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Enhancement Transport Phenomena in the Navier-Stokes
Shell-like Slip Layer

J. Badur1, M. Karcz1, M. Lemanski1 and L. Nastalek1

Abstract: In the paper we propose to remove the classical Navier slip condition
and replace it with new generalized Navier-Stokes slip boundary conditions. These
conditions are postulated to be ones following from the mass and momentum bal-
ance within a thin, shell-like moving boundary layer. Owing to this, the problem
consistency between the internal and external friction in a viscous fluid is solved
within the framework of a proper form of the layer balances, and a proper form of
constitutive relations for appropriate friction forces. Finally, the common features
of the Navier, Stokes, Maxwell and Reynolds concepts of a boundary slip layer
are compared and revalorized. Classifications of different mobility mechanisms,
important for flows in micro- and nano-channels are discussed.
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1 Introduction

In the past two decades, a considerably large interest has been devoted to the new,
small scale devices. Current possibilities allow manufacturing devices of order
of nanometres. However, despite the capabilities in producing small scaled ob-
jects, there is an apparent lack of knowledge in their behaviour. A great example
is the MEMS and NEMS [Gad-el-Hak (1991); Karniadakis, Beskok, and Aluru
(2005)] class of devices. The incorporated flow phenomena there occurring are not
well described. As recent study has shown the measured mass flow rate in the mi-
croscaled and nanoscaled devices is considerably larger than predicted by means of
a standard fluid dynamics formulations for Poiseuille flow [Poiseuille (1846)]. This
discrepancy is mostly identified to come from the velocity slip at the fluid-solid
interface. The simpliest experimental setups (although exploiting most sophisti-
cated methods) have been developed [Ewart, Perrier, Graur, and Meolans (2006);
Arkilic, Schmidt, and Breuer (1997); Pitakarnnop, Varoutis, Valougeorgis, Geof-
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froy, Baldas, and Colin (2010)] to address measurement of only the velocity slip
phenomenon, but also more complex investigations were carried out, where transi-
tion from laminar to turbulent flow were looked upon [Blonski (2009); Sharp and
Adrian (2004)] as well as thermal [Jebauer and Czerwinska (2007); Lewandowski,
Ochrymiuk, and Czerwinska (2011)] and concentration [Xu and Ju (2005); Badur,
Karcz, and Lemanski (2011); Jozwik, Karcz, and Badur (2011)] jump phenomena.

Despite the achieved fluency in experimental design, there is an apparent lack of
understanding of the flow enhancement in it’s theoretical background. This is man-
ifested throughout the prediction discrepancies compared to measurement. The dis-
crepancies growth is directly proportional to the medium rarefaction, and inversely
proportional to the channel hydraulic diametre. This rule also stands for other
phenomena, when their influence on the bulk flow is not negligible. By the last
statement it is understood, that although the phenomena may be present in a large
scaled devcies, they seem to be of insignificant importance there. When the bound-
ary layer extends to the bulk however, as it occurrs in the micro- and nanochannels,
the wall effects alter the entire flow field. Recent developement in theoretical un-
derstanding of how the enhancement may work, led researchers [Deissler (1964);
Colin, Lalonde, and Caen (2004); Maurer, Tabeling, Joseph, and Willaime (2003)]
to the formulation of the so called "second-order" slip boundary. The idea relies on
the Maxwell [Maxwell (1879)] model derived from gas kinetic theory. The veolcity
derivative present in the model is perceived as the first term in the Taylor series, and
hence the second order derivative is added up to the boundary condition. However
correct or not this is, there is but a single flaw in the rationale. The applied second
order term remains inconsistent with the definition of the stress tensor. This brings
about questions to how the model may be physically interpreted, and how to regain
the consistency with the continuum mechanical approach framework.

Different approaches have been proposed for modeling of the rarefied medium
flow. Among them are the statistical methods (DSMC) [Aktas, Aluru, and Ra-
vaioli (2001); Stefanov, Barber, Ota, and Emerson (2005)], (LBM) [Chen, Doolen,
Eggert, and Grunau (1991); Qian, d’Humieres, and Lallemand (1992); Bhatna-
gar, Gross, and Krook (1954)] and explicit molecular methods (MD) [Bird (1994)].
Vast computational resources are required for the mentioned methods to be realised,
and restricts the use for purely academic research with relatively simple geometri-
cal setups. The search for universal and reliable computational tool is still under
way and, unfortulately, far from being established. The need for such a model, ca-
pable of giving relatively quick results and reliable in sense of it’s agreement with
experimental data motivated the work at Polish Academy of Sciences Fluid Flow
Machinery Institute (FFMI PASci). The model FFMI elaborates on provides an ex-
tention to the flow enhancement by means of additional to velocity slip phenomena.
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The goal is then to acquire mathematical formulation for the boundary condition to
be consistent with the continuum mechanics framework. The results achieved so
far are shown in the paper.

2 Enhanced transport model

2.1 Boundary condition formulation

The initian point in the FFMI PASci model developement is, contrary to the com-
monly used and widely elaborated on Maxwell model, the boundary condition
firstly introduced in 1827 by Navier in form [Navier (1827)]:

ν~v+ µ
d~v
dn

= 0. (1)

Further extension to the model, to the more general form was given by Cauchy, one
year after Navier’s paper, where physical interpretation is given to the terms in the
equation [Cauchy (1828)]:

~f +~τw = 0. (2)

In the above Cauchy definition, ~f is the boundary friction force, while ~τw is iden-
tified as the fluid "wall stress". It is a very neat representation, and to some extent
complete. If one considers a simple flow of a fluid in contact with the solid wall.
However, in a more general case, as Poisson has shown in his 1831 paper, the condi-
tion requires further extension for the inclusion of capillary forces, most important
in case of multiphase flows. The capillary forces may have a strong influence on
friction and velocity slip. The Cauchy boundary condition is hence supplemented
with an additional term by Poisson, and has a form [Poisson (1831)]:

~f +~τw +divs(γ
↔
I s) = 0, (3)

where γ
↔
I s is introduced as the capillary stress tensor. The tensor, in the framework

suggested by FFMI PASci may be written as a sum:

↔
ps=

↔(ν)
ps +

↔(c)
ps , (4)

where
↔(ν)
ps is the conservation, elastic stresses, while

↔(c)
ps describe the dissipative,

non-elastic stresses. Each of the stresses are defined as follows:
↔(c)
ps =

↔
γ 0
↔
IIs
↔
γ 1 +~n⊗

↔
I s divs(

↔
γ 1 −

↔
IIs
↔
γ 2); (5)

↔
γ 0= γ

↔
I s;
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↔
γ 1= C

↔
IIs;

↔
γ 2= K

↔
IIIs;

↔(ν)
ps = λ

′(tr
↔
d s)

↔
I s +λνn,n~n⊗~n+2µ

′ ↔I s Id
↔
I s +2µ(

↔
d s −

↔
I s Id

↔
I s) (6)

In 1845 Stokes has further expanded the boundary condition definition applying
the so called wall pressure tensor. This relies on the observation that the pressure
in the vicinity of the wall does not necessarily equal the pressure at the wall, which
influences the overall behaviour of the fluid at the fluid-solid interface. Following
Stokes, we put the boundary condition as such [Stokes (1845)]:

~f +
↔
p ~n+divs(γ

↔
I s)+ϖ~n = 0, (7)

where pressure tensor
↔
p is defined in the following section. Given the formulations

and definitions introduced so far, the generalized form of the boundary condition,
as proposed by FFMI PASci team states:

∂t(ρs~vs)+divs(ρs~vs⊗~vs||)−wnIbρs~vs +divs(
↔
ps)+

+
∂

∂n
(
↔
ps ~n)+ [

↔
pA ~nA+

↔
pB ~nB +~fSA +~fSB] =

= ρs~bs + ṁA(~vA−~vs)+ ṁB(~vB−~vs), (8)

The above equation may be written in it’s simplified form, correct for the flow of a
rarefied gas in contact with a solid, inelastic wall. The boundary condition would
then be of a form:

∂t(ρs~vs)+divs(ρs~vs⊗~vs||)−wnIbρs~vs +divs(
↔
ps)+

+
∂

∂n
(
↔
ps ~n)+ [

↔
p ~n+~f ] = ρs~bs + ṁ f luid(~v−~vs). (9)

At this point, the general formulation of the boundary condition has been given with
no further explanation for the terms there appearing. The next section is devoted
to defining both the friction force and the wall stress force, and also explain the
pressure tensor.

2.2 Definition of friction and wall stress terms

In 1902 Duhem [Duhem (1901)] and in 1927 Roy [Roy (1927)] have been work-
ing on the velocity slip boundary condition. They assumed, that the wall friction
force is determined by the definition first given by Coulomb in 1801 [de Coulomb
(1801)]:

~f =
(

ν
1
|~vs|

+ν1 +ν2|~vs|
)

~vs. (10)
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On the other hand, in the boundary condition definition, there exists the wall stress
vector which is, in accordance to Cauchy definition, defined to be [Cauchy (1828)]:

~τw =
↔
t ~n, (11)

where
↔
t is the Cauchy tensor. In the simpliest form, the Cauchy tensor may be

defined to be:
↔
t =−p

↔
I +2µ

↔
d , (12)

or introducing tensor stackrel↔p =−
↔
t , following Stokes [Stokes (1845)]:

↔
p= p

↔
I −2µ

↔
d +

(
2
3

µ−κ

)
Id
↔
I , (13)

further generalization of the wall stress definition is achieved.

2.3 Transpiration effects

In 1846 and 1849 Graham [Graham (1846,1849)], and later in 1879 Reynolds
[Reynolds (1879)], observed phenomena, today commonly known after Reynolds
the transpiration effects. Transpiration effect manifests itself as a countercurrent
at the wall to the bulk flow. That is, while the gradient between the inlet and the
outlet of a microtube generates the flow in the opposite to the gradient direction, the
transpiration occurs as the counter flow at the fluid-solid interface. When spoken of
Graham observed transpiration, we speak of concentration transpiration. The "wall
flow" occurs from the region of a lower concentration to the region of a higher con-
centration of a given constituent. When spoken of Reynolds observed transpiration,
we speak of thermal transpiration, i.e. the flow from region of a lower temperature
to the region of a higher temperature, also at the fluid-solid interface. Taking into
account the transpiration effects, an also accounting for the pressure transpiration,
we achieve a more general form of the friction force definition in a form:

~f = ν(~v−~vwall)− (cs,ϖ gradsϖ + cs,θ gradsθ + cs,c gradsc), (14)

where cs,ϖ and cs,c are the pressure and concentration transpiration coefficients,
respectively, and cs,θ is the Reynolds thermal transpiration coefficient.

2.4 Generalised boundary force condition

Given the, already defined in the previous subsection, contributions to the boundary
friction force, the FFMI PASci team proposes the following constitutive equations
of a generalized boundary force as a sum of friction force and the mobility force
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[Badur, Karcz, and Lemanski (2011)]. Friction forces account for the medium
interactions with the solid wall material. The division to mobility and friction terms
allows the description of the generalized boundary force in a form:

~f = ~f f +~fm, (15)

where f index corresponds to the friction forces, and m index - to mobility forces.
Both forces may be defined as follows:

~f f = fstaticN
~v−~vwall

|~v−~vwall|
+ν(~v−~vwall)+ fk(~v−~vwall)2 ~v−~vwall

|~v−~vwall|
, (16)

for the friction force, and:

~fm =−(cs,ϖ gradsϖ + cs,θ gradsθ + cs,c gradsc+ cs,φ gradsφ + cs,x gradsx), (17)

for the mobility force. In the last equation for the mobility forces, there exist five
gradients. Those are: concentration gradient for c symbol, electric potential gradi-
ent for φ symbol, pressure gradient for ϖ symbol, thermal gradient for θ symbol,
phase transition progress gradient for x symbol. The given definition of the bound-
ary force treats the subject in the most general form, that in some special cases may
be simplified.
As a test of the model applicability, a comparison with experimental results, ac-
quired by [Pitakarnnop, Varoutis, Valougeorgis, Geoffroy, Baldas, and Colin (2010)],
was made. Since the experimental setup provides isothermal conditions for lami-
nar monoatomic gas flow (helium and argon), the model could be simplified to only
account for the velocity slip. In this case, the model would be of a form:

fstaticN
~v−~vwall

|~v−~vwall|
+ν(~v−~vwall) = µ

∂~v
∂n

. (18)

Since the fstaticN parametre is of unknown form or value, we decided to omit its
discussion for the time being. Hence we achieved a striking resemblence to the
standard Maxwell model. Thus the comparison with the results for Maxwell model
was also performed:

~v =
µ

ν

∂~v
∂n

= ls
∂~v
∂n

. (19)

The numerical results are presented in Fig. 1. It is readily seen that both models
give approximately similar results, although the FFMI PASci model seems to be
more consistent, independently on the flowing medium. As can be seen for helium,
the Maxwell model is less reliable than for argon. FFMI PASci doesn’t suffer from
such a drawback, and gives similar agreement regardless the gas.
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Figure 1: The mass flow rate [kg/s] versus Knudsen number for numerical simula-
tion compared with experimental data provided in [Pitakarnnop, Varoutis, Valouge-
orgis, Geoffroy, Baldas, and Colin (2010)]

3 Temperature and concentration jump

Aside from the transport enhancement, due to wall effects manifesting themselves
strongly particularily in the wall dominated flows, i.e. where characteristic length
scale of the channel (hydraulic diametre) is of a comparable order of magnitude
as the mean free path of a fluid molecules, there are also inequalities in thermal
and concentration fields in the direction normal to the boundary. Those inequali-
ties commonly referred to as jumps, were investigated in literature [Lewandowski,
Ochrymiuk, and Czerwinska (2011); Jebauer and Czerwinska (2007); Xu and Ju
(2005)].

3.1 Temperature jump model

It is very important to note at the very beginning, that the temperature jump should
not be mistaken with the thermal transpiration. Since the latter influences flow en-
hancement, the former is connected with the normal to the wall inequality (which
obviously to some extent may also have an effect on the flow field - but not as a
prime cause), or interpreted as inequality of solid wall and fluid temperature. Pro-
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posed in 1896 by von Smoluchowski [von Smoluchowski (1910)] model introduces
a characteristic length scale lθ defined as the jump length, which is connected with
the Stokes heat flux model [Stokes (1851)] as follows:

h(θ −θwall)+~q ·~n = 0, (20)

where heat flux is defined by Fourier law [Fourier (1878)]:

~q = λ gradθ . (21)

The temperature jump length was defined by Smoluchowski to be:

lθ =
λ

h
. (22)

Generalized form of the boundary condition given by FFMI PASci has then a form:

∂t(cp,sθs)+divs(cp,sθs~vs||)−θsIb~vs ·~n+divs(λsgradsθs)+

+h(θ −θwall)+~q ·~n = 0. (23)

3.2 Concentration jump model

In case of the flow of a fluid mixture an effect of concentration jump many oc-
cur, particularily when the reacting mixture is considered, and channel walls have
catalytic properties. Thus the discontinuity of concentration may take place in the
direction normal to the boundary. The model for the concentration boundary con-
dition proposed by Lewis in 1924 was [Lewis and Whitman (1924)]:

α(c− cwall)+~j ·~n = 0, (24)

where constituent flux is defined according to Fick’s diffusion law [Fick (1855)]:

~j = D gradc. (25)

The closure for a corresponding concentration jump was propodsed in literature to
be defined as:

lc =
D
α

. (26)

Then the generalized form of the boundary condition of FFMI PASci is:

∂t(ρscs)+divs(ρscs~vs||)− csIs~vs ·~n+divs(Dsgradscs)+

+α(c− cwall)+~j ·~n = 0, (27)

which is analogous to the definition for the temperature jump.
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4 Summary

In the paper the form of the boundary condition model derived in FFMI PASci has
been described. It was shown, that more than velocity slip may account for the flow
enhancement phenomenon, i.e. the concentration, thermal, pressure, electric charge
or phase progress gradients may have considerable impact on the flow behaviour.
Aside from the cocurrent and countercurrent influences observed in the micro- and
nanoflows, there exists a class of phenomenae enacting on the temperature and con-
centration fields manifesting themselves as temperature and concentration jumps,
respectively, in the direction normal to the solid-fluid interface (or any two-phase
interface). These discontinuities are non-negligible due to strong wall domination
in the micro- and nanoflows. Further experimental and theoretical investigation in
this field is also required to establish the form and value of the model’s parametres.
Along with the mentioned merits, the model provides a good physical interpreta-
tion of all the terms, however experimental research is required for confirmation of
the modelling assumptions.

The model has proven to be better suited in computing microflows compared with
the standard Maxwell model. The model’s consistency is confirmed in a wide range
of Knudsen numbers.
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