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An Interval Optimization Method Considering the
Dependence between Uncertain Parameters

C. Jiang1,2, Q.F. Zhang1, X. Han1, D. Li3 and J. Liu1

Abstract: In this paper, an interval optimization method is developed to deal
with a class of problems that there exists dependence between the interval param-
eters. An ellipsoidal convex model is used to model the uncertainty domain, in
which the parameter dependence can be well reflected through the shape of a multi-
dimensional ellipsoid. Based on an order relation and a reliability-based possibility
degree of interval, the uncertain optimization can be transformed to a deterministic
nesting optimization. An efficient algorithm is then constructed to solve the created
nesting optimization, in which a sequence of approximate interval optimizations are
created and the optimal design is obtained through an iteration process. Two nu-
merical examples are investigated to demonstrate the effectiveness of the present
method.

Keywords: interval optimization; uncertain optimization; non-probability; con-
vex model; multi-dimensional ellipsoid; dependence

1 Introduction

In conventional optimizations (Haftka and Gurdal, 1992; Mathur et al., 2003; Tapp
et al., 2004; Fedelinski and Gorski, 2006; Amirante et al., 2007; Lamberti and
Pappalettere, 2007) all the involved parameters can be given specific values, while
in uncertain optimizations the imprecision of some important parameters needs to
be considered. Traditional uncertain optimization methods (Kirjner-Neto et al.,
1998; Royset et al., 2001; Cheng et al., 2006; Liang et al., 2007; Du and Chen,
2004; Doltsinis and Kang, 2006; Kang and Luo, 2010) are generally based on the
probability model, in which the precise probability distributions of all the uncertain
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parameters need to be constructed through a large number of samples. However,
in practical applications sufficient samples on the uncertainty are often unavailable
or sometimes very expensive to obtain them, and hence the probability model will
encounter difficulty. To conduct the uncertainty analysis for this class of complex
problems, the interval model (Moore, 1979) has been developed to deal with the
uncertain parameters without enough information, and based on it another kind of
uncertain optimization methodology, namely interval optimization has come into
being.

In interval optimization, only the bounds of the uncertain parameters are required
rather than their precise probability distributions, and hence many complex engi-
neering structures with limited information can be conveniently treated. An amount
of investigation has been carried out for linear interval optimization (Tanaka et al.,
1984; Ishibuchi and Tanaka, 1990; Rommelfanger, 1989; Tong, 1994; Zhang et al.,
1999; Sengupta et al., 2001; Averbakh and Lebedev, 2005), in which the objective
function and constraints are all linear functions of the interval parameters. Con-
sidering that nearly all of the practical engineering problems are nonlinear, thus in
recent years the nonlinear interval optimization has been attracting more and more
attentions, and some methods in this field have been well established. Ma (2002)
considered the interval uncertainty in the objective function and transformed the
interval optimization into a deterministic multi-objective optimization. Jiang et al.
(2007) investigated a general optimization problem, in which the objective function
and constraints both contain the intervals. Cheng et al. (2004) changed the inter-
val optimization into a minimax problem and subsequently constructed a hybrid
algorithm to solve this problem. Guo et al. (2009) considered the global optimal-
ity existing in the interval optimization and derived some interesting conclusions.
Recently, Jiang et al. (2011) constructed a reliability-based possibility degree of
interval, based on which the interval constraints can be changed to deterministic
ones. In the above works, each uncertain parameter is treated as an isolated in-
terval, and hence the whole uncertainty domain forms a multi-dimensional box.
Thus actually the above analysis is based on a precondition that all the involved
uncertain parameters are mutually independent. Nevertheless, in many practical
engineering problems the involved uncertain parameters have some dependence,
and if they are treated as independent variables large analysis errors are likely to
be caused. Therefore, it seems absolutely necessary to develop some new inter-
val optimization methods to accommodate the dependent uncertainty, and whereby
significantly expand the applicability of the interval optimization techniques.

In the field of non-probabilistic structural analysis, the ellipsoidal convex model
(Ben-Haim and Elishakoff, 1990; Qiu, 2003) is often used to deal with the un-
certain parameters with certain correlativity, in which the parameters subjected
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to uncertainty are assumed to fall into a multi-dimensional ellipsoid instead of a
multi-dimensional box. Through adjusting the shape of the ellipsoid, the depen-
dence between the parameters can be well reflected. In this paper, by introducing
the ellipsoidal convex model we aim to develop a new nonlinear interval optimiza-
tion method, which can deal with the uncertain parameters with dependence. The
remainder of this paper is organized as follows. Section 2 creates an interval op-
timization model based on the ellipsoidal convex model. Section 3 transforms the
interval optimization to a conventional optimization problem. Section 4 formulates
an efficient algorithm to solve the involved nesting optimization. Section 5 pro-
vides two numerical examples and some conclusions are summarized in Section
6.

2 Nonlinear interval optimization by using ellipsoidal convex model

A general interval optimization can be formulated as:

min
X

f (X,U)

subject to

gi(X,U)≤ bI
i =
[
bL

i ,b
R
i
]
, i = 1, ..., l

Xl ≤ X≤ Xr (1)

where X is an n-dimensional design vector, and Xl and Xr denote its two searching
bounds. f and gi, i = 1,2, ..., l are the objective function and constraints, respec-
tively, and in our study they are required to be continuous and differentiable with
respect to the design variables and the uncertain parameters. bI

i is an allowable
interval of the ith uncertain constraint. The superscripts I, L and R denote the in-
terval, lower bound and upper bound of interval, respectively. U is a q-dimensional
uncertain vector, and the possible values of each parameter of U belong to an inter-
val U I

i , i = 1,2, ...,q. Considering that there exists some dependence between the
parameters, their uncertainty then can be assumed to fall into a following multi-
dimensional ellipsoid (Ben-Haim and Elishakoff, 1990):

U = U0 +δδδ

δδδ ∈ E (δδδ ,θ) =
{

δδδ : δδδ
T

Ωδδδ ≤ θ
2} (2)

where U0 denotes the midpoint of the ellipsoid; Ω is a characteristic matrix which
determines the shape of the ellipsoid ; θ is a parameter which determines the size
of the ellipsoid. δδδ is a q-dimensional vector introduced for convenience of analysis.
Figure 1 gives an ellipsoidal convex model for a two-dimensional case.
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Figure 1: A two-dimensional ellipsoidal convex model

3 Creating a deterministic counterpart for the interval optimization

2. In this section, the above interval optimization will be transformed into a deter-
ministic one. Firstly, based on an order relation of interval (Ishibuchi and Tanaka,
1990) the uncertain objective function in Eq. (1) can be changed to a deterministic
multi-objective optimization problem:

min
X

[ f c(X), f w(X)]

f c(X) =
1
2
( f L(X)+ f R(X)), f w(X) =

1
2
( f R(X)− f L(X)) (3)

where the superscripts c and w represent the midpoint and radius of interval, re-
spectively. For each specific X, the possible values of the objective function will
form an interval f I(X), and its bounds can be expressed as:

f L(X) = min
U∈Γ

f (X,U), f R(X) = max
U∈Γ

f (X,U) (4)

where Γ denotes the uncertainty domain defined by Eq. (2).

The possibility degree of interval represents a quantitative extent that an interval
is larger or smaller than another one. In the authors’ previous work (Jiang et al.,
2010; Jiang et al., 2011), a reliability-based possibility degree of interval (RPDI)
was created, which can work not only for overlapped intervals but also completely
separated intervals and furthermore can be used as a reliability index to deal with
the interval constraints. Based on the RPDI, the constraints in Eq. (2) can be
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changed to:

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

gw
j (X) =

gR
j (X)−gL

j (X)
2

, bw
j =

bR
j −bL

j

2
(5)

where pr ∈ [−∞,+∞] denotes the RPDI and λ j is a predetermined RPDI level for
the jth constraint. A large RPDI level indicates a high requirement of reliability,
and whereby a small feasible field of the constraints in Eq. (5). The constraint
intervals gI

j (X) =
[
gL

j (X) ,gR
j (X)

]
, j = 1,2, ..., l can be also computed through

the optimization method like Eq. (4).

Using the linear combination method (Miettinen, 1999) to deal with the multi-
objective problem, a deterministic optimization problem can be finally created for
Eq. (1):

min
X

fd = β f c(X)+(1−β ) f w(X)

subject to

pr
(
gI

j (X)≤ bI
j
)

=
bR

j −gL
j (X)

2gw
j (X)+2bw

j
≥ λ j, j = 1,2, ..., l

Xl ≤ X≤ Xr (6)

where 0.0≤ β ≤ 1.0 is a weighting factor and fd denotes a desirability function of
the two objectives.

Obviously, Eq. (6) is a nesting optimization problem and it will in general lead
to extremely low efficiency for a practical engineering problem based on the time-
consuming simulation. To improve the practicability of the present interval op-
timization method, an efficient algorithm will be formulated to solve the above
nesting optimization.

4 Solving the nesting optimization problem

In our algorithm, a sequence of approximate optimizations are created and an op-
timum is obtained through an iteration process. At the sth iterative step, based
on the first-order Taylor expansion the approximate interval optimization has the
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following form:

min
X

f̃ (X,U)

≈ f
(

X(s),U0
)

+
n

∑
i=1

∂ f
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )+

q

∑
i=1

∂ f
(
X(s),U0

)
∂Ui

(Ui−U0
i )

subject to

g̃ j (X,U)≈ g j
(
X(s),U0

)
+

n
∑

i=1

∂g j(X(s),U0)
∂Xi

(Xi−X (s)
i )+

q
∑

i=1

∂g j(X(s),U0)
∂Ui

(Ui−U0
i )

≤ bI
j =
[
bL

j ,b
R
j

]
, j = 1, ..., l

max
[
Xl,X(s)− γ

(s)
]
≤ X≤min

[
Xr,X(s) + γ

(s)
]

(7)

where γ(s) denotes the move limit vector applied on the current design vector X(s)

to ensure the approximation accuracy.

Now, the approximate objective function f̃ and constraints g̃i, i = 1,2, ..., l are all
linear functions with respect to U, and hence their bounds at each specific X can be
analytically computed. To obtain the interval f̃ I(X) =

[
f̃ L(X), f̃ R(X)

]
we need to

solve the following optimization problems:

f̃ L(X) = min
δδδ∈E(δδδ ,θ)

f
(

X(s),U0
)

+
n

∑
i=1

∂ f
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )+

q

∑
i=1

∂ f
(
X(s),U0

)
∂Ui

δi

f̃ R(X) = max
δδδ∈E(δδδ ,θ)

f
(

X(s),U0
)

+
n

∑
i=1

∂ f
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )+

q

∑
i=1

∂ f
(
X(s),U0

)
∂Ui

δi

(8)

As two conventional optimization problems with linear objective function and quadratic
inequality constraint, by using the Lagrange-multiplier-based method developed in
(Qiu, 2003) their optima can be explicitly obtained:

f̃ L(X) = f
(

X(s),U0
)

+
n

∑
i=1

∂ f
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )−θ

√
∇ f T

U Ω−1∇ fU

f̃ R(X) = f
(

X(s),U0
)

+
n

∑
i=1

∂ f
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )+θ

√
∇ f T

U Ω−1∇ fU (9)
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where ∇ fU denotes the gradient vector composed by
∂ f(X(s),U0)

∂Ui
, i = 1,2, ...,q.

Similarly, g̃I
j (X) =

[
gL

j (X) ,gR
j (X)

]
, j = 1,2, ..., l can be also explicitly obtained:

gL
j (X) = g j

(
X(s),U0

)
+

n

∑
i=1

∂g j
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )−θ

√
∇gT

U jΩ
−1∇gU j,

j = 1,2, ..., l

gR
j (X) = g j

(
X(s),U0

)
+

n

∑
i=1

∂g j
(
X(s),U0

)
∂Xi

(Xi−X (s)
i )+θ

√
∇gT

U jΩ
−1∇gU j,

j = 1,2, ..., l (10)

where ∇gU j denotes the gradient vector of the jth constraint composed by
∂g j(X(s),U0)

∂Ui
,

i = 1,2, ...,q.

Based on Eqs. (9) and (10), the approximate optimization in Eq. (7) can be changed
to a deterministic optimization problem like Eq. (6):

min
X

f̃d =
n
∑

i=1
β

∂ f(X(s),U0)
∂Xi Xi+β

(
f
(
X(s),U0

)
− ∂ f(X(s),U0)

∂Xi X (s)
i

)
+(1−β )θ

√
∇ f T

U Ω−1∇ fU

subject to

n

∑
i=1

∂g j
(
X(s),U0

)
∂Xi

Xi≤ (1−λ j)bR +λ jbL +(1−2λ j)θ

√
∇gT

U jΩ
−1∇gU j,

j = 1,2, ..., l

max
[
Xl,X(s)− γ

(s)
]
≤ X≤min

[
Xr,X(s) + γ

(s)
]

(11)

As a linear programming problem, the well-established simplex method (Nocedal
and Wright, 1999) can be used to solve the above problem. After obtaining the
optimum X̄ of Eq. (11), it needs to be judged whether it is a feasible and descend-
ing solution of Eq. (6), and hence the intervals of the actual objective function
and constraints at X̄ are required. Considering that the uncertainty levels in prac-
tical engineering problems are generally small, these intervals can be analytically
obtained by also using the above linear approximation approach:

f L (X̄)= f
(
X̄,U0)−θ

√
∇ f T

UX̄ Ω−1∇ fUX̄
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f R (X̄)= f
(
X̄,U0)+θ

√
∇ f T

UX̄ Ω−1∇ fUX̄

gL
j
(
X̄
)

= g j
(
X̄,U0)−θ

√
∇gT

UX̄ jΩ
−1∇gUX̄ j, j = 1,2, ..., l

gR
j
(
X̄
)

= g j
(
X̄,U0)+θ

√
∇gT

UX̄ jΩ
−1∇gUX̄ j, j = 1,2, ..., l (12)

where ∇ fUX̄ denotes the gradient vector composed by
∂ f(X̄,U0)

∂Ui
, i = 1,2, ...,q, and

∇gUX̄ jdenotes the gradient vector of the jth constraint composed by
∂g j(X̄,U0)

∂Ui
, i =

1,2, ...,q.

Our algorithm can then be summarized below:

Step 1 Setting the following parameters: initial design X(1), move limit γ(1), scal-
ing factor α ∈ (0,1), allowable errors ε1 > 0,ε2 > 0,ε3 > 0, RPDI levels λ j, j =
1,2, ..., l, and step index s=1.

Step 2 Solving the linear programming problem in Eq. (11) to obtain an optimum
X̄.

Step 3 Calculating the intervals f I(X̄) and gI
j
(
X̄
)
, j = 1,2, ..., l of the actual ob-

jective function and constraints at X̄ through Eq. (12).

Step 4 Calculating the desirability function fd
(
X̄
)

and the constraint RPDIs pr(gI
j(X̄)≤

bI
j), j = 1,2, ..., l.

Step 5 If min
{(

pr

(
gI

j
(
X̄
)
≤ bI

j

)
−λ j

)
, j = 1,2, ..., l

}
>−ε1 and fd

(
X̄
)
< fd

(
X(s)

)
,

making X(s+1) = X̄ and go to Step 7; otherwise, reducing the move limit γ(s) :=
αγ(s) by a scaling factor α . (Judgement of a feasible and descending solution)

Step 6 If min
{

δ
(s)
i , i = 1,2, ...,n

}
< ε2, X(s) is obtained as an optimal design of

the original problem and the iteration process terminates; otherwise, back to Step
2.

Step 7 Repeat the above steps until the distance of design vectors of the last two
iterations is smaller than ε3.

5 Numerical examples and discussions

5.1 A 10-bar truss

A well-known 10-bar aluminum truss (Au et al., 2003; Elishakoff et al., 1994) as
shown in Fig. 2 is investigated. The length L of the horizontal and vertical bars is
360in. The joint 4 is subjected to a vertical load F1, and the joint 2 is subjected to
a vertical load F2 and a horizontal load F3. The density and Young’s Modulus of
the material are ρ = 0.1lb / in3 and E = 104ksi, respectively. In order to obtain a
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minimum weight, the cross-sectional areas A j, j = 1,2, ...,10 of the bars need to
be optimized subjected to some stress and displacement constraints. The allowable
stress in tension or compression is [55ksi, 55ksi] for bar 9, and the other bars are
given a same allowable stress [30ksi, 40ksi]. The vertical displacement δ2 of joint 2
should not exceed 5in. The loads Fi, i = 1,2,3 are three uncertain parameters, and
their midpoints are 100kips, 100kips and 400kips, respectively. The uncertainty
domain can be represented by the following ellipsoidal convex model:

E (δδδ ,θ) =

{
δ :

δ 2
F1

100
+

δ 2
F2

100
+

δ 2
F3

1600
≤ 1

}
(13)
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Figure 2: A 10-bar aluminium truss

Then a nonlinear interval optimization can be created:

min
A

W (A) =
10

∑
i=1

(ρLiAi) = ρL

(
6

∑
i=1

Ai +
√

2
10

∑
i=7

Ai

)

Subject to

σ j (A,F)≤ σ
,
i,allow j = 1,2, ...,10
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δ2 (A,F)≤ 5in

0.1≤ Ai ≤ 20, i = 1,2, ...,10 (14)

where W denotes the weight of the truss, and σ denotes the stress. In the above
problem, all the stress and displacement constraints can be analytically obtained
(Au et al., 2003; Elishakoff et al., 1994).
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Figure 3: Relation of the predefined RPDI level and the truss weight

The involved parameters in our algorithm are set as: β = 0.5, α = 0.5, ε1 = 0.01,
ε2 = 0.01 and ε3 = 0.005. For convenience of analysis, a same RPDI level is used
for all the constraints, and the computational results under different RPDI levels
are given in Tables 1-5. It can be found that the different RPDI levels for the
interval constraints bring about different optimization results. For a relatively low
RPDI level of 0.7, we can achieve a small truss weight of 1618.5lb, however, the
constraints have relatively large possibilities to be violated. With increasing of the
RPDI level, the optimized truss weight becomes larger while the reliability of all the
constraints becomes better. For a relatively high RPDI level of 1.1, the truss weight
increases to 2167.0lb, and under this case the stress and displacement intervals
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Figure 4: An automobile frame and its equivalent static model

caused by the uncertain forces have no possibilities to be beyond the allowable
values. The relation between the RPDI level and the minimum truss weight is
illustrated in Fig. 3. It can be found that for the above problem the truss weight
behaves a nonlinear and monotonical relation with respect to the RPDI level of the
constraints.

5.2 Design of an automobile frame

A practical automobile frame (Jiang et al., 2010) is investigated, as shown in Fig. 4.
The frame is composed of two side beams and eight cross beams denoted by bi, i =
1,2, ...,8. Q1, Q2, Q3, and Q4 are four equivalent forces applied on the frame, and
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Table 1: Optimization results under the RPDI level 1.1

Bar’s
num-
ber

Optimal
design vector
(in2)

Interval of stress
constraint (ksi)

RPDI of
constraint

Interval of ob-
jective function
(lb)

1 18.5625 [5.9241, 7.3551] 2.9810 [2166.9644,
2166.9644]

2 0.2751 [21.7359, 28.3475] 1.0995
3 5.9975 [13.5121, 27.5874] 1.1002
4 12.2712 [21.6793, 28.3383] 1.0997
5 3.3047 [19.0844, 23.1976] 1.4820
6 0.2751 [21.7359, 28.3475] 1.0995
7 9.2725 [25.2562, 28.6594] 1.1000
8 1.3736 [19.7124, 28.1548] 1.1000
9 2.7004 [43.9916, 53.5323] 1.1538
10 0.4472 [18.9103, 24.6624] 1.3388
Interval of the displacement constraint is [3.0074in, 4.8193in], RPDI
is 1.0997.

Table 2: Optimization results under the RPDI level 1.0

Bar’s
num-
ber

Optimal
design vector
(in2)

Interval of stress
constraint (ksi)

RPDI of
constraint

Interval of ob-
jective function
(lb)

1 18.4844 [5.9434, 7.3873] 2.9759 [2073.1279,
2073.1279]

2 0.1936 [22.9359, 30.0060] 0.9997
3 5.5120 [14.7074, 29.9967] 1.0001
4 11.5344 [22.9036, 30.0032] 0.9998
5 3.0583 [21.1615, 25.7078] 1.2951
6 0.1936 [22.9359, 30.0060] 0.9997
7 8.8593 [26.4441, 29.9998] 1.0000
8 1.2904 [20.8610, 30.0002] 1.0000
9 2.6815 [45.1170, 54.9584] 1.0042
10 0.3285 [19.1117, 25.0030] 1.3145
Interval of the displacement constraint is [3.0611in, 5.0007in], RPDI
is 0.9996.
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Table 3: Optimization results under the RPDI level 0.9

Bar’s
num-
ber

Optimal
design vector
(in2)

Interval of stress
constraint (ksi)

RPDI of
constraint

Interval of ob-
jective function
(lb)

1 17.8438 [5.6300, 6.9780] 3.0287 [1973.8965,
1973.8965]

2 0.1000 [18.1221, 23.9624] 1.3812
3 4.7473 [14.5615, 32.8280] 0.9000
4 10.8059 [24.1542, 31.7607] 0.9000
5 3.5675 [21.6706, 26.2108] 1.2606
6 0.1000 [18.1221, 23.9624] 1.3812
7 9.0000 [27.5447, 31.3847] 0.8999
8 0.6680 [20.7260, 32.1455] 0.8998
9 2.7171 [45.8970, 56.0115] 0.9000
10 0.1066 [24.0313, 31.7760] 0.8999
Interval of the displacement constraint is [2.9688in, 5.2046in], RPDI
is 0.9085.

Table 4: Optimization results under the RPDI level 0.8

Bar’s
num-
ber

Optimal
design vector
(in2)

Interval of stress
constraint (ksi)

RPDI of
constraint

Interval of ob-
jective function
(lb)

1 17.7656 [5.9944, 7.4626] 2.9652 [1887.1790,
1887.1790]

2 0.1000 [18.7686, 24.7406] 1.3293
3 4.5291 [17.0370, 35.7483] 0.7998
4 10.2133 [25.5623, 33.6106] 0.7999
5 2.7259 [25.9852, 31.4553] 0.9059
6 0.1000 [18.7686, 24.7406] 1.3293
7 8.2785 [28.8753, 32.7816] 0.8000
8 0.9651 [22.9957, 34.2602] 0.7997
9 2.6650 [46.7602, 57.0643] 0.7997
10 0.1035 [25.6446, 33.8044] 0.7905
Interval of the displacement constraint is [3.0452in, 5.3144in], RPDI
is 0.8614
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Table 5: Optimization results under the RPDI level 0.7

Bar’s
num-
ber

Optimal
design vector
(in2)

Interval of stress
constraint (ksi)

RPDI of
constraint

Interval of ob-
jective function
(lb)

1 12.1413 [7.5541, 9.2654] 2.7705 [1618.5467,
1618.5467]

2 0.1000 [18.8811, 25.1358] 1.2993
3 3.6431 [15.5956, 40.4590] 0.7000
4 9.6555 [27.0436, 35.5528] 0.7000
5 3.0129 [28.6641, 34.8582] 0.7000
6 0.1000 [18.8811, 25.1358] 1.2993
7 8.7162 [29.8802, 34.3371] 0.7000
8 0.1000 [21.6973, 37.8440] 0.7000
9 2.6145 [47.6557, 58.1476] 0.7000
10 0.1000 [26.7020, 35.5474] 0.7056
Interval of the displacement constraint is [2.9065in, 5.7573in], RPDI
is 0.7344

the small triangle denotes the fixed displacement constraint. The density of the
material is ρ = 7.8×10−3Kg/mm3. The cross beams b1, b2, b3 and b6 are fixed,
and the spans li, i = 1,2,3 need to be optimized to achieve a maximum stiffness of
the frame in Y direction. In this problem, the Young’s Modulus E and Poisson’s
ratio ν are both treated as uncertain parameters because of the manufacturing and
measuring deviations, and their midpoints are 2.0×105Mpa and 0.3, respectively.
Their uncertainty domain can be represented by the following convex model:

E (δδδ ,θ) =
{

δ :
δ 2

E

4×108 +
δ 2

υ

9×10−4 ≤ 1
}

(15)

An interval optimization problem then can be created:

min
l

dmax (l,E,ν)

Subject to

σmax (l,E,ν)≤ [85Mpa,88Mpa]

500mm≤ li ≤ 1200mm, i = 1,2,3 (16)
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where dmax denotes the maximum displacement in Y direction and it is used to
describe the vertical stiffness of the frame. The constraint σmax represents the max-
imum stress in the frame.

The involved parameters in our algorithm are set as: β = 0.5, α = 0.5, ε1 = 0.05,
ε2 = 0.005 and ε3 = 0.001. The initial design vector and move limit vector are
specified as [750, 750, 750] and [40, 40, 40], respectively. A RPDI level of 1.3
is applied to the stress constraint, and the optimization results are given in Table
6. An optimal design of [743.75mm, 783.75mm, 786.25mm] is obtained for the
spans l, and the corresponding interval of the maximum vertical displacement is
only [1.582mm, 1.606mm] which implies a fine vertical stiffness of the automo-
bile frame. The maximum stress interval in the frame at the optimal design is
[82.019Mpa, 83.454Mpa], which indicates a high reliability of the constraint be-
cause it has no possibility to exceed the allowable interval [85Mpa,88Mpa]. On
the other hand, for this practical engineering problem our algorithm converges only
after 5 iterative steps.

Table 6: Optimization results of the automobile frame

RPDI
level

Optimal
design
vector
(mm)

Interval of
objective
function
(mm)

Interval of
constraint
(Mpa)

fd RPDI
of stress
con-
straint

Number
of steps

1.30 743.750
783.750
786.250

[1.582,
1.606]

[82.019,
83.454]

0.803 1.349 5

6 Conclusions

In this paper, a new method is developed to deal with the interval optimization
problems existing dependence between the uncertain parameters. By using the el-
lipsoidal convex model to model the uncertainty domain, the possible combinations
of the interval parameters will fall into a multi-dimensional ellipsoid rather than a
multi-dimensional box. An algorithm is formulated to solve the involved nesting
optimization, in which an optimal design can be obtained through creating and solv-
ing a sequence of approximate interval optimizations. Each approximate interval
optimization can be changed to a conventional linear programming problem which
we can easily deal with. An iterative mechanism is also constructed to update the
design space and whereby ensure the optimization accuracy. In the first numerical
example, opposite trends are observed between the reliability of the interval con-
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straints and the objective function as the RPDI level varies. In the second numerical
example, a practical automobile frame is optimized by using our method, and a fine
design is obtained only after a small number of iterations.
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