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A Temporally-Piecewise Adaptive Algorithm to Solve
Transient Convection-Diffusion Heat Transfer Problems

Xiao Zhao1, Haitian Yang1,2 and Qiang Gao1

Abstract: A piecewised adaptive algorithm in the time domain is presented to
solve the transient convection-diffusion heat transfer problem. By expanding all
variables at a time interval, an initial and boundary value problem is decoupled
into a series of recursive boundary value problems which can be solved by FEM
or other well developed numerical schemes to deal with boundary value problems.
A steady computing accuracy can be adaptively maintained via the power increase
of the expansion, particularly when the step size varies in the whole computing
process. Additionally for the nonlinear cases, there is no requirement of iteration
and additional assumption for the proposed algorithm. Three numerical examples
are provided to verify the presented algorithm,and satisfactory results have been
achieved.

Keywords: convection-diffusion; heat transfer; adaptive algorithm; time domain;
FEM.

1 Introduction

There have been a number of well developed numerical methods to solve vari-
ous steady/transient convection-diffusion problems. These methods are generally
classified into two pools. One consists of those to deal with the boundary value
problem, such as the characteristic finite volume method [Rui, H. X. (2008)], and
time-space finite element method, etc.. In this pool, the Galerkin FE method and
its alternatives constitute an important family that includes SUPGM (Streamline
Upwind Petrov-Galerkin method) [Brooks, A. N.; Hughes, T. J. R. (1982), Franca,
L. P.; Valentin, F. (2000)], GLSM (Galerkin/Least-Squares Method) [Hughes T. J.
R.; Franca, L. P.; Hulbert, G. M. (1989)], USFEM (Unusual Stabilized Finite Ele-
ment Method) [Franca, L. P.; Valentin, F. (2000)],the upstream-weighted higher
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order schemes [Leonard, B. P. (1979), Cox, R. A.; Nishikawa, T. (1991)], the
characteristic-based Galerkin methods [Peraire, J.; Zienkiewicz, O. C.; Morgan,
K. (1986), Li, X. K.; Wu, W. H.; Zienkiewicz, O. C. (2000)], MFEM (Multiscale
Finite Element Method) [Hou, T. Y.; Wu, X. H. (1997)], and the discontinuous
Galerkin method [Gopalakrishnan, J.; Kanschat, G. (2003)], etc..

Another pool is mainly relevant to the numerical technique to deal with the initial
value problem, such as the consistent splitting scheme [Pontaza, J. P. (2007)], the
space–time conservation element and solution element scheme (CE-SE) [Ponsoda,
E.; Defez, E.; Roselló, M. D.; Romero, J. V. (2008)], the conservative dissipa-
tive scheme [Corre, C.; Lerat, A. (2008)], various time integration methods [De
Palma, P.; Pascazio, G.; Rubino, D. T.; Napolitano, M. (2006)], and the predictor-
multicorrector approach that requires iterations in the computing process [Brooks,
A. N.; Hughes, T. J. R. (1982)], etc.. A big portion of this pool is occupied by the
finite difference family [Rubio, A. D.; Zalts, A.; El Hasi, C. D. (2008), Rodríguez,
N. J.; Davey, K.; Vázquez Feijoo, J. A.; Juárez-Hernandez, A. (2009), Witek, M.
L.; Teixeira, J.; Flatau, P. J. (2008), Formaggia, L.; Nobile, F. (2004), Wong, K. T.
M.; Lee, J. H. W.; Choi, K. W. (2008)] that includes the Euler method [Li, X. K.;
Wu, W. H.; Zienkiewicz, O. C. (2000), Rui, H. X. (2008), Formaggia, L.; Nobile,
F. (2004), Caliari, M.; Vianello, M.; Bergamaschi, L. (2007)], the Crank-Nicholson
scheme [Donea, J. (1984), Wong, K. T. M.; Lee, J. H. W.; Choi, K. W. (2008)], θ -
method [Labeur, R. J.; Wells, G. N. (2007), Karahan, H. (2006)] that will directly
turn to the Forward Euler, the Backward Euler, or the Crank–Nicolson methods
with special value of θ (θ = 1,0, 1

2 respectively) [Khaliq, A. Q. M.; Voss, D. A.;
Kazmi, K. (2008)], and the Runge-Kutta methods [Rui, H. X. (2008), Klaij, C. M.;
van Raalte. M. H.; van der Ven, H.; van der Vegt, J. J. W. (2007), Klaij, C. M.;
van der Vegt, J. J. W.; van der Ven, H. (2006)], etc.. We notice that among these
algorithms, the local truncation order of the 4/5-stage Runge-Kutta methods are
O
(
∆t4
)
[Burden, R. L.; Faires, J. D. (1988)], others are lower thanO

(
∆t4
)
. The fact

is that a relatively lower local truncation order at a time interval may possibly lead
to inaccurate or even unacceptable computing results, as shown in the numerical
examples. The major interest of this paper focuses on improving the local trunca-
tion order at a time interval, so as to keep a steady computing accuracy in the whole
computing process.

Enlightened by the p−refinement skill of FEM [Zienkiewicz, O. C.; Taylor, R. L.
(2000)], a temporally piecewised adaptive algorithm is developed to solve tran-
sient convection-diffusion heat transfer problems in this paper, by which an initial
and boundary value problem is decoupled into a series of recurrent boundary value
problems which can be solved by FEM or other well-developed numerical tech-
niques to deal with boundary value problems, and a steady computing accuracy
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can adaptively be maintained via the power increase of the expansion. Addition-
ally for the nonlinear cases there is no requirement of additional assumption and
iteration for the proposed algorithm.

3 numerical examples are presented to verify the proposed approach, and good
accordance can be observed in comparison with the results given by the analytical,
Runge-Kutta and Crank-Nicolson methods.

2 Recursive governing equations of transient convection-diffusion heat trans-
fer problems

The governing equation of transient convection-diffusion heat transfer problems
can be written as [Platten, J. K.; Legros, J. C. (1984)]

c [T,t +uiT,i] = [kiT,i],i +Q xi ⊂Ω (1)

where T denotes temperature, t refers to time, Q is a source or reaction term , c and
ki are heat capacity and thermal conductivity, respectively, ui represents the vector
of fluid velocity, xi is the vector of the coordinates, and Ω represents the space
domain of the problem, and subscript i refers to a summation index (i=1,2 for the
2D problem, i=1,2,3 for the 3D problem).

The initial condition is describe by

T |t=0 = T0 (2)

where T0 is a prescribed function.

The boundary condition is given by

T = TB xi ∈ Γ1 (3)

nikiT,i = q xi ∈ Γ2 (4)

where TB and q are prescribed functions, Γ = Γ1 +Γ2 represents the whole bound-
ary of Ω, and ni refers to the outward unit normal along Γ2.

We divide time domain into a number of intervals, initial points and sizes of inter-
vals are defined by t0, t1, t2....., tλ , ...... and ts1 , ts2 ......, tsλ

, ......, respectively.

At λ − th(λ ≥ 1) interval, all variables are expanded in the form

T = ∑
m=0

T msm (5)

c = ∑
m=0

cmsm (6)
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ki = ∑
m=0

km
i sm (7)

Q = ∑
m=0

Qmsm (8)

ui = ∑
m=0

um
i sm (9)

TB = ∑
m=0

T m
B sm (10)

xi ∈ Γ1 (11)

q = ∑
m=0

qmsm (12)

xi ∈ Γ2 (13)

s =
t− tλ−1

tsλ

(14)

whereT m denotes the expansion coefficient of T , cm, km
i , Qm, um

i , qm and T m
B repre-

sent expansion coefficients of c, ki, Q, ui, q and TB, respectively.

Utilizing

∂

∂ t
=

∂

∂ s
∂ s
∂ t

=
1

tsλ

∂

∂ s
(15)

we have

T,t = ∑
m=0

(m+1)
tsλ

T m+1sm (16)

Substituting Eqns. (5)–(11) and (14) for Eqns. (1), (3) and (4) and equating the
powers of s at two sides of the equations then yields

(n+1)
tsλ

c0T n+1 +
n

∑
m=0

m
tsλ

cn−m+1T m +
n

∑
m=0

n−m

∑
p=0

cn−m−pup
i (T m),i

=
n

∑
m=0

[
kn−m

i (T m),i

]
,i
+ Qn (17)

T n = T n
B on Γ1 (18)

n

∑
m=0

nikn−m
i T m

,i = qn on Γ2 (19)
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3 Implementation of FEM

In the above section, an initial and boundary value problem is decoupled into a
series of recursive boundary value problems which can be solved using FEM or
other well-developed numerical techniques to deal with boundary value problems.

A utilization of a weighted residual method on Eqns. (15)∼ (17) leads to [Zienkiewicz,
O. C.; Taylor, R. L. (2000)]

∫
Ω

W
(n+1)

tsλ

c0T n+1dΩ+
n

∑
m=0

∫
Ω

W
m
tsλ

cn−m+1T mdΩ

+
n

∑
m=0

n−m

∑
p=0

∫
Ω

Wcn−m−pup
i (T m),i dΩ

−
n

∑
m=0

∫
Ω

W
[
kn−m

i (T m),i

]
,i

dΩ =
∫

Ω

WQndΩ−
∫

Γ2

W

(
n

∑
m=0

nikn−m
i T m

,i −qn

)
dΓ2

(20)

where W denotes a weighting function.

The application of integration by parts gives

∫
Ω

W
(n+1)

tsλ

c0T n+1dΩ+
n

∑
m=0

∫
Ω

W
m
tsλ

cn−m+1T mdΩ

+
n

∑
m=0

n−m

∑
p=0

∫
Ω

Wcn−m−pup
i (T m),i dΩ

−
n

∑
m=0

∫
Ω

W,i

[
kn−m

i (T m),i

]
dΩ =

∫
Ω

WQndΩ+
∫

Γ2

WqndΓ2

(21)

The choice of the weighting function W leads to various approximation methods,
in the Galerkin FE method, T j and W are approximated by

T j = [N]{T} j
e (22)

W = [N]{W}e (23)

where [N] represents a matrix of shape functions, {T} j
e and {W}e represent the

local nodal vectors of T j and W , respectively.

Substituting Eqns. (20) ∼ (21) into Eqn. (19) and considering the arbitrariness of
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{W}e then yields

(n+1)
tsλ

C0 {T}n+1 +
n

∑
m=0

m
tsλ

Cn−m+1 {T}m +
n

∑
m=0

n−m

∑
p=0

Mn−m {T}m +
n

∑
m=0

Kn−m {T}m

= {Q}n + {q}n (24)

where {T}m represents the m-th coefficient vector of {T} = ∑
m=0
{T}m sm. {T} is

the global nodal vector of T ,

C0 = ∑
e

∫
Ωe

[N]T c0 [N]dΩe (25)

Cn−m+1 = ∑
e

∫
Ωe

[N]T cn−m+1 [N]dΩe (26)

Mn−m = ∑
e

∫
Ωe

cn−m−p [N]T up
i [N,i]dΩe (27)

Kn−m = ∑
e

∫
Ωe

[N,i]
T kn−m

i [N,i]dΩe (28)

{Q}n = ∑
e

∫
Ωe

[N]T QndΩe (29)

{q}n = ∑
e

∫
Γ2e

[N]T qndΓ2e (30)

where [N,i] denotes a matrix of derivatives of the shape functions.

We also derived a recursive equation similar to Eqn. (22) by combining Eqns. (15)
∼ (17) with the multilevel discontinuous Galerkin methods [Gopalakrishnan, J.;
Kanschat, G. (2003)]. Owing to the limited capacity for an article, this recursive
equation and its derivation are not presented here.

4 Adaptive process

At the first time interval, {T}0 is prescribed by the initial condition, at the λ -th
time interval (λ > 1), {T}0 is provided by

{T}0 = {T}m|m=0(at λ -th time interval )

= ∑
m=0
{T}m sm

∣∣∣∣∣
s=1

= ∑
m=0
{T}m ((at (λ - 1)-th time interval ) (31)
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when {T}0 is given, {T}m (m≥ 1) can be calculated using Eqn. (22), and {T} can
be attained by

{T}= ∑
m=0
{T}m sm (32)

An adaptive computing process at a time interval can be realized with the increase
of m until the following criteria is tenable.

‖{T}m sm|s=1‖2∥∥∥∥∥m−1
∑
j=0
{T} j s j

∣∣∣∣∣
s=1

∥∥∥∥∥
2

≤ β (33)

where β is a prescribed error tolerance, and ‖•‖2 represents a L2-norm.

If Eqn. (31) holds on continuously for three times at m = Mmax, the computation
at the current time interval will stop and step into the next one. At different time
intervals, Mmax usually is different. Regarding to Eqn. (30), the local truncation
order of the proposed algorithm is Mmax+1 at a time interval.

The above process is similar to the p-refinement process in which the adaptive
computing is fulfilled by increasing terms of polynomials [Harper, C. (1976)].

5 Numerical verification

This section provides 3 numerical examples with time dependent boundary condi-
tions. The thermal conductivity in the Example 1 and the source term in the Exam-
ple 3 are temperature dependent. The eight node quadrilateral element is employed
in FE analysis.

For the simplicity, all the computing parameters are assumed dimensionless.

A L2-norm error [Sudirham, J. J.; van der Vegt, J. J. W.; van Damme, R. M. J.
(2006)] and a summation of relative errors are employed to evaluate the computing
accuracy, i.e.

err (t) = ‖{Tn (t)}−{Ta (t)}‖2 (34)

REerr (t) =

√
∑
r=1

(
Tn (r, t)−Ta (r, t)

Ta (r, t)

)2

(35)

where {Tn (t)} and {Ta (t)} stand for the vectors of numerical and analytical solu-
tions at all FE nodes, and r refers to r-th component of {Tn (t)} and {Ta (t)}.
All the computing tasks are completed on a PC (Pentium D, CPU: 2.80 GHz, Mem-
ory: 1 Gbyte), and all the computing programs are coded in Matlab.



146 Copyright © 2011 Tech Science Press CMES, vol.74, no.2, pp.139-159, 2011

Example 1 considers a nonlinear problem in a 1× 0.1 rectangular domain where
k1 is temperature dependent [Shih, T. M. (1983)]. The Galerkin FEM is employed
to deal with boundary value problems, and a 10×1 uniform FE grid is used, as
schematically illustrated in Fig. 1.

 

Figure 1: The FE mesh of Example 1

 

Figure 2: The FE mesh of Example 2
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Figure 3: The FE mesh of Example 3

The boundary condition is specified by

TB (0,x2, t) =
22

24−6t
TB (1,x2, t) =

32

24−6t
.

The initial condition is

T0 =
(x1 +2)2

24
.

Other computing parameters are given by

Q = 0, c = 1.0, u1 = 0.0, u2 = 0.0

k1 = T, k2 = 0, t ∈ [0,3.8] , β = 1e−8.

The exact solution of this problem is given by [Shih, T. M. (1983)]

T =
(x1 +2)2

24−6t
.
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Regarding to Eqn. (10), TB is expended in the form

TB (0,x2, t) =
22

24−6t
=

2
3
· 1

4−
(
tλ−1 + s · tsλ

)
=

2
3 · (4− tλ−1)

· 1(
1− ts

λ
·s

4−tλ−1

) =
2

3 · (4− tλ−1)
·

[
∑
n=0

(
tsλ
· s

4− tλ−1

)n
]

(λ ≥ 1)

and

TB (1,x2, t) =
(2+1)2

24−6t
=

3
2
· 1

4−
(
tλ−1 + s · tsλ

)
=

3
2 · (4− tλ−1)

· 1(
1− ts

λ
·s

4−tλ−1

) =
3

2 · (4− tλ−1)
·

[
∑
n=0

(
tsλ
· s

4− tλ−1

)n
]

(λ ≥ 1)

The solution obtained by the proposed algorithm is exhibited in Tab. 1 and Figs. 4-
8, and compared with the solutions given by Heun’s method [Burden, R. L.; Faires,
J. D. (1988)], the Modified Euler method [Burden, R. L.; Faires, J. D. (1988)] and
the 4-order Runge-Kutta method [Burden, R. L.; Faires, J. D. (1988)]. The compar-
isons indicate that the presented algorithm is a bit computationally expensive than
three others, but it is able to keep a steady computing accuracy with the increase
of step size, as shown in Fig. 7. When tsλ

= 2× 10−3(λ = 1,2,3, ...,500), all the
other three methods are unable to obtain reasonable solutions,as shown in Fig. 8.
Figs. 9 and 10 mean that a relatively smaller β is required to maintain a steady
computing accuracy when step size becomes relatively larger.

Example 2 considers a convection-diffusion problem in a domain Ω =(0,1)2 [Sudirham
J. J.; van der Vegt, J. J. W.; van Damme, R. M. J. (2006)]. The Galerkin FEM is
employed to deal with boundary value problems, and a 20×20 uniform FE grid is
used, as schematically illustrated in Fig. 2.

The initial condition is

T0 = sin(πx1) · sin(πx2) ,

The boundary condition is specified by

TB (0,x2, t) = sin(−πu1t) · sin(π (x2−u2t)) · exp
(
−2Dπ

2t
)
,

TB (1,x2, t) = sin(π (1−u1t)) · sin(π (x2−u2t)) · exp
(
−2Dπ

2t
)
,

TB (x1,0, t) = sin(π (x1−u1t)) · sin(−πu2t) · exp
(
−2Dπ

2t
)
,
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Figure 4: A companion of err (t) with
tsλ

= 5×10−4 (λ = 1,2,3, ...,2000)

 

Figure 5: A companion of err (t) with
tsλ

= 1×10−3 (λ = 1,2,3, ...,1000)

 

Figure 6: A companions of err (t) with
tsλ

= 2×10−3 (λ = 1,2,3, ...,10)

 

Figure 7: A companion of REerr (t) of
the proposed method with different tsλ

TB (x1,1, t) = sin(π (x1−u1t)) · sin(π (1−u2t)) · exp
(
−2Dπ

2t
)
,

The computing parameters are given by

Q = 0, c = 1.0, u1 = 1, u2 = 1, k1 = 1, k2 = 1, β = 1×10−8.

The analytical solution is given by [Sudirham, J. J.; van der Vegt, J. J. W.; van
Damme, R. M. J. (2006)].

T (x1,x2, t) = sin(π (x1−u1t)) · sin(π (x2−u2t)) · exp
(
−2Dπ

2t
)
.

Since TB seems difficult to expand directly in the term of s it is approximated using
a polynomial Pi j

(
x1i ,x2 j , t,κ

)
at each FE node

(
x1i ,x2 j

)
along the boundary.

Pi j
(
x1i ,x2 j , t,κ

)
= a0

(
x1i ,x2 j

)
+a1

(
x1i ,x2 j

)
t +a2

(
x1i ,x2 j

)
t2 + · · ·+aκ

(
x1i ,x2 j

)
tκ
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Figure 8: A companion of T (x1,x2, t)|x1=0.5,x2=0 with tsλ
= 2 ×

10−3 (λ = 1,2,3, ...,500)

 

Figure 9: The effects of β on err (t)
with tsλ

= 2×10−3 (λ = 1,2,3, ...,500)

 

Figure 10: The effects of β on
err (t) with tsλ

= 5 × 10−4 (λ =
1,2,3, ...,2000)

a0
(
x1i ,x2 j

)
, a1

(
x1i ,x2 j

)
, a2

(
x1i ,x2 j

)
, . . . , aκ

(
x1i ,x2 j

)
are determined by fitting Pi j

(
x1i ,x2 j , t,κ

)
with TB

(
x1i ,x2 j , t

)
at N f points uniformly

distributed within the whole time domain. T m
B can be obtained easily via Pi j

(
x1i ,x2 j , t,κ

)
.

The fitting criteria is
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Table 1: Numerical Comparison of Example 1 (at t = 1)

 Proposed Method 
Modified Euler 

Method 
Heun’s Method 

4-order R-K 

Method 

st 
 45 10   1,2,3,...,2000   

err  0.000082574 0.00019082 0.000190825 0.00019288 

CPU time (s) 898.22 176.5 182.58 367.06 

st 
 31 1 0   1,2,3,...,1000   

err  0.000082574 0.69251 2.052 0.00037976 

CPU time (s) 457.36 88.61 88.375 177.25 

st 
 32 10   1,2,3,...,500   

err  0.00008261978 \ \ \ 

CPU time (s) 644.31 \ \ \ 

 

(
N f

∑
l=1

(
TB
(
x1i ,x2 j , tl

)
−Pi j

(
x1i ,x2 j , tl,κ

))2

) 1
2

< η , (η ≤ β )

In this example N f = 2000,κ = 5, η = 1×10−8.

A numerical comparison is exhibited in Tab. 2 and Figs. 11-13 where both the
Modified Euler method and the 4-order Runge-Kutta method failed when tsλ

=
10−4 (λ = 1,2,3, ...,2000) and tsλ

= 10−3 (λ = 1,2,3, ...,200).
Example 3 considers an autonomous advective Fisher Equation in which Q = γ ·
T 2(x1,x2, t)·(1−T (x1,x2, t)) is temperature dependent in the domain Ω =(0,1)2[Caliari,
M.; Vianello, M.; Bergamaschi, L. (2007)]. The multilevel discontinuous Galerkin
FEM is employed to deal with boundary value problems, and a 25×25 uniform FE
grid is used, as schematically illustrated in Fig. 3.

The other computing parameters are

γ = 0.01, u1 = u2 = α =−1,
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Figure 11: A companion of err (t) with
tsλ

= 5×10−5 (λ = 1,2,3, ...,4000)

 

Figure 12: A companion of err (t) with
tsλ

= 1×10−4 (λ = 1,2,3, ...,2000)

 

Figure 13: A companion of err (t) of the
proposed method with different tsλ

 

Figure 14: A companion of err (t) with
tsλ

= 5×10−3 (λ = 1,2,3, ...,100)

k1 = k2 = ε = 0.001, β = 1×10−8, c = 1.0.

The initial and boundary conditions are prescribed by

T0 =
1

1+ exp(a · (x1 + x2)+ p)
,

TB (0,x2, t) =
1

1+ exp(a · (x2−b · t)+ p)
,

TB (1,x2, t) =
1

1+ exp(a · (1+ x2−b · t)+ p)
,
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Figure 15: A companion of err (t) with
tsλ

= 1×10−2 (λ = 1,2,3, ...,50)

 

Figure 16: A companion of err (t) with
tsλ

= 2×10−2 (λ = 1,2,3, ...,25)

 

Figure 17: A companion of REerr (t) of
the proposed method with different tsλ

 

Figure 18: The companions of Mmax
and err (t) with constant and variable tsλ

TB (x1,0, t) =
1

1+ exp(a · (x1−b · t)+ p)
,

TB (x1,1, t) =
1

1+ exp(a · (x1 +1−b · t)+ p)
,

The exact solution is given by [Caliari, M.; Vianello, M.; Bergamaschi, L. (2007)]

T (x1,x2, t) =
1

1+ exp(a · (x1 + x2−b · t)+ p)
,

where a =
√

γ

4ε
, b = 2α +

√
γε and p = a(b−1).
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Table 2: Numerical Comparison of Example 2 (at t = 0.2)

 

 Proposed  Method 
Modified Euler 

Method 
4-order R-K Method 

st 
 55 10  1,2,3,...,4000   

err  0.000037905  0.0000778  0.0000778  

CPU time (s) 119226 56887  58682  

st 
 41 10  1,2,3,...,2000   

err  0.000037905  \ \ 

CPU time (s) 96301 \ \ 

st 
 31 10  1,2,3,...,200   

err  0.000037905  \ \ 

CPU time (s) 99505  \ \ 

T m
B is determined in the same way as Example 2 with η = 1×10−8, κ = 4, N f =5000.

A numerical comparison with the Crank-Nicolson method [Caliari, M.; Vianello,
M.; Bergamaschi, L. (2007)] is given in Tab. 3 and Figs. 14-16. REerr (t)curves in
Fig. 17 exhibit a steady computing accuracy maintained by the proposed method
with different size of tsλ

. Numerical results with constant (tsλ
= 1× 10−3,(λ =

1,2,3, ...,500)) and variable step sizes (as shown in Tab. 4) in the whole computing
process are compared in Fig. 18. As we expected, the adaptive process effectively
guarantees a steady computing accuracy when the step size varies.

However the Crank-Nicolson method that is a sound baseline benchmark for an
advection-diffusion solver [Caliari, M.; Vianello, M.; Bergamaschi, L. (2007)]
failed when tsλ

= 0.02 (λ = 1,2,3, ...,25) and tsλ
= 0.05 (λ = 1,2,3, ...,10), and

when the step size varies.
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Table 3: Numerical Comparison of Example 3 (at t = 0.5)

 

 Proposed Method Crank-Nicolson Method 

st 
 0.005  1,2,3,...,100   

 err t  0.37021 0.37004  

CPU time (s) 30517  17103 

st 
 0.01  1,2,3,...,50   

 err t  0.37021 0.3714  

CPU time (s) 9375.3  7889.2  

st 
 0.02  1,2,3,...,25   

 err t  0.37021 \  

CPU time (s) 4746.9  \ 

st 
 0.05  1,2,3,...,10   

 err t  0.37021 \ 

CPU time (s) 11166 \ 

6 Conclusion

A temporally piecewised adaptive algorithm is presented to solve transient convection-
diffusion heat transfer problems. The major merits of the proposed algorithm in-
clude

1. An initial and boundary value problem is decoupled into a series of bound-
ary value problems which can be solved by FEM, finite volume method,
meshless method, or other well-developed numerical techniques to deal with
boundary value problems.

2. For the nonlinear case, there is no any requirement of additional assumption
and iteration for the proposed algorithm.
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Table 4: The variable process of tsλ
in Example 3

λ Time [tλ−1, tλ ] Step tsλ

1 [0,0.01] 1×10−3

2 [0.01,0.015] 5×10−3

3 [0.015,0.023] 8×10−3

4 [0.023,0.033] 1×10−2

5 [0.033,0.053] 2×10−2

6 [0.033,0.093] 4×10−2

7 [0.543,0.548] 5×10−3

8 [0.548,0.556] 8×10−3

9 [0.556,0.566] 1×10−2

10 [0.566,0.586] 2×10−2

3. The adaptive process can provide a steady computing accuracy when step
size varies.
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