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Slow Rotation of an Axially Symmetric Particle about Its
Axis of Revolution Normal to One or Two Plane Walls
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Abstract: The steady rotation of an axially symmetric particle about its axis of
revolution normal to two plane walls at an arbitrary position between them in a
viscous fluid is studied theoretically in the limit of small Reynolds number. The
fluid is allowed to slip at the surface of the particle. A method of distribution of
a set of spherical singularities along the axis of revolution inside a prolate particle
or on the fundamental disk within an oblate particle is used to find the general
solution for the fluid velocity distribution that satisfies the boundary conditions at
the confining walls and at infinity. The slip condition at the particle surface is then
satisfied by applying a boundary collocation technique to this general solution to
numerically determine the unknown constants. The torque exerted on the particle
by the fluid is calculated with good convergence behavior for various cases. For the
rotation of a confined no-slip sphere, our torque results agree excellently with the
available solutions in the literature. It is found that, for a spheroid with specified
aspect ratio and particle-to-wall spacings, its boundary-corrected hydrodynamic
torque decreases monotonically with an increase in its slip coefficient. For given
wall-to-wall spacings, the hydrodynamic torque is minimal when the particle is
situated midway between the two plane walls and increases monotonically when
it approaches either of the walls. For fixed separation and slip parameters, the
normalized torque increases with a decrease in its axial-to-radial aspect ratio, and
the boundary effect on the rotation of an oblate spheroid can be very significant.
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1 Introduction

Problems concerning the motion of small particles through a viscous fluid at small
Reynolds numbers have continued to receive much attention from investigators in
the fields of chemical, biomedical, and environmental engineering and science.
These moving phenomena are fundamental in nature, but permit one to develop
rational understanding of many practical systems and industrial processes such as
sedimentation, flotation, coagulation, meteorology, motion of cells in blood vessels,
and rheology of suspensions. The theoretical study of this subject grew out of the
classic work of Stokes (1951) for a rigid sphere with a no-slip surface moving in an
unbounded, incompressible, Newtonian fluid. Oberbeck (1876) and Jeffery (1915)
extended this result to the translation of an ellipsoid and the rotation of a particle
of revolution, respectively. Explicit expressions for the resistance experienced by a
rigid, no-slip, slightly deformed sphere undergoing low-Reynolds-number transla-
tional and rotational motions in a viscous fluid were derived to the first order in the
small parameter characterizing the deformation from the spherical shape [Brenner
(1964a)]. On the other hand, the creeping flow caused by the motion of a no-slip
particle of more general shape has been treated semi-numerically by the boundary
collocation method [Gluckman, Weinbaum, and Pfeffer (1972); Hsu and Ganatos
(1989)], singularity method [Chwang and Wu (1975); Keh and Tseng (1994)], and
boundary integral (boundary element) method [Youngren and Acrivos (1975); Sel-
lier (2008)].

In the general formulation of the Stokes problems, it is usually assumed that no
slippage arises at the solid-fluid interfaces. This assumption is well supported by
experimental evidences at macroscopic scales, but it is not accepted physically at
microscopic scales [Thompson and Troian (1997); Pit, Hervet, and Leger (2000);
Martini et al. (2008); Cottin-Bizonne et al. (2008)]. The phenomenon that the
adjacent fluid can slip frictionally over a solid surface occurs for cases such as
the low-density gas flow around an aerosol particle [Ying and Peters (1991); Keh
and Shiau (2000); Sharipov and Kalempa (2003)], the liquid flow near a lyophobic
surface [Churaev, Sobolev, and Somov (1984); Tretheway and Meinhart (2002);
Neto et al. (2005)], the micropolar fluid flow past a rigid particle [Sherif, Faltas,
and Saad (2008)], and the viscous fluid flow over the surface of a porous medium
[Saffman (1971); Bhattacharyya (2010); Keh and Keh (2010)] or a small particle of
molecular size [Hu and Zwanzig (1974)]. Presumably, any such slipping would be
proportional to the local shear stress of the fluid next to the solid surface [Felderhof
(1977); Happel and Brenner (1983); Keh and Chen (1996)], known as Navier’s slip
[see Eq. (2)]. The constant of proportionality, β−1, is called the slip coefficient of
the solid surface.

The classic formula for the torque exerted by the ambient fluid of viscosity η on a
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rotating rigid sphere of radius a with a slip-flow boundary condition at its surface,
first derived by Basset (1961), is

T = 8πηa3
Ω

βa
βa+3η

, (1)

where Ω is the angular velocity of the particle. The quantity η/β is a slip length
defined by Navier and Maxwell and extensively used in the literature. It can be
pictured by noting that the fluid motion is the same as if the solid surface was
displaced inward by a distance η/β with the velocity gradient extending uniformly
right up to no-slip velocity at the surface. In the limiting case of the slip parameter
η/βa = 0, there is no slip at the particle surface and Eq. (1) degenerates to the
well-known Stokes result. Whenη/βa→∞, there is full slip at the particle surface
and the torque vanishes. Recently, the low-Reynolds-number motion of a rigid
sphere with an inhomogeneous slip boundary condition was also analyzed by a
perturbation method [Willmott (2008)].

The resistance experienced by a full-slip spheroid undergoing uniform rotation in a
viscous fluid was computed numerically by fitting the slip condition approximately
with a general solution of the Stokes equations in the form of an infinite series ex-
pansion of spheroidal harmonics [Hu and Zwanzig (1974)]. Recently, the problem
of rotation of an axially symmetric particle with an arbitrary slip coefficient about
its axis of revolution in a viscous fluid was studied by using a singularity method
based on the principle of distribution of a set of spherical singularities along the
axis of revolution within a prolate particle or on the fundamental plane inside an
oblate particle [Wan and Keh (2009)] and by using both a separable general solution
in the form of an infinite series in spheroidal coordinates and the boundary collo-
cation method [Chang and Keh (2011)]. The Stokes translation and rotation of a
rigid particle which departs but little in shape from a sphere with the slip boundary
condition were also analyzed, and explicit expressions for the hydrodynamic drag
force and torque experienced by it were obtained to the second order in the small
parameter characterizing the deformation [Senchenko and Keh (2006); Chang and
Keh (2009)].

In practical applications of colloidal motion, particles are not isolated and will
move in the presence of neighboring boundaries. Therefore, the boundary effects
on creeping motions of rigid particles experiencing slip are of importance. Al-
though the boundary effects on slow rotation of no-slip particles were studied in
the past for several geometries [Jeffery (1915); Brenner (1962, 1964b); Brenner
and Sonshine (1964); Hsu and Ganatos (1989)], these effects have not been inves-
tigated for the case of slip particles. In this article we use the method of distributed
internal singularities incorporated with the boundary collocation technique [Keh
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and Huang (2004); Keh and Chang (2010)] to analyze the creeping flow generated
by an axially symmetric particle with an arbitrary slip coefficient rotating about its
axis of revolution perpendicular to two plane walls at an arbitrary position between
them; the particle can be either prolate or oblate. With this approach the torque
exerted on a spheroid by the ambient fluid as functions of the slip parameter, the
relative separation distances from the walls, and the aspect ratio of the spheroid is
semi-numerically calculated. For the special cases of a no-slip sphere, our results
show excellent agreement with those available in the literature.

2 Mathematical description of the problem

In this section, we consider the steady creeping flow caused by an axially symmetric
particle rotating with a constant angular velocity Ω in an incompressible, Newto-
nian fluid about its axis of revolution (z axis) normal to two infinite plane walls
whose distances from the center of the particle are c and d, respectively (d ≥ c
is set without loss in generality), as shown in Fig. 1. Here (ρ,φ ,z) and (r,θ ,φ)
denote the circular cylindrical and spherical coordinate systems, respectively, with
their origin lying at the center of the particle. The fluid may slip frictionally at the
surface of the particle.

The fluid flow governed by the Stokes equations for the case of vanishingly low





 

Figure 1: Geometrical sketch for the rotation of an axially symmetric particle about
its axis of revolution perpendicular to two plane walls.
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Reynolds number [Happel and Brenner (1983)] is axially symmetric and the only
nonzero velocity component is vφ in the φ direction. Because the relative tangential
velocity of the fluid at the particle surface is proportional to the local tangential
stress and the fluid is no-slip on the plane walls and motionless far from the particle,
the boundary conditions are

vφ = Ωρ +
1
β

(nρτρφ +nzτzφ ) on Sp. (2)

vφ = 0 at z =−c, d, (3)

vφ = 0 as ρ → ∞ and − c≤ z≤ d. (4)

Here, τρφ and τzφ are the nonzero components of the viscous stress tensor in cylin-
drical coordinates,nρ and nz are the local ρ and z components of the unit normal
vector n on the particle surface Sp pointing into the fluid, and 1/β is the constant
frictional-slip coefficient about the surface of the particle.

In order to solve for vφ , a set of spherical singularities satisfying the Stokes equa-
tions and the boundary conditions in Eqs. (3) and (4) will be chosen and distributed
along the axis of revolution inside a prolate particle or on the fundamental plane
within an oblate particle [Keh and Tseng (1994)]. The flow field surrounding the
particle is constructed by the superposition of the set of the spherical singularities
and the boundary condition (2) on the particle surface can be satisfied by making
use of the multipole collocation method.

The fluid velocity distribution caused by a spherical singularity at the point ρ = 0
and z = h is

vφ =
∞

∑
n=2

Bnγn(ρ,z,h), (5)

where γn are functions defined by Eq. (A1) in Appendix A, and Bn are unknown
constants. From Eq. (5), the stress components in Eq. (2) can be obtained as

τρφ = η

∞

∑
n=2

Bnαn(ρ,z,h), (6)

τzφ = η

∞

∑
n=2

Bnβn(ρ,z,h), (7)

where αn and βn are functions defined by Eqs. (A2) and (A3).

Equations (5)-(7) for the fluid velocity and stress fields caused by a spherical sin-
gularity and boundary condition (2) on the particle surface will be utilized in the
following sections to solve for the hydrodynamic torque induced by the rotation
of an axially symmetric particle about its axis of revolution perpendicular to two
plane walls.
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3 Solution for the rotation of a sphere normal to two plane walls

A spherical singularity described in the previous section is used in this section to
obtain the solution for the rotation of a slip spherical particle of radius a about an
axis normal to two plane walls. The flow field generated by the rotation of the
sphere can be represented by a singularity placed at its center. Thus, the velocity
and stress components for the fluid motion caused by the rotating sphere are given
by Eqs. (5)-(7) with h = 0. To determine the unknown constants Bn, one can
apply the boundary condition (2) at the particle surface to these velocity and stress
components to yield

∞

∑
n=2

Bnγ
∗
n (ρ,z,0) = Ωρ at r = a, (8)

where

γ
∗
n (ρ,z,h) = γ

(
nρ,z,h)− η

β
[nραn(ρ,z,h)+nzβn(ρ,z,h)]. (9)

The torque acting on the particle by the fluid is [Wan and Keh (2009)]

T = 8πηB2. (10)

That is, only the lowest-order coefficient B2 of the spherical singularity contributes
to the hydrodynamic torque on the particle.

To satisfy the boundary condition (8) exactly along the entire half-circular generat-
ing arc of the sphere in a longitudinal plane (from θ = 0 to θ = π) would require
the solution of the whole infinite array of the unknown constants Bn. However, the
multipole collocation technique [Gluckman, Weinbaum and Pfeffer, (1972)] en-
forces the boundary condition at a finite number of discrete points on the particle’s
generating arc and truncates the infinite series in Eqs. (5)-(8) into finite ones. If
the boundary is approximated by satisfying the condition (8) at N discrete points
on the generating arc, then the infinite series are truncated after N terms, resulting
in a system of N simultaneous linear algebraic equations in the truncated form of
Eq. (8). This matrix equation can be solved by any matrix-reduction technique to
yield the N unknown constants Bn required in the truncated equation for the fluid
velocity distribution. The accuracy of the truncation technique can be improved to
any degree by taking a sufficiently large value of N.

The details of the collocation scheme used for this work are given in a previous
paper (Wan and Keh 2009). The numerical solutions of the dimensionless hydro-
dynamic torque T/8πηa3Ω for the rotation of a sphere about an axis normal to a
single plane wall (with d → ∞) are presented in Table 1 for various values of the
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dimensionless spacing parameter a/c and slip parameter η/βa using the boundary
collocation technique. All of the results obtained under this collocation scheme
converge to at least five significant digits. The accuracy and convergence behavior
of the truncation technique depends principally upon the relative spacing a/c. For
the difficult case of a/c = 0.999, the number of collocation points with N = 60 is
sufficiently large to achieve this convergence. Our collocation results for the no-
slip case (with η/βa = 0) agree excellently with the numerical solutions obtained
by Jeffery (1915) using spherical bipolar coordinates. As expected, the results in
Table 1 illustrate that the torque on the sphere is a monotonic increasing function
of a/c for any given value of η/βa. The normalized wall-corrected torque on the
sphere decreases monotonically with an increase in η/βa and vanishes at the limit
η/βa→ ∞, keeping a/c unchanged.

Table 1: The dimensionless torque experienced by a sphere rotating about an axis
normal to a single plane wall at various values of a/c and η/βa

a/c
T/8πηa3Ω

η/βa = 0 η/βa = 0.1 η/βa = 1 η/βa = 10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
0.975
0.99
0.995
0.999

1.00013
1.00100
1.00339
1.00807
1.01593
1.02800
1.04579
1.07186
1.11221
1.14331
1.16519
1.18310
1.19092
1.19901

0.76930
0.76982
0.77123
0.77400
0.77861
0.78564
0.79581
0.81022
0.83079
0.84459
0.85277
0.85822
0.86014
0.86171

0.25001
0.25006
0.25021
0.25050
0.25098
0.25170
0.25271
0.25405
0.25578
0.25680
0.25734
0.25768
0.25779
0.25791

0.03226
0.03226
0.03226
0.03227
0.03227
0.03229
0.03230
0.03232
0.03235
0.03236
0.03237
0.03238
0.03238
0.03238

Some converged collocation solutions for the dimensionless torque T/8πηa3Ω are
presented in Table 2 for the rotation of a sphere about an axis perpendicular to
two plane walls at two particular positions between them (with c/(c + d) = 0.25
and 0.5) for various values of the parameters a/c and η/βa. Analogous to the
situation of rotation of a sphere normal to a single plane wall, for a constant value
of c/(c+d), the torque on the sphere rotating between two parallel walls increases
monotonically with an increase in a/c for a fixed value of η/βa and with a decrease
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Table 2: The dimensionless torque experienced by a spherical particle rotating
about an axis normal to two plane walls at various values of a/c, c/(c + d), and
η/βa

c/(c+d) a/c
T/8πηa3Ω

η/βa = 0 η/βa =
0.1

η/βa = 1 η/βa =
10

0.25 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
0.975
0.99
0.995
0.999

1.00013
1.00102
1.00344
1.00819
1.01616
1.02841
1.04644
1.07286
1.11367
1.14506
1.16710
1.18510
1.19295
1.20107

0.76931
0.76983
0.77126
0.77407
0.77874
0.78587
0.79620
0.81080
0.83164
0.84560
0.85387
0.85937
0.86131
0.86290

0.25001
0.25006
0.25021
0.25051
0.25099
0.25172
0.25275
0.25411
0.25587
0.25690
0.25745
0.25779
0.25791
0.25803

0.03226
0.03226
0.03226
0.03227
0.03227
0.03229
0.03230
0.03232
0.03235
0.03237
0.03237
0.03238
0.03238
0.03238

0.5 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.95
0.975
0.99
0.995
0.999

1.00023
1.00181
1.00612
1.01464
1.02901
1.05133
1.08457
1.13392
1.21143
1.27192
1.31480
1.35007
1.36553
1.38159

0.76936
0.77030
0.77285
0.77786
0.78628
0.79920
0.81810
0.84514
0.88424
0.91071
0.92650
0.93704
0.94076
0.94382

0.25001
0.25011
0.25038
0.25090
0.25177
0.25308
0.25492
0.25740
0.26060
0.26250
0.26349
0.26412
0.26438
0.26455

0.03226
0.03226
0.03226
0.03227
0.03229
0.03231
0.03234
0.03238
0.03243
0.03245
0.03247
0.03248
0.03248
0.03248
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in η/βa (from zero at the limit η/βa→ ∞) for a given value of a/c.
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Figure 2 
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Figure 2: Plots of the normalized torque T/T0 for the rotation of a no-slip sphere
(η/βa = 0) about an axis perpendicular to two plane walls versus the ratio c/(c+d)
with a/c and 2a/(c+d) as parameters.

Figure 2 shows the collocation results for the hydrodynamic torque T exerted on a
no-slip sphere (η/βa = 0) rotating about an axis perpendicular to two plane walls
at various positions between them. The torque T0 acting on an identical particle
in an unbounded fluid (as a/c→ ∞) is used to normalize the boundary-corrected
values. The solid curves (with a/c =constant) illustrate the effect of the position
of the second wall (at z = d, where d ≥ c) on the hydrodynamic torque for various
specific values of the relative sphere-to-wall spacing c/a. Evidently, the approach
of a second wall will enhance the hydrodynamic torque experienced by the particle
in the vicinity of the first wall. The dashed curves [with 2a/(c + d) =constant]
indicate the variation of the torque as a function of the particle position at various
given values of the relative wall-to-wall spacing (c + d)/2a. At a constant value
of 2a/(c + d), the sphere experiences a minimum hydrodynamic torque when it
is located midway between the two plane walls [c/(c + d) = 1/2], and the torque
increases monotonically as the particle approaches either of the walls. These ten-
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dencies are also true for a slip particle with any finite value of η/βa, whose results
are not presented here for conciseness but can also be obtained accurately.

The results of the normalized hydrodynamic torque T/T0 exerted on a sphere ro-
tating about an axis perpendicular to a single plane wall [c/(c+d) = 0] and to two
equally distant plane walls [c/(c+d) = 1/2] as functions of the spacing parameter
a/c for various values of η/βa are plotted in Fig. 3. As expected, the value of
T/T0 increases monotonically with an increase in the ratio a/c from T/T0 = 1 at
a/c = 0. The normalized wall-corrected torque on the sphere decreases with an
increase in η/βa, keeping a/c unchanged. It can be seen from this figure (or from
a comparison between Table 1 and Table 2) that, for an arbitrary combination of
the parameters a/c and η/βa, the assumption that the results for two walls can be
obtained by the simple addition of the single-wall effects always overestimates the
correction to the hydrodynamic torque on a particle.
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Figure 3 
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Figure 3: Plots of the normalized torque T/T0 for the rotation of a sphere about an
axis perpendicular to a single plane wall [c/(c+d)→ 0, dashed curves] and to two
equally distant plane walls [c/(c + d) = 1/2, solid curves] versus the separation
parameter a/c for various values of the slip parameter η/βa.
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Figure 4 
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Figure 4: Plots of the normalized torque T/T0 for the rotation of a no-slip prolate
spheroid (η/βb = 0) with a/b = 2 about its axis of revolution perpendicular to two
plane walls versus the ratio c/(c+d) with a/c and 2a/(c+d) as parameters.

4 Axially symmetric rotation of prolate particles normal to two plane walls

In this section, we consider the rotation of a general prolate axisymmetric particle
about its axis of revolution normal to two plane walls. A segment between points
A(ρ = 0,z =−c1) and B(ρ = 0,z = c2) is taken along the axis of revolution inside
the particle on which a set of spherical singularities are distributed (c1 and c2 are
positive constants). The general solution of the fluid velocity can be constructed by
the superposition of the spherical singularities distributed on the segment AB, and
Eq. (5) is used to result in the integral form

vφ =
∞

∑
n=2

∫ c2

−c1

Bn(t)γn(ρ,z, t)dt. (11)

The corresponding integral expressions for the viscous stress components can be
obtained accordingly using Eqs. (6) and (7). Equation (11) provides an exact so-
lution for the Stokes equations that satisfies Eqs. (3) and (4), and the unknown
density distribution function for the singularities, Bn(t), must be determined from
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the remaining boundary condition (2) using the multipole collocation technique.
The torque acting on the particle by the fluid is obtained by the use of Eqs. (10)
and (11), with the result

T = 8πη

∫ c2

−c1

B2(t)dt. (12)

In order to use the collocation technique to satisfy the boundary condition at the
particle surface, the integration encountered in Eqs. (11) and (12) need be treated
numerically. Applying the M-point Gauss-Legendre quadrature formula of integra-
tion [Hornbeck (1975)] to Eq. (11) and truncating the infinite series after N terms,
one obtains

vφ =
N+1

∑
n=2

M

∑
m=1

Bnmγn(ρ,z,qm), (13)

where qm are the quadrature zeros and Bnm are the unknown density constants. The
corresponding quadrature expressions for the viscous stress components can also
be obtained using Eqs. (6) and (7).

Application of the boundary condition (2) to Eq. (13) leads to

N+1

∑
n=2

M

∑
m=1

Bnmγ
∗
n (ρ,z,qm) = Ωρ on Sp, (14)

where the functions γ∗n are given by Eq. (9). The multipole collocation method
allows the particle’s boundary to be approximated by satisfying Eq. (14) at MN
discrete values of z or θ on its surface and results in a set of MN simultaneous
linear algebraic equations, which can be solved numerically to yield the MN density
constants Bnm required in Eq. (13) for the fluid velocity distribution. Once these
constants are determined, the torque exerted by the fluid on the particle can be
obtained from Eq. (12) as

T = 8πη

M

∑
m=1

B2m. (15)

5 Solution for the rotation of a prolate spheroid normal to two plane walls

The method presented in the previous section is used in this section to obtain the
solution for the rotation of a slip prolate spheroid about its axis of revolution normal
to one or two plane walls. The surface of a spheroid is represented in cylindrical
coordinates by

z(ρ) =± a[1− (
ρ

b
)2]1/2, (16)
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where 0 ≤ ρ ≤ b, and −a ≤ z ≤ a. For the case of a prolate spheroid, a and b are
the major and minor semi-axes, respectively (a > b > 0).

In Section 3, the boundary collocation solutions for the rotation of a spherical par-
ticle about an axis normal to one or two plane walls were presented. We now use
the same collocation scheme incorporated with the method of distribution of spher-
ical singularities to obtain the corresponding solution for a prolate spheroid. Here,
the values of c1 and c2 in Eqs. (11) and (12) are taken to be identical and equal
to (a2− b2)1/2, the half distance between the two foci of the prolate spheroid. In
Table 3, numerical results of the nondimensional hydrodynamic torque T/8πηb3Ω

for the rotation of a prolate spheroid about its axis of revolution perpendicular to a
single plane wall [c/(c+d) = 0] are presented for various values of the aspect ratio
a/b, spacing parameter a/c, and slip parameter η/βb. To achieve good conver-
gence for the calculation of T , a larger value of N in Eqs. (13) and (14) is required
when the particle is located closer to the plane wall, whereas a larger value of M is
needed when the aspect ratio of the spheroid becomes larger. For the difficult case
of a/c = 0.999 and a/b = 10, the number of collocation points with N = 8 and
M = 60 is sufficiently large for the numerical results of the torque to converge to at
least five significant figures.

Some collocation solutions of the dimensionless torque T/8πηb3Ω for the rotation
of a prolate spheroid about its axis of revolution perpendicular to two equally dis-
tant plane walls [c/(c + d) = 1/2] are presented in Table 4 for various values of
a/b, a/c, and η/βb. Both Table 3 and Table 4 indicate that the boundary-corrected
hydrodynamic torque (or viscous retardation) on the spheroid increases monotoni-
cally with an increase in a/c for fixed values of a/b and η/βb and with a decrease
in η/βb for given values of a/b and a/c. This outcome is also true for a general
case with any given value of c/(c + d) other than 0 and 1/2, whose results are not
presented here for conciseness but can also be obtained accurately.

The collocation results for the hydrodynamic torque T exerted on a no-slip prolate
spheroid (η/βb = 0) with aspect ratio a/b = 2 rotating about its axis of revolution
perpendicular to two plane walls at various positions between them normalized by
the corresponding torque T0 acting on the particle when the walls are not present
(as a/c→ ∞) are illustrated in Fig. 4. Analogous to the corresponding case of a
spherical particle discussed in Section 3, the approach of a second wall will enhance
the hydrodynamic torque experienced by the spheroid in the vicinity of the first
wall. At a constant value of 2a/(c+d), the spheroid experiences a minimum torque
when it is located midway between the two plane walls [c/(c+d) = 1/2], and the
torque increases monotonically as the particle approaches either of the walls. In
general, for an arbitrary combination of the parameters a/b, a/c, and η/βb, the
assumption that the results for two walls can be obtained by simple addition of the
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single-wall effects overestimates the correction to the hydrodynamic torque on a
spheroid.

 30

Figure 5 
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Figure 5: Plots of the normalized torque T/T0 for the rotation of a prolate spheroid
with a/b = 2 about its axis of revolution perpendicular to a single plane wall [c/(c+
d)→ 0, dashed curves] and to two equally distant plane walls [c/(c + d) = 1/2,
solid curves] versus the separation parameter a/c for various values of the slip
parameter η/βb.

In Fig. 5, results of the normalized hydrodynamic torque T/T0 exerted on a prolate
spheroid with aspect ratio a/b = 2 rotating about its axis of revolution perpendic-
ular to a single plane wall [c/(c + d) = 0] and to two equally distant plane walls
[c/(c+d) = 1/2] are plotted as functions of the spacing parameter a/c for various
values of η/βb. For a spheroid with given values of a/b (cases other than a/b = 2
are not displayed here for conciseness) and η/βb, the value of T/T0 equals unity at
a/c = 0 and increases monotonically with an increase in the ratio a/c. This normal-
ized torque decreases with an increase in η/βb, keeping a/b and a/c unchanged.

The normalized hydrodynamic torque T/T0 for the rotation of a prolate spheroid
about its axis of revolution perpendicular to two equally distant plane walls [c/(c+
d) = 1/2] as a function of its aspect ratio a/b for various values of the spacing
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Figure 6 
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Figure 6: Plots of the normalized torque T/T0 for the rotation of a prolate spheroid
about an axis perpendicular to two equally distant plane walls [c/(c + d) = 1/2]
versus the inverse aspect ratio (a/b)−1 for different values of the separation param-
eter a/c. The solid and dashed curves represent the cases with no slip (η/βb = 0)
and with finite slip (η/βb = 0.5), respectively.

parameter a/c is plotted in Fig. 6. The solid and dashed curves represent the
cases of rotation of a no-slip spheroid (η/βb = 0) and of a finite-slip spheroid
(with η/βb = 0.5), respectively. It can be seen that, due to the decrease of the
effective particle-boundary interaction area that offers hydrodynamic resistance to
the rotation of the spheroid, T/T0 decreases monotonically with an increase in the
aspect ratio a/b for given values of a/c and η/βb. For fixed values of a/b and
a/c, as expected, a no-slip spheroid experiences more hydrodynamic torque than
a finite-slip spheroid does. Again, T/T0 is a monotonically increasing function of
a/c for specified values of a/b and η/βb.

6 Axially symmetric rotation of oblate particles normal to two plane walls

In Section 4, the rotational motion of a general prolate axisymmetric particle about
its axis of revolution normal to two plane walls was considered and a set of spherical
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Figure 7: Plots of the normalized torque T/T0 for the rotation of a no-slip oblate
spheroid (η/βb = 0) with a/b = 1/2 about its axis of revolution perpendicular to
two plane walls versus the ratio c/(c+d) with a/c and 2a/(c+d) as parameters.

singularities must be distributed on a segment along the axis within the particle. In
this section, we consider the corresponding rotation of a general oblate particle of
revolution and the spherical singularities should be distributed on a fundamental
circular disk Sd normal to and symmetric about the axis of revolution within the
particle.

Let Q be an arbitrary point on Sd with the coordinates (ρ = ρ̂ , φ = φ̂ , z = 0). Then
the fluid velocity at another point P(ρ = ρ , φ = 0, z = z) caused by a spherical
singularity at Q can be obtained using Eq. (5),

v̂φ =
ρ− ρ̂ cos φ̂

ρ∗

∞

∑
n=2

Bnγn(ρ∗,z,0), (17)

v̂ρ =
ρ̂ sin φ̂

ρ∗

∞

∑
n=2

Bnγn(ρ∗,z,0), (18)

where ρ∗ is the distance from the point Q to the projection of the point P on the
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Figure 8: Plots of the normalized torque T/T0 for the rotation of an oblate spheroid
with a/b = 1/2 about its axis of revolution perpendicular to a single plane wall
[c/(c+d)→ 0, dashed curves] and to two equally distant plane walls [c/(c+d) =
1/2, solid curves] versus the separation parameter a/c for various values of the slip
parameter η/βb.

plane z = 0,

ρ
∗ = (ρ2 + ρ̂

2−2ρρ̂ cos φ̂)1/2. (19)

The fluid velocity distribution produced by the rotation of the confined oblate par-
ticle can be constructed by the superposition of the individual contributions in Eqs.
(17) and (18) made by the entire set of singularities on the fundamental disk Sd .
Thus, at an arbitrary location in the fluid, one has

vφ =
∞

∑
n=2

∫ 2π

0

∫ R

0
(
ρ− ρ̂ cos φ̂

ρ∗
)Bn(ρ̂)γn(ρ∗,z,0)ρ̂dρ̂dφ̂ , (20)

where R is the radius of the disk Sd and the corresponding integral for vρ vanishes.
Due to the axial symmetry of the system, the singularities ought to be distributed
uniformly on each principal circle in Sd and the density distribution coefficients Bn
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Figure 9: Plots of the normalized torque T/T0 for the rotation of an oblate spheroid
about an axis perpendicular to two equally distant plane walls [c/(c + d) = 1/2]
versus the aspect ratio a/b for different values of the separation parameter a/c.
The solid and dashed curves represent the cases with no slip (η/βb = 0) and with
finite slip (η/βb = 0.5), respectively.

are functions of ρ̂ only. Equation (20) provides an exact solution for the Stokes
equations that satisfies Eqs. (3) and (4), and the unknown density functions Bn(ρ̂)
must be determined from the remaining boundary condition (2) using the multipole
collocation method. The corresponding integral expressions for the components of
the viscous stress tensor can be obtained accordingly using Eqs. (6) and (7).

The torque acting on the oblate particle by the fluid can be obtained by using Eqs.
(10) and (20), with the result

T = 16π
2
η

∫ R

0
B2(ρ̂)ρ̂dρ̂. (21)

Analogous to the case of a prolate particle examined in Section 4, the integration in
Eq. (20) with respect to ρ̂ can be performed by using the M-point Gauss-Legendre
quadrature formula and the infinite series is truncated after N terms. With this
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arrangement, Eq. (20) and the stress components in Eq. (2) become

vφ =
N+1

∑
n=2

M

∑
m=1

B′nmγnm(ρ,z,0), (22)

[
τρφ

τzφ

]
= η

N+1

∑
n=2

M

∑
m=1

B′nm

[
αnm(ρ,z,0)
βnm(ρ,z,0)

]
, (23)

where the functions γnm, αnm, and βnm are defined by Eqs. (A7)-(A9) in Appendix
A, and B′nm are the unknown density constants.

Application of the boundary condition (2) to Eqs. (22) and (23) yields

N+1

∑
n=2

M

∑
m=1

B′nmγ
∗
nm(ρ,z,0) = Ωρ on Sp, (24)

where the function γ∗nm is given by Eq. (9) with the subscript n of its functions
being replaced by nm. Thus, the collocation technique described in Section 4 can
be used to satisfy the boundary condition (24) and to determine the MN density
constants B′nm required for the fluid velocity distribution. Once these constants are
determined, the hydrodynamic torque exerted on the particle can be obtained from
Eq. (21) as

T = 16π
2
η

M

∑
m=1

B′2m. (25)

7 Solution for the rotation of an oblate spheroid normal to two plane walls

The numerical solutions of the hydrodynamic torque experienced by a prolate spheroid
rotating about its axis of revolution normal to one or two plane walls were presented
in Section 5. In this section, the spherical singularity method and boundary collo-
cation technique described in the previous section will be used to solve for the
corresponding rotation of an oblate spheroid. The surface of the oblate spheroid
can still be represented by Eqs. (16), but with b > a > 0. Now, the value of R in
Eqs. (20) and (21) is taken to be (b2− a2)1/2, the radius of the focal circle of the
oblate spheroid.

The numerical results of the nondimensional torque T/8πηb3Ω for the rotation
of an oblate spheroid about its axis of revolution perpendicular to a single plane
wall [c/(c + d) = 0] and to two equally distant plane walls [c/(c + d) = 1/2] are
presented in Tables 5 and 6, respectively, for various values of the aspect ratio a/b,
spacing parameter a/c, and slip parameter η/βb. Again, the convergence behavior
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of the method of spherical singularities in general is satisfactory. Analogous to
Tables 3 and 4 for the corresponding confined rotation of a prolate spheroid, Tables
5 and 6 indicate that T/8πηb3Ω increases monotonically with an increase in a/c
for specified values of a/b, c/(c + d), and η/βb and with a decrease in η/βb for
constant values of a/b, c/(c+d), and a/c.

Figure 7 presents the hydrodynamic torque T acting on a no-slip oblate spheroid
(η/βb = 0) with a/b = 1/2 rotating about its axis of revolution perpendicular to
two plane walls at various positions between them normalized by the correspond-
ing torque T0 acting on an unbounded oblate spheroid (as a/c→∞). Again, the ap-
proach of a second wall will enhance the torque exerted by the fluid on the spheroid
in the vicinity of the first wall. At a constant value of 2a/(c + d), the particle ex-
periences a minimum hydrodynamic torque when it is located midway between the
two plane walls, and the torque increases monotonically as the particle approaches
either of the walls.

The results of the normalized hydrodynamic torque T/T0 experienced by an oblate
spheroid with aspect ratio a/b = 1/2 rotating about its axis of revolution perpen-
dicular to a single plane wall and to two equally distant plane walls as functions
of a/c for various values of η/βb are plotted in Fig. 8. Analogous to the case of
a prolate spheroid discussed in Section 5, for an oblate spheroid with given aspect
ratio (cases other than a/b = 1/2 are not illustrated here for conciseness), the value
of T/T0 increases monotonically with an increase in a/c from unity at a/c = 0 and
decreases with an increase in η/βb, keeping the other parameters unchanged. It
can be seen that the hydrodynamic torque exerted on the oblate spheroid can be
very large when a/c is close to unity, especially as the value of η/βb is small.

The normalized hydrodynamic torque T/T0 for the rotation of an oblate spheroid
about its axis of revolution perpendicular to two equally distant plane walls is plot-
ted as a function of the aspect ratio a/b in Fig. 9 for different values of the spacing
parameter a/c. The solid and dashed curves denote the cases of rotation of a no-slip
spheroid (η/βb = 0) and of a finite-slip spheroid (with η/βb = 0.5), respectively.
Similarly to the boundary effects on the motion of a prolate spheroid, T/T0 for a
confined oblate spheroid increases monotonically as the ratio a/b decreases or a/c
increases, keeping other factors fixed. Again, a no-slip spheroid experiences more
hydrodynamic torque than a finite-slip spheroid does for specified values of a/b
and a/c.

8 Concluding remarks

In this work, the slow rotational motion of an axially symmetric particle about
its axis of revolution normal to one or two plane walls in a viscous fluid, which
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may slip at the particle surface, is studied by the use of the method of internal
singularity distributions combined with the boundary collocation technique. For
the case of rotation of a prolate particle, a truncated set of spherical singularities
is distributed along the axis inside the particle, whereas for the case of motion
of an oblate particle, the singularities are placed on the fundamental disk of the
particle. The numerical results for the torque exerted on the particle by the fluid
indicate that the solution procedure converges rapidly and accurate solutions can
be obtained for various cases of the particle shape, slippage, and separation from
the walls. Although the numerical solutions were presented in the previous sec-
tions only for the rotation of a sphere, a prolate spheroid, and an oblate spheroid,
the combined analytical and numerical technique utilized in this work can easily
provide the hydrodynamic calculations for the rotation of a confined axisymmetric
particle of other shapes, such as a prolate or oblate Cassini oval [Keh and Tseng
(1994)].

In Tables 1-6 and Figs. 2-9, we presented only the results for the resistance prob-
lems, defined as those in which the torque T exerted by the surrounding fluid on
the rotating particle is to be determined for a specified angular velocity Ω of the
particle. In a mobility problem, on the other hand, the external torque T imposed
on the particle is specified and the particle velocity Ω is to be determined. It is
worth to note that our results can also be used for those physical problems in which
the applied torque on the particle is the prescribed quantity and the particle must
rotate accordingly.

Acknowledgement: Part of this research was supported by the National Science
Council of the Republic of China.

Appendix A: Definitions of functions in Sections 2, 3, 4, and 6

For conciseness the definitions of some functions in Sections 2, 3, 4, and 6 are listed
in this appendix. The functions appearing in Eqs. (5)-(7), (9), (11), (13), (17), (18),
and (20) are defined as

γn(ρ,z,h) =∫
∞

0
(sinhτ)−1[χn(ω,d−h)sinhσ −χn(ω,−c−h)sinhη ]ω J1(ωρ)dω

+nρ
−1(ρ2 + z2

h)
−(n−1)/2G−1/2

n (κ), (A1)

αn(ρ,z,h) =
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∫
∞

0
(sinhτ)−1[χn(ω,−c−h)sinhη−χn(ω,d−h)sinhσ ]ω2J2(ωρ)dω

−nρ
−2(ρ2 + z2

h)
−(n+2)/2{(ρ2 + z2

h)
1/2[2z2

h +(1+n)ρ2]G−1/2
n (κ)− zhρ

2Pn−1(κ)},
(A2)

βn(ρ,z,h) =∫
∞

0
(sinhτ)−1[χn(ω,d−h)coshσ −χn(ω,−c−h)coshη ]ω2J1(ωρ)dω

−nρ
−1(ρ2 + z2

h)
−(n+2)/2[(n−1)zh(ρ2 + z2

h)
1/2G−1/2

n (κ)+ρ
2Pn−1(κ)], (A3)

where

χn(ω,z) =
−1

(n−1)!
(
ω |z|

z
)n−2e−ω|z|, (A4)

σ = ω(z+ c), η = ω(z−d), τ = ω(c+d), (A5)

κ = zh(ρ2 + z2
h)
−1/2, zh = z−h, (A6)

G−1/2
n is the Gegenbauer polynomial of the first kind of order n and degree –1/2,

and Pn is the Legendre polynomial of order n.

The following are the definitions of some functions used in Eqs. (22) and (23) in
Section 6:

γnm(ρ,z,h) =
∫ 2π

0
(
ρ−qm cos φ̂

ρ∗m
)γn(ρ∗,z,h)dφ̂ , (A7)

αnm(ρ,z,h) =∫ 2π

0
{[q

2
m sin2

φ̂

(ρ∗m)3 −
ρ−qm cos φ̂

ρρ∗m
]γn(ρ∗m,z,h)+(

ρ−qm cos φ̂

ρ∗m
)2

δn(ρ∗m,z,h)}dφ̂ ,

(A8)

βnm(ρ,z,h) =
∫ 2π

0
(
ρ−qm cos φ̂

ρ∗m
)βn(ρ∗m,z,h)dφ̂ , (A9)

where

δn(ρ,z,h) =
1
2

∫
∞

0
(sinhτ)−1[χn(ω,d−h)sinhσ −χn(ω,−c−h)sinhη ]ω2[J0(ωρ)− J2(ωρ)]dω
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−nρ
−2(ρ2 + z2

h)
−(n+1)/2[(nρ

2 + z2
h)G

−1/2
n (κ)−ρ

2Pn−1(κ)], (A10)

ρ
∗
m = (ρ2 +q2

m−2ρqm cos φ̂)1/2, (A11)

and qm are the Gauss-Legendre quadrature zeros. The integrations in Eqs. (A1)-
(A3) and (A7)-(A10) can be performed numerically.
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