ sin(δ +θ)] , 3

2 π−δ ≤ θ ≤ 3
2 π +δ

2qsinδ cosθ , 3
2 π +δ ≤ θ ≤ 2π

(23)

Substituting Eqs. (20) and (23) into Eq. (17), and the integral becomes:

d0 =
1

2π

∫ 2π

0

[
φn(θ)+

θ cosθ

2π
(−2qsinδ )

]
dθ = qδ/π. (24)
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Substituting Eqs. (20), (22) and (23) into Eqs. (4) and (18), we obtain:

f (r,θ) =−
(
r2−1

)3 q
4π[∫ 3π

2 +δ

3π

2 −δ

1+ sin(δ +θ ′)
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3π

2 +δ

2sinδ cosθ ′

[1+ r2−2r cos(θ −θ ′)]2
dθ
′

]
,

(25)

f̄ (r,θ) =−
(
r2−1

)3 q
4π

[∫ 2π

0

−2(1−µ)θ ′ sinδ sinθ ′

4π[1+ r2−2r cos(θ −θ ′)]2
dθ
′
]
. (26)

Substituting the analytic integrals above into Eq. (16), using the computing soft-
ware MATLAB to calculate the numerical values, the stress function φloc(r,θ) and
its numerical value at any point inside the surrounding rock can be obtained as
shown in Fig. 4.

Let the Poisson’s ratio as µ = 0.3, p = 15q,δ = π/4, Fig. 4 shows the variation
of the normal radial stress of roadway boundary σθ /p with angle θ and different
lateral pressure coefficient λ , respectively.

4 Results and discussion

Compare Fig. 2 and Fig. 4, we can obtain the following results:

(1) As shown in Fig. 2, when the circular roadway boundary of rock surrounding
is supported by a uniform load, the normal radial stress of roadway boundary σθ is
symmetry on the x-axis;

(2) As shown in Fig. 4, the symmetry becomes an end while the stress on the
roadway boundary is local support. For the performance, when the lateral pressure
coefficient λ < 0.5, there appeared peak value of the local tensile stress on the floor
(θ = π/2), however, there appeared peak value of the local compressive stress on
the floor while the lateral pressure coefficient λ > 0.5;

(3) When λ , p and q have same values, the maximum of compressive stress with
local support (Fig. 4) is always bigger than the stress with uniform support (Fig.
2).

Fig. 5 shows the variation of the normal radial stress of roadway boundary σr/p
with angle θ at λ = 0.8, r = 2 and different supporting angle δ , respectively. It
can be seen that: there appeared peck value of the compressive stress near the roof
(θ = 3π/2 = 4.712) and floor (θ = π/2 = 1.571), while appeared minimum value
on the bilateral roadway. With the increasing of the support angle δ , the peak value
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Figure 4: Variation of the normal radial stress of roadway boundary σθ /p with
angle θ

of the compressive stress declines obviously on the roof (θ = 3π/2 = 4.712), thus
the stability of the overlaying strata is improved.

5 Conclusions and future research

The analytical and numerical solution of stress function of rock surrounding the
circular roadway with uniform and local support has been studied by Natural BEM,
based on the discussion above, we can obtain the following conclusions:

(1) Based on a complex variable function method, a complex Fourier series method
and by a natural boundary reduction, we obtained the boundary integration equa-
tion of stress function in rock surrounding the circular roadway with uniform and
local support. Using surface force on the roadway boundary to calculate the stress
functions and their normal derivative under the two conditions, and substituting
them into the integration equation, the specific expression, as well as the analyses
solution and numerical solution of stress functions have been obtained.

(2) The rules of different distribution for the two stress fields varying with the lateral
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Figure 5: Variation of σr/p with angle θ at λ = 0.8,r = 2 and different supporting
angle δ

pressure coefficient and the support angle are analyzed. Compared the variation
of the normal radial stress of roadway boundary σ with different lateral pressure
coefficient λ and different supporting angle δ , respectively, the results show that:
with the increasing of the lateral pressure coefficient λ and the support angle δ of
the circular roadway with local support, the peak value of the compressive stress
declines, thus the stability of the overlaying strata is improved.

For future research, the stress function of the circular, oblong, etc. roadways with
different supports will be analyzed, as well as the numerical simulation and the
related engineering application.
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