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Application of An Atomistic Field Theory to Nano/Micro
Materials Modeling and Simulation

Xiaowei Zeng1

Abstract: This paper presents an atomistic field theory and its application in
modeling and simulation of nano/micro materials. Atomistic formulation and finite
element implementation of the atomistic field theory is briefly introduced. Numer-
ical simulations based on the field theory are performed to investigate the material
behaviors of bcc iron at coarse-grained scale and we have obtained the mechani-
cal strength and elastic modulus, which are in good agreement with results by first
principles calculations. Also the nanoscale deformation and failure mechanism are
revealed in bcc iron nanorods under simple tension. It is interesting to observe that
under tensile loading, iron has gone through a bcc-fcc phase transformation before
failure.

Keywords: Finite element; Molecular dynamics; Multiscale simulation; Nanorods;
Phase transformation

1 Introduction

The last decades have seen exciting new developments in multiscale modeling
approach, which has become a powerful simulation tool that may soon become
a powerful research tool to supplement experimental and theoretical analysis in
nanoscience and nano-technology. Conceptually, there are two categories of multi-
scale simulations: sequential multiscale simulations and concurrent multiscale sim-
ulations. The sequential multiscale methodology attempts to link different scales
together through message passing mechanisms: large-scale models use the coarse-
grained representations with information obtained from fine scale models. This
sequential type of methods has proven effective in systems in which the different
scales are weakly coupled. The general idea of the concurrent multiscale method is
a paradigm that different scales are coexisting in a combined model, where differ-
ent scales of the system communicate with each other through boundary message
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passing e.g. hand-shaking procedures or permeable volume message passing. In
a concurrent simulation, the system is often decomposed into domains character-
ized by different scales and physics. The different domains are treated by different
methods; a successful multiscale model seeks a smooth coupling between these
interfaces regions. This approach is mostly desirable for systems in which system
behavior at each scale depends strongly on what happens at the other scales. Often
times, concurrent multiscale simulations are employed to discover and to explain
new and challenge physical phenomena.

There have been a number of reviews on multiscale simulation methods in the lit-
erature, with varying purposes and levels of details [Curtin and Miller (2003), Vve-
densky (2004), Liu et al (2005), E and Li (2005), Lu and Kaxiras (2006), Miller
and Tadmor (2009)]. Among various multiscale methods are the coupled length
scale method [Abraham et al (1998a), Abraham et al (1998b), Rudd and Broughton
(1998), Broughton et al (1999), Rudd and Broughton (2000)], the bridging scale
method [Wagner and Liu (2003), Wagner et al (2004), Qian et al (2004), Karpov
et al (2006), Park et al (2005)], the bridging domain method [Xiao and Belytschko
(2004)], the mathematical homogenization theory [Chen and Fish (2006)], the per-
fectly matched method [To and Li (2005), Li et al (2006)], the Heterogeneous mul-
tiscale method [E and Engquist (2003), Li and E (2005)] and so forth. Another
typical popular bottom up approach is the quasicontinuum method [Tadmor, Ortiz,
Phillips (1996)], which is remarkably successful in many applications [Shenoy et
al (1998), Miller et al (1998), Shenoy and Phillips (1999), Shenoy et al (1999),
Tadmor et al (1999), Smith et al (2000), Smith et al (2001), Miller and Tadmor
(2002), Tang et al (2006)]. It is also worthwhile to mention the recently developed
multiresolution theory [Vernerey et al (2007), Vernerey et al (2008), McVeigh and
Liu (2008), McVeigh and Liu (2009)], in which different length scales are built in
the same framework.

An atomic based field theory has been initially proposed by Chen and Lee for con-
current atomic-continuum modeling of materials/systems [Chen and Lee (2005),
Chen and Lee (2006)]. Further developments and applications of the field the-
ory can be found in the following publications [Chen (2006), Chen et al (2006),
Lei et al (2008), Chen (2009), Lee et al (2009a), Lee et al (2009b), Wang and
Lee (2010), Zeng et al (2011), Wang et al (2011)]. In the theory, atomistic defi-
nitions and continuous local density functions of fundamental physical quantities
are derived. By decomposing atomic motion/deformation into homogeneous lattice
motion/deformation and inhomogeneous internal atomic motion/deformation, and
also by decomposing momentum flux and heat flux into homogeneous and inho-
mogeneous parts, field description of conservation laws at atomic scale has been
formulated. Since the conservation equations obtained by Chen et al. [Chen and
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Lee (2005), Chen and Lee (2006)] are valid at atomic scale, the field theory can
reproduce time-interval averaged atomic trajectories and can be used to investigate
phenomena and properties that originated at atomic scale. On the other hand, it is
a continuum field theory in terms of time-interval averaged quantities, and can be
applied to simulate phenomena at larger length and time scales. A comparison of
the atomistic field theory with classical continuum theory, the Micromorphic theory
[Eringen and Suhubi (1964)], molecular dynamics simulations and quasicontinuum
method can be found in Zeng et al. (2011).

2 Atomic Field Theory

Crystalline solids are distinguished from other states of matter by a periodic ar-
rangement of the atoms; such a structure is called a crystal lattice. The atomic view
of a crystal is as a periodic arrangement of local atomic bonding units. Each lattice
point defines the location of the center of a unit. The space lattice is macroscop-
ically homogeneous. Embedded in each lattice point is a group of bonded atoms,
the smallest structural unit of the crystal. The structure of the unit together with
the network of lattice points determines the crystal structure and hence the physical
properties of the material.

Figure 1: Description of deformation/motion decomposition in the field theory

Macroscopic quantities are generally described by continuous functions of physical
space coordinates x and time t. They are fields in physical space-time. Microscopic
dynamic quantities, on the other hand, are functions of phase-space coordinates
(r,p), i.e., the positions and momenta of atoms. For multi-element systems, there
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is more than one atom in a unit cell (see Figure 1). Thus, one has

r =
{

Rkα = Rk +∆rkα
∣∣ k = 1,2,3, ...n, α = 1,2,3, ..υ

}

p =
{

mαVkα = mαVk +mα
∆vkα

∣∣ k = 1,2,3...n, α = 1,2,3, ...υ
} (1)

where the superscript kα refers to the α−th atom in the k−th unit cell; n is the total
number of unit cells in the system and υ is the number of atoms in a unit cell; mα is
the mass of the α-th atom; Rkα and Vkα are the position and velocity vector of the
kα atom, respectively;Rk and Vk are the position and velocity of the mass center of
the k−th unit cell, respectively; ∆rkα and ∆vkα are the atomic position and velocity
of the α − th atom relative to the mass center of the k− th unit cell, respectively
(see Figure 1). The local density of any measurable phase-space function a(r,p)
can generally be defined as

A(x,yα , t) =
n

∑
k=1

υ

∑
β=1

a{r(t),p(t)}δ (Rk−x)δ̃ (∆rkβ −yα)≡ Aα(x, t) (2)

The first delta function in eq. (2) is a localization function that provides the link
between phase space and physical space descriptions. It can be a Dirac δ−function
by Irvine and Kirkwood (1950), or a distribution function by Hardy (1982), such as

δ (Rk−x) = π
−3/2l−3e−|R

k−x|/l2
(3)

The field descriptions of the conservation equations and the constitutive relations
(the interrelations between field quantities) are found to be independent of the
choices of the localization function [Chen and Lee (2005), Chen and Lee (2006)].
The second delta function in eq. (2) is a Kronecker delta, which identifies yα to
∆rkα . It can be easily proven that the following normalization condition holds∫

δ (Rk−x)δ̃ (∆rkα −yα)d3x = 1 (k = 1,2,3, ...n) (α = 1,2,..υ) (4)

Also, it is obvious that the distribution function, eq. (3), satisfies the following
identity as the Dirac δ − function does

∂δ (Rk−x)
∂Rk =−∂δ (Rk−x)

∂x
(5)

Physical properties, such as thermodynamic properties and transport properties, re-
fer only to average behavior. Most current MD applications involve systems which
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are either in equilibrium or in some time-independent stationary state; where indi-
vidual results are subjected to fluctuation; it is the well-defined averages over suf-
ficiently long time intervals that are of interest. In deriving the field description of
atomic quantities and balance equations, it is the time-interval averaged quantities
that are involved. The time-interval averaged (at time t in the interval [t, t + ∆t])
local density function is defined as

Āα(x, t) = 〈Aα(x, t)〉 ≡ 1
∆t

∆t∫
0

Aα(x, t + τ)dτ

=
1
∆t

∆t∫
0

n

∑
k=1

a{r(t + τ),p(t + τ)}δ (Rk−x)δ̃ (∆rkα −yα)dτ

(6)

With the help of eq.(5), the time evolution of the local density function can be
obtained as

∂Aα

∂ t
|x,yα =

n

∑
k=1

da
dt

δ (Rk−x)δ̃ (∆rkα −yα)

−∇x ·

[
n

∑
k=1

Vk⊗aδ (Rk−x)δ̃ (∆rkα −yα)

]

−∇yα ·

[
n

∑
k=1

∆vkα ⊗aδ (Rk−x)δ̃ (∆rkα −yα)

] (7)

When Aα is a conserved property, it results in a local conservation law that governs
the time evolution of Aα . The mathematical representation of conservation equa-
tions for mass, linear momentum and energy at atomic scale has been analytically
obtained in terms of averaged field quantities [Chen and Lee (2005), Chen and Lee
(2006), Lee et al (2009a), Zeng et al (2011)], which are

dρ̄α

dt
+ ρ̄

α
∇x · v̄ + ρ̄

α
∇yα ·∆v̄α= 0 (8)

ρ̄
α d

dt
(v̄+∆v̄α) = ∇x · t̄α +∇yα · τ̄ττα + φ̄φφ

α (9)

where the time-interval averaged mass densityρ̄α , linear momentum ρ̄α(v̄+∆v̄α),
homogeneous atomic stresses t̄α

(kin) + t̄α
(pot) and inhomogeneous atomic stresses τ̄ττ

α
(kin) +

τ̄ττ
α
(pot), body force density φ̄φφ

α are defined as

ρ̄
α(x, t)≡

〈
n

∑
k=1

mα
δ (Rk−x)δ̃ (∆rkα −yα)

〉
(10)
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ρ̄
α(v̄+∆v̄α)≡

〈
n

∑
k=1

mα(Vk +∆vkα)δ (Rk−x)δ̃ (∆rkα −yα)

〉
(11)

t̄α
(kin) ≡−

〈
n

∑
k=1

mαṼk⊗ Ṽkα
δ (Rk−x)δ̃ (∆rkα −yα)

〉
(12)

τ̄ττ
α
(kin) ≡−

〈
n

∑
k=1

mα
∆ṽkα ⊗ Ṽkα

δ (Rk−x)δ̃ (∆rkα −yα)

〉
(13)

t̄α
(pot) ≡−

1
2

〈
n

∑
k,l=1

υ

∑
ξ ,η=1

(Rk−Rl)⊗Fkξ B(k,ξ , l,η ,x,yα)

〉
(14)

τ̄ττ
α
(pot) ≡−

1
2

〈
n

∑
k,l=1

υ

∑
ξ ,η=1

(∆rkξ−∆rlη)⊗Fkξ B(k,ξ , l,η ,x,yα)

〉
(15)

φ̄φφ
α ≡

〈
n

∑
k=1

φφφ
kα

δ (Rk−x)δ̃ (∆rkα −yα)

〉
(16)

where Fkξ is the interatomic force acting on the kξ atom; φφφ kα is the body force
acting the kα atom;

Ṽkα ≡ Vkα − v̄−∆v̄α , Ṽk ≡ Vk− v̄ , ∆ṽkα ≡ ∆vkα −∆v̄α (17)

B(k,ξ , l,η ,x,yα)≡
1∫

0

dλδ

(
Rk

λ +Rl(1−λ )−x
)

δ̃

(
∆rkξ

λ +∆rlη(1−λ )−yα

)
(18)

where v̄ is the time interval averaged velocity of the centroid of a unit cell and ∆v̄α

is the time interval averaged velocity of the α− th atom relative to the centroid of
the unit cell.

It is worthwhile to note that, with the atomistic definitions of interatomic force and
the potential parts of the atomic stresses, one has

∇x · t̄α

(pot) +∇yα · τ̄ττα

(pot) = f̄α (19)

where f̄α is the interatomic force density acting on the α− th atom in the unit cell
located at x.
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3 Finite Element Formulation

In the finite element formulation, we work with time-interval averaged quantities.
From now on, for simplicity, we drop the bars on top of the quantities if it does not
cause ambiguity. The governing equations, eq.(9) can now be rewritten as

mα üα = {∇x · tα +∇yα ·τττα}V + fα +φφφ
α (20)

where uα is the displacement vector of the α − th atom; V is the volume of unit
cell. We further assume that the temperature within a unit cell is uniform. This
implies T α = T (x, t) and ∇yα ·τττα = 0. Now the governing equation, eq. (20), can
be rewritten as [Lee et al (2009a), Zeng et al (2011)]

mα üα = V ∇ · tα + fα +φφφ
α (21)

with tα
i j =−γαkBT δi j/V , τα

i j =−(1− γα)kBT δi j/V and γα ≡ mα/
ν

∑
α=1

mα . In this

work, we are only concerned with ‘one-way coupling’ with temperature and elec-
tromagnetic fields, i.e., the temperature and electromagnetic fields are given as
functions of space and time. Then the relevant governing equations are just the
balance law for linear momentum:

mα üα =−γ
αkB∇T + fα +φφφ

α (22)

In case of temperature being constant, including T = 0, we can drop the first term
in the right hand side of eq. (22), and the governing equation for any α− th atom
in the k− th unit cell can be rewritten as

mα ü(k,α) = f(k,α)+φφφ(k,α) (23)

where f(k,α) is all the interatomic force acting on the α − th atom in the k− th
unit cell; φφφ(k,α) is all the body force due to external field acting on the α − th
atom in the k− th unit cell. The effect of non zero temperature should be reflected
in the boundary conditions. However, in this work we consider zero-temperature.
Therefore, for a system with pair potential, one may rewrite eq. (23) as

mα ü(k,α) =
n

∑
l=1

υ

∑
β=1

f(k,α ; l,β )+φφφ(k,α) (24)

where f(k,α ; l,β ) is the interatomic force acting on the α− th atom of the k− th
unit cell due to the interaction with the β − th atom of the l− th unit cell, with the
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understanding (k,α) 6= (l,β ). The inner product of eq. (24) with virtual displace-
ment δu(k,α) leads to

mα ü(k,α) ·δu(k,α) =
n

∑
l=1

υ

∑
β=1

f(k,α ; l,β ) ·δu(k,α)+φφφ(k,α) ·δu(k,α) (25)

Sum over all α and k, we obtain the following variational equation, the so-called
weak form, as

n

∑
k=1

υ

∑
α=1

mα ü(k,α) ·δu(k,α) =
n

∑
k=1

υ

∑
α=1
{

n

∑
l=1

υ

∑
β=1

f(k,α ; l,β )+φφφ(k,α)} ·δu(k,α)

(26)

Notice that eq. (26) can also be expressed as

n

∑
k=1

υ

∑
α=1

mα ü(k,α) ·δu(k,α) =
n

∑
k=1

υ

∑
α=1

n

∑
l=1

υ

∑
β=1

f(l,β ; k,α) ·δu(l,β )

+
n

∑
k=1

υ

∑
α=1

φ(k,α) ·δu(k,α)

(27)

It is noticed that

f(k,α ; l,β ) =−f(l,β ; k,α) (28)

Therefore eq. (27) can be rewritten as

n

∑
k=1

υ

∑
α=1

mα ü(k,α) ·δu(k,α) =
1
2

n

∑
k=1

υ

∑
α=1

n

∑
l=1

υ

∑
β=1

f(k,α ; l,β ) · [δu(k,α)−δu(l,β )]

+
n

∑
k=1

υ

∑
α=1

φ(k,α) ·δu(k,α)

(29)

Suppose the whole specimen is divided into Ne finite elements (8−node solid ele-
ments) with Np finite elements nodes. Properly going through the process of nodal
force assembly, the final FEM governing equation can be expressed as [Lee et al
(2009a), Zeng et al (2011)]:

mα ü(Ip,α) = F(Ip,α)+φφφ(Ip,α) (Ip = 1,2,3, ....,Np ; α = 1,2,3, ....,υ) (30)
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where F(Ip,α) and φφφ(Ip,α) are the interatomic force and the body force acting on
α − th atom of the Ip− th node, respectively. It is noticed that the mass matrix of
eq. (30) is a diagonal matrix.

It is worthwhile to mention that in the atomistic field theory, both MD simulation
and continuum modeling techniques can be utilized. Different meshes can be used
in regions of different concerns, and if needed, mesh in critical region can be refined
to the atomic scale, which is clearly described in eqs. (23, 30). Equation (23) is the
basis for atomic simulation, since it is in terms of unit cells, while eq. (30) is the
basis for finite element simulation, since it is in terms of finite element nodes. It
has been proved that, when the element size reduces to the size of a unit cell, the
field theory is automatically reduced to an atomic theory [Zeng et al (2011)].

4 Numerical Simulation

In this work, we first investigate the mechanical behavior in single crystal bcc iron
under different mechanical loading conditions to obtain the material properties in
coarse-grained models. The physical phenomena of bulging and necking are re-
vealed by the simulation results. And then we reduced the element size to the size
of a unit cell to study the mechanical deformation mechanism in bcc Fe nanorods.
We observed the bcc-fcc phase transformation in bcc iron nanorods under simple
tension. In these analyses, atomic units are used throughout unless otherwise ex-
plicitly specified.

4.1 Interatomic potential for Fe

In this work, we adopt the Finnis-Sinclair Model [Finnis and Sinclair (1984)] for
material bcc iron. The potential energy of the Finnis-Sinclair Model (FSM) and the
Embedded Atom Model (EAM) has the following general form:

U =
1
2

N

∑
i=1

N

∑
j=1

Vi j (ri j)+
N

∑
i=1

F (ρi) (31)

where F (ρi) is a functional describing the energy of embedding, defined as

ρi =
N

∑
j 6=i

ρi j (ri j) , ri j ≡ ri− r j , ri j ≡
∣∣ri j
∣∣ (32)
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The Finnis-Sinclair potential is defined as

Vi j = (ri j− c)2 (c0 + c1ri j + c2r2
i j
)

ρi j (ri j) = (ri j−d)2 +β
(ri j−d)3

d
F (ρi) =−A

√
ρi

(33)

with parameters c0,c1,c2,c,A,d,β from the reference [Finnis and Sinclair (1986)];
both c and d are cutoffs.

We rewrite the EAM/FSM potential as:

U = U1 +U2 , U1 =
1
2

N

∑
i=1

N

∑
j=1

Vi j (ri j) , U2 =
N

∑
i=1

F (ρi) (34)

The atomic forces for FSM can be obtained as:

fk =−∂U1

∂rk
− ∂U2

∂rk
(35)

−∂U1

∂rk
=−

N

∑
j=1, j 6=k

{
2
(
rk j− c

)(
c0 + c1rk j + c2r2

k j
)
+
(
rk j− c

)2 (c1 +2c2rk j
)} rk j

rk j

(36)

−∂U2

∂rk
=

N

∑
j=1, j 6=k

A
2

(
1
√

ρk
+

1
√

ρ j

){
2
(
rk j−d

)
+3β

(
rk j−d

)2

d

}
rk j

rk j
(37)

4.2 Coarse-grained simulation of bcc iron

One approach to validate a theory and/or numerical implementation is to measure
the elastic constant of a material. First principles calculations and experimental
results occur in our simulation and essentially validate our theory and numerical
implementation. The finite element model of the specimen for tension/shear test
has 6× 6× 6 finite elements; the total number of unit cells is 1,771,561. The
stress-strain curves from tension and shear are shown in Fig.2 (a) and Fig.2 (b),
respectively.

Figuratively speaking, the elastic modulus for single crystal bcc iron under small
strain tension ε = 0.02 in the [0 0 1] direction is about 130 GPa which is in good
agreement with the experimental value of 131 GPa through inelastic neutron scat-
tering [Klotz and Braden (2000)] or 144 GPa through ultrasonic technique [Rayne
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Figure 2: (a) Stress-strain curve of tension; (b) Stress-strain curve of shear

and Chandrasekhar (1961)]. Beyond the elastic limit, the stress-strain curve lev-
els off and plastic deformation begins to occur. From Fig.2(a), we found the yield
strength is about 9 GPa from the coarse-grained simulation. The tensile strength
is about 11.9 GPa which is in reasonable agreement with the ideal strength of
12.6 GPa from first principle calculations [Clatterbuck et al (2003)]. The shear
modulus is about 70 GPa which is in reasonable agreement with the experimental
value of 78 GPa through ultrasonic technique [Leese and Load (1968)].

In this work, the single crystal bcc iron subjected to tensile and compressive load-
ing conditions are simulated to show the necking and bulging phenomena. The
finite element models of the specimen are shown in Fig.3 and Fig.4. The boundary
conditions are the displacements specified at the two ends of the specimen as

uz (x,y,0, t) =

{
−U0× t/2t0 if t ≤ t0

−U0/2 if t0 < t ≤ T
(38)

uz (x,y,L, t) =

{
U0× t/2t0 if t ≤ t0

U0/2 if t0 < t ≤ T
(39)

where U0 = εL with ε is the applied compressive or tensile strain; t0 = 0.8T ; T is
the total simulation time.

Fig. 3 is the time evolution of the distribution of displacement uz on deformed
shape. The physical phenomenon of bulging is indeed revealed by the simulation
results obtained. Similar to the case of compression, Fig. 4 shows the time evolu-
tion of the distribution of displacement uz under tension. The snapshots show the
material deforms gradually under constant strain rate. The simulation clearly shows
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Figure 3: Time evolution of displacement (Uz) distribution on deformed shape un-
der compression

the necking process, which demonstrates the atomistic field theory and its associ-
ated computer software are capable of dealing with large deformation problems.
It is worthwhile to mention that continuum approximation is able to capture the
overall failure mechanism. However it may predict different failure location other
than molecular dynamics simulations since crystal structure under tensile loading
involves material instability due to the failure evolution. To improve the accuracy,
gradient terms can be developed in the field theory (see Vernerey et al ([2007],
[2008]), McVeigh et al [2006], McVeigh and Liu [2009]).

4.3 Atomic Simulation of Bcc-fcc Phase Transformation

Nanorods have played an important role in the growing research field of multifunc-
tional materials at the nanoscale, due to the interesting properties which emerge
thanks to their finite size. They also exhibit a rich variety of structural transfor-
mations. Iron attracts additional interest due to the magnetism associated with
the structural phase transition. In this work, the single crystal bcc iron nanorods
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Figure 4: Time evolution of displacement (Uz) distribution on deformed shape un-
der tension

subjected to tensile loading is studied by the formulated atomic field theory. The
specimen consists of 5×5×10 unit cells with 2 atoms per unit cell.

As shown in Figure 5, the dislocation planes were developed around one-third away
from the bottom and top planes at strain ε = 0.175. The development of dislocation
planes results in a crystal lattice transformation from a bcc structure to fcc structure

at the dislocation interface. The initial lattice constant for bcc iron is a = 2.87
◦
A, we

measure the lattice constant as b = 3.50
◦
A after the bcc-fcc phase transformation.

This transformation leads to crystal structure relaxation, whereby a portion of the
crystal structure was displaced. The phase transformation from bcc to fcc for iron
under uniaxial tension in [0 0 1] direction is reported by Clatterbuck et al (2003)
from abinitio calculations. The dislocation necking was developed as the strain
keeping increasing and finally the specimen fractured into two parts as shown in
Figure 5.
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Figure 5: Crystal structure evolution during tensile loading
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5 Summary

This paper presents an atomistic field theory and its application for coarse-grained
and atomistic materials modeling and simulation. Numerical simulations based on
the field theory are performed to investigate the material behaviors of bcc iron.
The mechanism of deformation under different mechanical loading conditions is
revealed. With the atomistic field theory, we have obtained the elastic properties
of bcc iron, which are in good agreement with experimental data or first principle
calculations. We observed the bcc-fcc phase transformation in bcc iron nanorods
under simple tension. It has been shown that the atomic based field theory can work
both on atomic-scale and macro-scale. It has been proven that, when the element
size reduces to the size of a unit cell, the field theory is automatically reduced to an
atomic theory. This thus naturally leads to a concurrent atomic/continuum model
without the need for scale decoupling or a region of hand-shaking. Therefore the
filed theory has the capability to work as a predictive materials research tool to
understand the structure and properties of materials at different scales.

Acknowledgement: The support to this work by National Science Foundation
under Award Numbers CMS-0301539 and CMS-0428419 is gratefully acknowl-
edged.
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