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Multiple Damage Detection Method for Beams Based on
Multi-Scale Elements Using Hermite Cubic Spline Wavelet

Jiawei Xiang1,2 and Ming Liang1, 3

Abstract: The importance of damage detection in structures has been widely
recognized in mechanical and civil engineering. A new method is proposed to
detect multiple damages based on frequency measurement. According to linear
fracture mechanics theory, the damages are modeled by rotational springs. The
first problem of interest is concerned with the construction of multi-scaling wavelet
finite element model using Hermite cubic spline wavelet on the interval (HCSWI)
in the forward problem analysis to obtain damages detection database. The second
problem is the inverse problem analysis to determine the number of damages, their
locations and depths based on the minimum Root-mean-square (RMS) of the dif-
ferences between the measured and the computed frequencies. The performance
of the proposed method has been verified by numerical examples and experimental
study of two-damage cantilever beam.

Keywords: Multiple damage detection Hermite cubic spline wavelet on the
interval Multi-scale wavelet-based element

1 Introduction

Damages often occurs on structures and may cause catastrophic failures. Struc-
tural health monitoring has been receiving increasing interest in both academia
and industry for several decades. There has been numerous of research focusing
on model-based methods for damage detection in structures during recent years.
The model-based damage detection method involves two kinds of problems, one is
the forward problem analysis used to obtain damage detection database for struc-
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tures using finite element method (FEM), the other is the inverse problem anal-
ysis to seek optimized value from damages detection database using surface fit-
ting technique (Owolabi, et al., 2003), genetic algorithms(GAs) (He, et al., 2001),
neural networks(NNs) (Wu, et al., 1992) or others. The research in the past few
decades on cracked structures and rotors is well documented in a review paper by
Wauer (Wauer, 1990) ,surveys on beam-like structures by Dimarogonas (Dimarog-
onas, 1996) and Doebling (Doebling, et al., 1998) and more recently by Montalvão
(Montalvão, et al., 2006). The model-based methods have definite advantages in
applications for underwater platforms, bridges, wind turbine blade, etc. In such
cases, inspections with a portable instrument, can be carried out, to measure the re-
sponse under environmental excitation. If this excitation is considered to be white
noise, the response of the structure will be, to a certain scale, the transfer function
(can be used to measure the natural frequencies) of the structures. Therefore, this
method may provide reasonable results in many fields.

A significant amount of research involving the prediction of the response of struc-
tures to the presence of a transverse crack or damage. The detection of transverse
cracks by the application of the linear fracture mechanics theory. In order to evalu-
ate the local flexibility or stiffness introduced by the damage, neglecting the effects
that may be incorporated into the mass and damping matrices. The thrust of the
most works in the past has been on a structure with a single transverse surface
damage (Dimarogonas, 1996;Doebling, et al., 1998; Montalvão, et al., 2006). Re-
cently, a high performance wavelet-based finite element method was proposed to
detect one damage in beams and shafts (Xiang, et al., 2006; 2007; 2008). However,
when more than one damage appears in structures, the dynamic response becomes
more complex depending upon the damage parameters ( locations and depths of
these damages). The multiple damage effects and identification methods are re-
viewed by Sekhar (Sekhar, 2008). While most of the studies dealing with multiple
damage method is only address the forward problems, i.e. determination of natu-
ral frequencies or modal shapes using traditional finite element method (Patil and
Maiti, 2003; Perera and Ruiz, 2008; Lee, 2009a; 2009b; Khiem and Lien, 2004). To
obtain a more precise damage detection database for the inverse problem solutions
in damage detection procedures, numerously traditional finite element elements are
needed.

Neural networks(NNs) is a useful tool to deal with inverse or pattern recogni-
tion problems in engineering. Various researchers have started to experiment with
NNs for damage identification purposes during the last decade (Liu, et al., 2002;
Zachiarias, et al., 2004; Yuan, et al., 2005; Lee, et al., 2005). However, the applica-
tion of NNs to multiple damage detection has been very limited mainly due to the
slow process to obtain the optimal damage parameters from a large number of train-
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ing samples. Multiple damage detection is a difficult task. If there exist n damages
in structures, 2n damage parameters(n damage locations and n damage depths) will
be detected and at least 2n frequencies (Dilena and Morassi,2009; 2010; Morassi,
2007; Gaddemi and Morassi, 2007) are needed to accomplish this task. Therefore,
in the present model-based multi-damage detection methods, the combination of
FEM with frequency ratio method is commonly used and at least four frequencies
are needed to detect two damages. However, the traditional finite element method
can not work well to get a satisfactory detection results. Then, a dynamic mesh-
refinement method (DMRM) of multiple damage detection is presented by using
single scale wavelet finite element method (Chen, et al., 2006).

The wavelet numerical methods, which have been developed in recent years, can
be viewed as a method in which the approximation functions are defined by the
scaling or wavelet functions, similar to those used in signal and image processing
(Libre, et al., 2008; 2009; Yan, et al., 2008). And the wavelet-based numerical
method has two prominent advantages. One is to upgrade scale to obtain the scaling
functions at different scale that can be employed directly to form the multi-scale
approximation bases. The other is to hierarchically approximate using the lifting
relationship between scale and wavelet spaces. Therefore, the wavelet method is
well argued by many researchers in various fields and the results show that wavelet
approximation can reduce the computation and storage costs (Ma, et al., 2003;
Chen, et al., 2004; Chen, et al., 1995; 1996a; 1996b; Han, et al., 2006; 2007; 2009;
Zhou and Zhou, 2008a; 2008b; Diaz, et al., 2009; Vampa, et al., 2010).

The purpose of the present work is to establish a method for predicting the loca-
tions and depths of multiple damages in beam-like structures by considering several
lowest frequencies of the damage structures. We combine the multi-scale wavelet-
based finite element method using HCSWI with a simple minimal value determina-
tion method using root-mean-square (RMS) to make an effective and accurate de-
tection in multi-damage structures. The influence of damage parameters on changes
of several lowest frequencies are discussed by numerical simulation. Some experi-
mental works to detect two damages in cantilever beam testify the present method.

2 Multi-scale Wavelet-based finite element method

2.1 Wavelet bases of Hermite cubic splines on the interval

Classical approaches to wavelet construction deal with multiresolution analysis
(MRA) on the entire real space R and the corresponding wavelets are often de-
fined on the entire square integrable real space L2(R) . Therefore, the numerical
instability phenomenon will occur when the wavelets are employed as interpolat-
ing functions for numerical simulation (Jia and Liu,2006). Wavelets defined on the
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interval will overcome this problem. In this study, the wavelet bases of Hermite
cubic splines on the interval are employed as the interpolating functions to con-
struct multi-scale wavelet-based beam element for analyzing damaged beam-like
structures.

Here we denote L2(R) as the linear space of all square integrable real valued func-
tions on R . The inner product in L2(R) is defined as < u,v >:=

∫
R u(x)v(x)dx,

u,v ∈L2(R). If < u,v >= 0 , we say that u and v are orthogonal. The norm of a
function f in L2(R) is given by ‖ f‖2 :=

√
< f , f >.

Let φ1 and φ2 be the cubic splines supported on the interval [0, 1], given by

φ1(x) :=


(1+ x)2(1−2x) f or x ∈ [−1,0],
(1− x)2(1+2x) f or x ∈ [0,1],
0 f or others,

(1)

and

φ2(x) :=


(1+ x)2x f or x ∈ [−1,0],
(x−1)2x f or x ∈ [0,1],
0 f or others,

(2)

The graphs of φ1 and φ2 are depicted in Fig.1. Clearly, both φ1 and φ2 belong to
C1(R).
The corresponding wavelets ψ1 and ψ2 supported on the interval [-1, 1] are (Jia and
Liu, 2006){

ψ1 =−2φ1(2x+1)+4φ1(2x)−2φ1(2x−1)−21φ2(2x+1)+21φ2(2x−1),
ψ2 = φ1(2x+1)−φ1(2x−1)+9φ1(2x+1)+12φ2(2x)+9φ2(2x−1).

(3)

They satisfy the conditions < ψ1
′,φ m

′(• − j) >= 0 and < ψ2
′,φ m

′(• − j) >=
0, m = 1,2,∀ j ∈ Z, and their shifts generate the wavelet space W . Fig.2 shows
the graphic of ψ1 and ψ2. ψ1 is symmetric and ψ2 is antisymmetric.

The above mentioned wavelets can generate a wavelet basis for space H1
0(0,1) .

Therefore, we have the following decomposition of H1
0(0,1) :

H1
0(0,1) = V1 +W1 +W2 + · · · , (4)

where V1 is the scaling space and Wn for n = 1,2, · · · is the wavelet space at differ-
ential levels.
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Figure 1: Hermite cubic splines on R

Figure 2: Wavelets ψ1and ψ2

Define the scaling functions φ1,k as

φ1,1(x) : =

√
5
24

φ1(2x−1),

φ1,2(x) : =

√
15
4

φ2(2x),

φ1,3(x) : =

√
15
8

φ2(2x−1),

φ1,4(x) : =

√
15
4

φ2(2x−2),

(5)
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and the wavelets ψn,k as



ψn,k(x) : =
2−n/2
√

729.6
ψ1(2nx− j

2
) f or j = 2,4, · · · ,2n+1−2,

ψn,k(x) : =
2−n/2
√

153.6
ψ2(2nx− j−1

2
) f or j = 1,3, · · · ,2n+1−1,

ψn,1(x) : =
2−n/2
√

76.8
ψ2(2nx),

ψn,2n+1(x) : =
2−n/2
√

76.8
ψ2(2nx−2n).

(6)

All the scaling functions φ1,k and wavelets ψ1,k on the interval [0,1] are shown in
Fig.3. Suppose u ∈ V1 and vn ∈Wn for n = 1,2, · · · , the wavelets have a useful
property that each wavelet at different levels is orthogonal with respect to the inner
product, i.e. < u′,v′n >= 0 for all n and < v′m,v′n >= 0 for m 6= n .

Figure 3: Scaling functions in V1 and wavelets in W1

The wavelet bases in Vj can be written as

ΦΦΦ j = [ ΦΦΦ1 ψψψ1 ψψψ2 . . . ψψψ j−1] (7)

where ΦΦΦ1 = [φ1,1,φ1,2,φ1,3,φ1,4] denotes scaling functions in V1 and ψψψs(s = 1,2, . . . , j−
1 ) consists of the wavelet base in Ws, i.e. ψψψs = [ψs,1,ψs,2, . . . ,ψs,2s+1 ] .
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2.2 Multi-scale wavelet-based beam element

At a certain scale j,the wavelet-based Rayleigh-Timoshenko beam element consid-
ering the effects of the cross-section inertia and shear deformation was constructed
in Ref. (Xiang, et al., 2007), the corresponding elemental free vibration frequency
equation is

|Ke−ω
2Me|= 0, (8)

where ω is the natural angular frequency(rad/s), Ke is the elemental stiffness ma-
trix, and Me is the elemental mass matrix (Xiang, et al., 2007). To obtain stifness
and mass matrices, we have to compute the integration as follows

ΓΓΓ
1,1
j =

∫ 1
0

dΦΦΦ
T
j

dξ

dΦΦΦ j
dξ

dξ

ΓΓΓ
1,0
j =

∫ 1
0

dΦΦΦ
T
j

dξ
ΦΦΦ jdξ

ΓΓΓ
0,0
j =

∫ 1
0 ΦΦΦ

T
j ΦΦΦ jdξ

(9)

We start with an initial coarse approximation space V1 and the scaling functions
ΦΦΦ1 are used. Then the wavelet bases are inductively added. We can use the multi-
resolution properties of the wavelet bases of Hermite cubic splines on the interval,
i.e.,

Vj = V1+̇W1+̇W2+̇ · · ·+̇Wj−1, (10)

where +̇ denotes direct sum.

It should be pointed out that the wavelets spaces by themselves form a complete
space. Therefore, the unknown function could be expanded entirely in terms of the
wavelets. However, to retain only a finite number of terms in the expansion, the
scaling function space V1 must be included.

The key to the multi-scale solution of shafts is to compute the integral as show in

Eq.(9). For integral ΓΓΓ
1,1
j =

∫ 1
0

dΦΦΦ
T
j

dξ

dΦΦΦ j
dξ

dξ ,the multi-scale matrix is

ΓΓΓ
1,1
j =


AΦΦΦ1,ΦΦΦ1 AΦΦΦ1,ψψψ1 · · · AΦΦΦ1,ψψψ j−1

Aψψψ1,ψψψ1 . . . Aψψψ1,ψψψ j−1

sym− . . .
...

Aψψψ j−1,ψψψ j−1

 (11)

where the sub-matrix of ΓΓΓ
1,1
j can be calculated by Ax,y =

∫ 1
0

dxT
dξ

dyT
dξ

dξ ,(x,y =
ΦΦΦ1,ψψψ1,ψψψ j−1).
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Considering the character of HCSWI, i.e. < u′,v′n >= 0 for all n and < v′m,v′n >= 0
for m 6= n , the non-diagonal sub-matrices of Eq.(11) become zeros. Thus, ΓΓΓ

1,1
j

reduces to

ΓΓΓ
1,1
j =


Aφφφ 1,φφφ 1

Aψψψ1,ψψψ1
. . .

Aψψψ j−1,ψψψ j−1

 (12)

From Eq.(12), only the diagonal sub-matrices will be calculated when we lift scale
1 to j−1 and other sub-matrices will remain zeros. This leads to substantial relief
of computational burden.

For integral ΓΓΓ
1,0
j =

∫ 1
0

dΦΦΦ
T
j

dξ
ΦΦΦ jdξ , the multi-scale matrix is

ΓΓΓ
1,0
j =


BΦΦΦ1,ΦΦΦ1 BΦΦΦ1,ψψψ1

· · · BΦΦΦ1,ψψψ j−1

Bψψψ1,ψψψ1
. . . Bψψψ1,ψψψ j−1

sym− . . .
...

Bψψψ j−1,ψψψ j−1

 (13)

where Bx,y =
∫ 1

0
dxT
dξ

ydξ ,(x,y = ΦΦΦ1,ψψψ1,ψψψ j−1).

For integral ΓΓΓ
0,0
j =

∫ 1
0 ΦΦΦ

T
j ΦΦΦ jdξ ,the multi-scale matrix is

ΓΓΓ
0,0
j =


CΦΦΦ1,ΦΦΦ1 CΦΦΦ1,ψψψ1

· · · CΦΦΦ1,ψψψ j−1

Cψψψ1,ψψψ1
. . . Cψψψ1,ψψψ j−1

sym− . . .
...

Cψψψ j−1,ψψψ j−1

 (14)

where Cx,y =
∫ 1

0 xTydξ ,(x,y = ΦΦΦ1,ψψψ1,ψψψ j−1).
From Eqs.(13)and (14), only sub-matrices Bx,y,(x = ΦΦΦ1,ψψψ1, . . . ,ψψψ l;y = ψψψ l) and
Cx,y,(x = ΦΦΦ1,ψψψ1, . . . ,ψψψ l;y = ψψψ l) will be calculated when lifting scale l to l + 1
and other sub-matrices will be preserved. This can also increase the calculating
efficiency. Because multi-scale elements are successfully constructed, it can be
directly incorporated into the traditional adaptive finite element framework in the
analysis of forward problem for more accurate results.

2.3 Adaptive wavelet finite element scheme

The adaptive scheme is shown in Fig.4. It is important to point out that the element
can be employed as an useful tool to achieve the adaptive wavelet finite element
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analysis for the same problems in other research areas.

Figure 4: The diagram of adaptive wavelet finite element scheme

The effective multi-scale elements should performance well because only the high
level multi-scale elements are added in some local areas with high approxima-
tion errors. Because of the fully and particular scale-decoupling characters of the
present multi-scale wavelet-based elements, only the finite element equations of
local areas are computed at the next iteration step, and the approximation errors are
rapidly decreased after several iteration steps.

3 Multiple cracks detection

3.1 The procedure

For detecting damages, the model-based method is generally concerned with the
forward problem analysis using finite element method and the inverse problem
analysis using many optimization methods. These detection schemes are based
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on the fact that the presence of a damage changes the dynamic characteristics of
the structures.

Fig.5 shows a beam or shaft with some damages on its surface. βi = ei/L,(i =
1,2, · · · ,n) denotes the normalized location of damage i in beam, and L is the beam
length.

Figure 5: A beam with n damages on its surface

Figure 6: Damaged rectangular and circular beam cross-sections

The continuity conditions at damage position indicate that the left node j and right
node j + 1 have the same transverse displacement, namely,u j = u j+1, while their
rotations θ j and θ j+1 are connected through the damaged stiffness submatrix KS as
follows
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KS =
[

Kt −Kt

−Kt Kt

]
(15)

The damaged cross-sections in beam with rectangle and circular cross-sections are
shown in Fig.6(a) and Fig.6(b) respectively.

For a damaged beam with rectanglar section, Kt is well known in literature and is
defined by (Patil and Maiti, 2003)

Kt = bh2E/(72πα
2
i f (αi)) (16)

in which (Tada, et al., 2000)

f (αi)= 0.6384−1.035αi +3.7201α
2
i −5.1773α

3
i +7.553α

4
i −7.332α

5
i +2.4909α

6
i

(17)

where αi = ci/h denotes normalized damage depth as shown in Fig.6(a), E is
Young’s modulus, b is the beam width, h is the beam height.

For a damaged shaft, Kt is calculated by considering a damaged shaft as a combi-
nation of a series of thin strip as (Chasalevris and Papadopoulos, 2006)

Kt =
πEr1

8

32(1−µ)
1∫ r1

√
1−(1−2αi)

2

−r1

√
1−(1−2αi)

2 [
∫ a(ξ )

0 ηF2(η/H)dη ]dξ

(18)

where δi is damage depth, r1 is radius of the shaft, µ is the Poisson’s ratio, αi =

δi/2r1 denotes normalized damage depth, a(ξ ) = 2r1αi− (r1−
√

r2
1−ξ 2) is the

damage depth of a thin strip, H = 2
√

r2
1−ξ 2 is the height of thin strip F(η/H)

is stress intensity function which is given by the following experimental formula
(Tada, et al., 2000)

F(η/H) = 1.122−1.40(η/H)+7.33(η/H)2−13.08(η/H)3 +14.0(η/H)4 (19)

According to the normalized damage location βi = ei/L,(i = 1,2, · · · ,n) , we can
assemble damaged stiffness submatrix into the global multi-scale wavelet-based
elemental stiffness matrix in the corresponding place. The procedure is similar
to that for single damage detection using wavelet finite element method (Xiang,
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et al., 2007). The global mass matrix of damaged structure is the same as the
undamaged one. Then the damaged structural finite element model of wavelet-
based elements can be constructed. The solution of the eigenvalue problem can
then proceed as usual. Therefore, the free vibration frequency equation for multi
degree of freedoms (MDOFs) system is

∣∣ K̄−ω2M̄
∣∣= 0 (20)

where K̄ and M̄ are the global stiffness and mass matrices.

To construct an accurate damage detection database, the multi-scale wavelet-based
element proposed herein is applied to the forward problem analysis. The functions
of the lowest frequencies of damage locations and depths are obtained as follows

ω j = Fj(α1,α2, · · · ,αn,β1,β2, · · · ,βn),( j = 1,2,3, · · · ,2n) (21)

where n is the number of damages in a beam.

3.2 Solving the inverse problem

To detect n damages in a structure, inverse problem analysis is necessary step,
which considers the measurement of several lowest frequencies and searches for
locations and depths of the damaged structures from damage detection databases
by forward problem analysis. From the groundbreaking studies presented by Dilena
and Morassi (Dilena and Morassi,2009; 2010; Morassi, 2007; Gaddemi and Morassi,
2007), if there exist n damages, 2n frequencies are the least inputs to detect these
damages. Therefore, the first 2n frequencies should be measured to seek for opti-
mum damage parameters. Based on Eq.(21), we have

(α1,α2, · · · ,αn,β1,β2, · · · ,βn) = F−1
j (ω j),( j = 1,2,3, · · · ,2n) (22)

From Eq.(22),we can see clearly that the inverse problem of multiple damages
detection is in essential a discrete optimization problem from damage detection
database computed by multi-scale wavelet-based beam elements.

To evaluate the errors of the inputs frequencies obtained by experimental measure-
ment of real structures, Euclidean length (EL) is adopted in this study as

EL =
√

(ω1− ω̆1)2 +(ω2− ω̆2)2 + . . .+(ω2n− ω̆2n)2 (23)

where ω1, ω2, . . ., ω2n are the 2n frequencies in the damage detection database,
whereas ω̌1, ω̌2, . . ., ω̌2n denote the measured frequencies by experimental modal
analysis (EMA) or operational modal analysis (OMA).
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The commonly used root-mean-square (RMS) value obtained from Euclidean length
is defined by

RMS = EL/
√

2n (24)

where 2n is the number of input frequencies.

The procedure for multiple damage detection is presented in Fig.7

Figure 7: The multiple damage detection procedure

4 Numerical simulation

To examine the performance of the proposed method, two examples are given
herein. One is a beam of rectangle cross-section with two damages on its sur-
face and the other is a beam of circular cross-section (or shaft) with two damages
.
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Example 1 Consider a damaged steel cantilever beam. Its dimensions are: L×
h×b = 0.85m×0.02m×0.012m. Material parameters are: Young’s modulus E =
2.06×1011N/m2,Poisson’s ratio µ = 0.3 and density ρ = 7860kg/m3.

Multi-scale wavelet-based beam element using HCSWI bases at level j = 2 are
used, and the size of the multi-scale wavelet-based beam element is 32×32 (32
DOFs).In this study, three multi-scale wavelet-based beam elements are used. For
comparison, the traditional Timoshenko beam elements with size 768×768(768DOFs)
are used as benchmark. The results computed at level j = 2 are found to be in good
agreement with those computed by the Timoshenko beam elements with 768DOFs
, as shown in Table 1. To obtain a same precision, using wavelet-based elements,
only 1/24 of the DOFs of traditional Timoshenko beam elements are needed. The
good performance of the lifting scheme is observed when the wavelets are added
step by step to generate multi-scale wavelet-based elements.

From Table 1, It is also expected that the natural eigenfrequency of a damaged beam
are lower than those of the undamage one. This is due to the reduction of beam
stiffness caused by the damages. Also, since the natural frequency is a function of
stiffness, a deeper damage causes greater reduction in natural frequency. Moreover,
there are four damage parameters that describe clearly the existence of two damages
in a beam, i.e., the two damage location β1 and β2 as well as the two damage depth
α1 and α2. The first case in Table 1 shows the first four frequencies of undamage
beam (this is often employed as a benchmark to update numerical model) and the
second case shows the first four frequencies of only one damage exist in a beam
(This is the special case that one damage location equals to another ) with the
damage parameters β1 = β2 = 0.3 and α1 = α2 = 0.2.

In the following, the way each of these four damage parameters affect the vibra-
tion will be investigated. When two damage parameters retain ceratin values, five-
dimension damage detection database is reduced to three-dimension. Therefore,
to make a clearly description, it is supposed that the two parameters of damages
locations and depths are constant in the present study. It should be pointed out that
the same procedure can obviously be repeated for all the locations and depths.

Fig.8 shows results of the first four frequencies as functions of single damage in
a beam, i.e., damage detection parameters are: α1 = α2 = α and β1 = β2 = β .
As shown in Fig.8, the change of the first four frequencies due to the influence of
damage location and depth are similar to that in (Xiang, et al., 2007).

Fig.8(a), (b), (c), (d) show the first, second, third and fourth frequencies respec-
tively. Some results are explained as follows:

(1) Effects of damage location β : It can be seen that the change in the first four nat-
ural frequencies are affected when the damage is located at every damage location.
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For a certain damage depth,the first frequency would be decreased significantly
with respect to the larger damage location. Moreover, it also shown that the sec-
ond, third and fourth natural frequencies are almost unaffected for some damage
locations. The reason is that the nodal points for these functions are located at
those position.

(2) Effects of damage depth α: It is noticed that the change in the first four natural
frequencies are affected when the single damage is occurred at every depth. For
a certain damage location, three frequencies would monotonically decrease if the
larger damage size is given. From the above observations, it could be stated that the
change in frequencies is not only a function of the damage location but also that of
the damage depth.

Figure 8: The first four frequencies as functions of only one damage occurred in a
beam

Fig.9 shows the first four frequencies as functions of the second damage’s α2 and
β2 with α1 and β1 fixed at 0.3 and 0.1 respectively. When one damage is kept
constant(α1 = 0.3 and β1 = 0.1), the relationships between the first four frequencies
and α2 and β2 are shown in Fig.9(a), (b), (c) and (d) respectively. It is observed that
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Figure 9: The first four frequencies as functions of the second damage’s α2 and β2
with α1 = 0.3 and β1 = 0.1

the diagrams are similar to those in Fig.8. However, the first four frequencies are
decreased substantially compared with only the single damage case. Therefore, we
can easily distinguish the existence of one or two damages by the proposed method.

The first four frequencies as functions of α2 and α1 when β2 and β1 are fixed at 0.5
and 0.3 respectively shown in Fig.10 to examine the effect of damage depth on the
first four frequencies. From Fig.10(a),(b),(c) and (d), it is shown that the damages’
depth has a strong impact on the frequencies. The first frequency varies from nearly
140 rad/s to 110 rad/s, far from the undamage frequency (143.84 rad/s) as shown
in Table 1. The second, third and fourth frequencies vary from approximately 880
rad/s to 700 rad/s, 2500 rad/s to 2100 rad/s and 4800 rad/s to 4000 rad/s, respec-
tively, which are also far below the undamage frequency (901.42 rad/s, 2524.00
rad/s and 4946.05 rad/s, respectively) as shown in Table 1. It is also observed that
larger damage depths lead to larger decrease in natural frequencies.

To explore the effect of the damage location on natural frequency change, we plot
some results in Fig. 11. It shows that the first four frequencies as functions of the
damages locations β2 and β1 with α2 = 0.3 and α1 = 0.4. From Fig.11 (a), (b), (c),



284 Copyright © 2011 Tech Science Press CMES, vol.73, no.3, pp.267-298, 2011

Figure 10: The first four frequencies as functions of the damages’ α2 and α1 with
the damages’ β2 = 0.5 and β1 = 0.3

(d) and compared with Fig.10, it can be seen clearly that the damage locations have
less impact on the natural frequencies comparing to the damage depths. There also
exist minimum frequencies when the damage locations β1 and β2 become larger,
i.e., when the damage locations moved to the free end of clamped beam.

In the simulation of the present method, the measured first four frequencies for the
damage detection are replaced by the first four simulation frequencies computed by
traditional Timshenko beam element as shown in Table 1. The comparison of pre-
dicted and actual damage locations and depths is shown in Table 2. The predicted
damage locations and depths are 100 % accurate. It should be pointed out that if
there exist measured errors introduced by measuring systems, structural boundary
conditions, material inner damping, etc., the prediction will not be 100 % accurate
(Chasalevis and Papadopoulos, 2006). However, we can select the agreeable min-
imum root-mean-square (RMS) values to determine the damage parameters. The
results in Table 2 can also help to determine the actual number of damages. For
example in case 2, β1 = β2 = 0.3 indicates that there is only one damage; for case
1, α1 = α2 = 0 implies no damage. In general, the number of damages is equal to



Multiple Damage Detection Method for Beams 285

Figure 11: The first four frequencies as functions of the damages’ β2 and β1 with
the damages’ α2 = 0.3 and α1 = 0.4

the number of different beta values each associate to a non-zero alpha.

Example 2 Consider a simply supported shaft of 0.85m long. The Young’s modulus
E = 2.06×1011N/m2, the cross-section radius d = 0.02m, Poisson’s ratio µ = 0.3
and the material density ρ = 7860kg/m3.

Multi-scale wavelet-based HCSWI beam elements at level j = 2 are used, and only
32 DOFs are needed. The traditional Timoshenko beam elements with 768DOFs
are also used for comparison. The two results are quite agreeable, as shown in
Table 3, although the number of DOFs needed for the wavelet-based elements is
only 1/24 of that for the Timoshenko elements.

For the cases investigated, the first four frequencies as functions of α2 and β2 with
α1 = 0.3 and β1 = 0.1 can be seen in Fig.12(a),(b),(c),(d). It is observed that the
diagrams are similar to those in Fig.9 for a rectangle cross-section beam. Moreover,
the change of natural frequencies for the simply supported shaft with two damages
are much more pronounced.

For the simulation purpose, the first four measured frequencies for the damage de-
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Table 2: Detection results and RMS values for a clamped beam

Case Input frequencies Detected parameters RMS
ω1 ω2 ω3 ω4 α2 α1 β2 β1

1 143.82 901.38 2524.16 4946.23 0 0 0 0 0.12
2 142.83 899.72 2503.69 4933.92 0.2 0.2 0.3 0.3 0.04
3 140.85 895.02 2501.11 4933.71 0.2 0.2 0.3 0.1 0.05
4 138.36 889.11 2497.84 4933.42 0.2 0.3 0.3 0.1 0.05
5 134.52 880.82 2493.53 4933.11 0.2 0.4 0.3 0.1 0.09
6 139.88 895.31 2496.95 4848.73 0.2 0.3 0.4 0.2 0.20
7 139.19 887.55 2484.73 4832.80 0.3 0.3 0.4 0.2 0.10
8 138.04 875.62 2465.87 4809.79 0.4 0.3 0.4 0.2 0.08
9 136.39 881.18 2386.97 4805.61 0.2 0.5 0.5 0.3 0.16
10 136.07 870.78 2386.21 4743.72 0.3 0.5 0.5 0.3 0.09
11 135.61 855.22 2385.07 4654.33 0.4 0.5 0.5 0.3 0.11
12 140.57 845.18 2418.65 4872.33 0.4 0.4 0.6 0.4 0.08
13 140.17 824.73 2381.65 4852.22 0.5 0.4 0.6 0.4 0.07
14 139.51 797.97 2337.49 4827.84 0.6 0.4 0.6 0.4 0.05
15 143.12 880.35 2516.78 4837.62 0.1 0.3 0.7 0.5 0.04
16 143.48 891.37 2516.78 4895.29 0.1 0.2 0.7 0.5 0.10
17 142.36 863.32 2516.71 4753.59 0.1 0.4 0.7 0.5 0.07

tection are also replaced by the first four simulation frequencies computed using
traditional Timshenko beam element as shown in Table 3. The comparison of pre-
dicted and actual damage locations and depths is shown in Table 4.The predicted
damage locations and depths are again 100 %. Once again, we can identify the
number of damages based on the alpha and beta values that are determined by the
minimum RMS shown in Table 4.

The above two examples clearly demonstrate that the proposed method yield results
comparable to these of the Timoshenko method with substantially fewer number of
elements. The computational time for the forward problem can thus be reduced
considerably. The inverse problem can also be solved to determine the number of
damages, their locations and severity based on the minimum RMS values.

5 Experimental investigation

In this section, a laboratory experiment on a test beam structure is conducted to
demonstrate and verify the proposed multiple damage detection method.
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Figure 12: The first four frequencies as functions of the second damage’s α2 and
β2 with the first damage α1 = 0.3 and β1 = 0.1

5.1 Experimental setup and description

Fig.13 shows a schematic overview of the setup. The test system consists of a
cantilever beam with two damages, a tiny accelerometer, an impact hammer, a sig-
nal conditioner, data acquisition card and a computer with Fast Fourier Transform
(FFT) program. The geometry of the cantilever beam is shown in Fig.14. Its dimen-
sions are: L× h× b = 0.5m× 0.019m× 0.012m. The cantilever material is struc-
tural steel with Young’s modulus E = 2.06× 1011N/m2, Possion’s ratio µ = 0.3
and density ρ = 7860kg/m3.

We tested one intact and three damaged beams as shown in Fig.15. The locations
and depths of the two damages are β1 = e1/L , β2 = e2/L , α1 = c1/h and α2 = c2/h
, respectively. The specific parameters are shown in Table 5.

In the experimental study, the sampling frequency fs is 5,000 Hz and 10,000 data
points are collected. For each case as shown in Table 5, the impulse response
signal and the associated frequency spectrum are plotted in Fig.16. It can be seen
clearly that the first four frequencies of cantilever beam are captured for every case.
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Table 4: Detection results and RMS values for a shaft

Case Input frequencies Detected parameters RMS
ω1 ω2 ω3 ω4 α2 α1 β2 β1

1 348.21 1390.96 3146.10 5588.23 0 0 0 0 0.18
2 348.12 1390.87 3145.38 5588.25 0.2 0.2 0.3 0.3 0.11
3 348.11 1388.23 3133.37 5556.52 0.2 0.2 0.3 0.1 0.11
4 347.69 1383.45 3113.15 5506.10 0.2 0.3 0.3 0.1 0.11
5 347.07 1374.97 3077.29 5421.88 0.2 0.4 0.3 0.1 0.14
6 345.83 1375.85 3096.01 5537.34 0.2 0.3 0.4 0.2 0.12
7 342.67 1371.66 3084.51 5489.93 0.3 0.3 0.4 0.2 0.12
8 337.43 1364.81 3064.32 5415.12 0.4 0.3 0.4 0.2 0.12
9 335.65 1337.73 3113.16 5501.09 0.2 0.5 0.5 0.3 0.14
10 332.64 1337.46 3081.93 5500.32 0.3 0.5 0.5 0.3 0.20
11 327.28 1337.45 3030.42 5500.67 0.4 0.5 0.5 0.3 0.17
12 329.59 1366.17 3082.33 5280.25 0.4 0.4 0.6 0.4 0.17
13 324.38 1357.09 3066.26 5202.95 0.5 0.4 0.6 0.4 0.11
14 305.73 1327.42 3014.02 4987.04 0.6 0.4 0.6 0.4 0.13
15 343.78 1397.24 3097.96 5593.46 0.1 0.3 0.7 0.5 0.18
16 347.22 1397.06 3127.88 5593.51 0.1 0.2 0.7 0.5 0.18
17 337.88 1397.22 3048.18 5593.08 0.1 0.4 0.7 0.5 0.15

Table 5: Data of the beams

Case e1/mm c1/mm e2/mm c2/mm β1 α1 β2 α2

0(Intact) N/A N/A N/A N/A N/A N/A N/A N/A
1 260 6 380 3 0.52 0.32 0.76 0.16
2 260 8 380 6 0.52 0.42 0.76 0.32
3 140 4 320 6 0.28 0.21 0.64 0.32

Considering the possible variations in test environment including the fluctuations
in temperature, humidity and boundary conditions, ten replications are performed
for each case. The average results are summarized in Table 6.

5.2 Wavelet finite element model updating and damage detection

Multi-scale wavelet-based beam element using HCSWI bases at level j=2 are em-
ployed for the experimental cantilever beam. In most cases, however, there exist
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Figure 13: A schematic overview of the setup

Figure 14: The geometry of cantilever beam with two damages

inevitable errors between the computational results of wavelet finite model and the
metrical ones. To reduce these errors, the ’zero-setting’ procedure described by
Adams (Adams, et al. 1978) is used. In this procedure, the Young’s modulus of the
structure is modified using the natural frequencies of undamaged structure. There-
fore, we have the follow iterative formula

|ω2
i M−E i

m
K
E
|= 0 (25)
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Figure 15: One intact and three damaged beams

where E i
m is the ith corrected value of Young’s modulus E, which can be acquired

through solving Eq. (25) for each frequency. It should be noted that the purpose
to modify the Young’s modulus is not to change the value of E but to make the
metrical undamaged natural frequencies match the computed ones. This procedure
can greatly reduce the error between theoretical and the experimental results, which
are caused by boundary condition and material parameters. The measured frequen-
cies of damaged cantilever beams and the values of corrected E i

m(i = 1,2,3,4) are
shown in Table 6.

Table 7 shows the predicted parameters β ∗1 , α∗1 , β ∗2 and α∗2 of the two damages for
each faulty beam. The relative errors between the predicted damage parameters and
the actual damage parameters are also listed in Table 7. For the given cases, the rel-
ative errors of β ∗1 and β ∗2 are not more than 7.1%, whereas the relative errors of α∗1
and α∗2 are within 6.3 %. Hence, the proposed multiple damage detection method
is considered to be valid for actual applications in detecting multiple damages in
beams.

6 Conclusions

A new method for detecting multiple damages in beam-like structures has been
proposed. This method is based on multi-scale wavelet-based beam elements with
RMS of the difference between the measured and computed frequencies as the
search criterion. The multi-scale wavelet-based finite element model is constructed
based on the linear fracture mechanics to obtain more accurate natural frequencies
of the damaged structures. The simulation and experimental results have shown
that the proposed method can handle both the forward and inverse problems very
well. Thus a reliable damage detection database can be obtained by solving the
forward problem and the number of damages, their locations and depths can be



Multiple Damage Detection Method for Beams 293

(a) case 0

(b)case 1
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(c)case 2

(d)case 3

Figure 16: The impulse response signal and the corresponding frequency spectrum
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determined based on the inverse problem solutions.

Acknowledgement: The authors are grateful to the support from the Natural
Sciences and Engineering Research Council of Canada. This work is also supported
in part by the Ontario Centers of Excellence and the Excellent Talent Project of
Guangxi University System, which are very much appreciated. The authors would
also like to thank Mr. John Perrins of the University of Ottawa and Dr. X. Wu of
the National Research Council of Canada for their technical support in machining
the test beams.

References

Adams,R.D.; Cawley,P.; Pye, C.J.; Stone, B.J.(1978): A vibration technique for
non-destructively assessing the integrity of structures. Journal Mechanical Engi-
neering Science, vol. 20, pp. 93-100.

Caddemi, S.; Morassi, A. (2007): Damage detection and generalized Fourier co-
efficients. International Journal of Solids and Structures, vol. 44, pp. 5301-5315.

Chasalevris, A.C.; Papadopoulos,C.A.(2006): Identification of multiple cracks
in beams under bending. Mechnanical Systems and Signal Processing, vol. 20 , pp.
1631-1673.

Chen, W.H.; Wu, C.W.(1995): A spline wavelets element method for frame struc-
tures vibration. Computational Mechanics, vol.16, pp.11-21.

Chen, W.H; Wu, C.W. (1996a): Extension of spline wavelets element method to
membrane vibration analysis. Computational Mechanics, vol. 18, pp.46-54.

Chen, W.H.; Wu, C.W.(1996b): Adaptable Spline Element for Membrane Vibra-
tion Analysis. International Journal for Numerical Methods in Engineering, vol.
39,pp. 2457-2476.

Chen, X.F.; Yang S.J.; Ma, J.X.; He, Z.J.(2004): The construction of wavelet
finite element and its application. Finite Elements Analysis and Design, vol.40, pp.
541-554.

Chen ,X.F.; Zi, Y.Y.; Li, B.; He, Z.J.(2006): Identification of multiple cracks
using a dynamic mesh-refinement method. The Journal of Strain Analysis for En-
gineering Design, vol. 41 , pp. 31-39.

Diaz, L. A.; Martin, M.T.; Vampa, V. (2009): Daubechies wavelet beam and plate
finite elements. Finite Elements in Analysis and Design, vol. 45, pp. 200-209.

Dilena, M.; Morassi, A.(2009): Structural health monitoring of rods based on
natural frequency and antiresonant frequency measurements. Structural Health
Monitoring-An International Journal, vol.8, pp. 149-173.



296 Copyright © 2011 Tech Science Press CMES, vol.73, no.3, pp.267-298, 2011

Dilena, M.; Morassi, A.(2010): Reconstruction method for damage detection in
beams based on natural frequency and antiresonant frequency measurements. Jour-
nal of Engineering Mechanics-ASCE, vol. 136, pp. 329-344.

Dimarogonas,A.D.(1996): Vibration of cracked structures: a state of the art re-
view. Engineering Fracture Mechanics, vol. 55 , pp. 831-854.

Doebling ,S.W. ; Farrar, C.R.; Prime,M.B. (1998): A summary review of vibration-
based damage identification, The Shock and Vibration Digest 30 , pp. 91-105.

Han J.G., Ren W.X., Huang Y.(2006): A spline wavelet finite-element method in
structural mechanics. International Journal for Numerical Methods in Engineer-
ing, vol.66, pp.166-190.

Han J.G., Ren W.X., Huang Y.(2007): A wavelet-based stochastic finite element
method of thin plate bending. Applied Mathematical Modelling, vol.31, pp. 181-
193.

Han J.G., Ren W.X., Huang Y.(2009): A spline wavelet finite element formulation
of thin plate bending. Engineering with Computers, vol. 25, pp. 319-326.

He ,Y.Y.; Guo,D.; Chu,F.L. (2001): Using genetic algorithms and finite element
methods to detect shaft crack for rotor-bearing system. Mathematics and Comput-
ers in Simulation. vol. 57, pp. 95-108.

Jia, R.Q.; Liu, S.T.(2006): Wavelet bases of Hermite cubic splines on the interval.
Advances in Computational Mathematics, vol. 25 , pp. 23-39.

Khiem, N.T.;Lien, T.V.(2004): Multi-crack detection for beam by the natural fre-
quencies. Journal of Sound and Vibration, vol. 273, pp. 175-184.

Lee,J.J.; Lee,J.W.; Yi,J.H.; Yun, C.B.; Jung,H.Y.(2005): Neural networks-based
damage detection for bridges considering errors in baseline finite element models,
Journal of Sound and Vibration, vol. 280 , pp. 555-578.

Lee,J.H.(2009a): Identification of multiple cracks in a beam using natural frequen-
cies. Journal of Sound and Vibration, vol. 320, pp. 482-490.

Lee, J.H.(2009b): Identification of multiple cracks in a beam using vibration am-
plitudes. Journal of Sound and Vibration, vol.326, pp. 205-212.

Libre, N.A.; Emdadi, A.; Kansa, E.J.; Shekarchi, M.; Rahimian, M.(2008):
A Fast Adaptive Wavelet scheme in RBF Collocation for nearly singular potential
PDEs. Computer Modeling in Engineering and Sciences, vol.38, pp. 263-284.

Libre, N.A.; Emdadi, A.; Kansa, E.J.; Shekarchi, M.; Rahimian, M. (2009):
Wavelet based adaptive RBF method for nearly singular potential-type problems
on irregular domains. CMES: Computer Modeling in Engineering and Sciences,
vol. 50, pp. 161-190.



Multiple Damage Detection Method for Beams 297

Liu,S.W.; Huang,J.H.; Sung, J.C.; Lee, C.C.(2002): Detection of cracks using
neural networks and computational mechanics. Computer Methods in Applied Me-
chanics and Engineering, vol. 191, pp. 2831-2845.

Ma, J.X.; Xue, J.J.; Yang S.J.; He, Z.J.(2003): A study of the construction and
application of a Daubechies wavelet-based beam element. Finite Elements Analysis
and Design , vol. 39, pp.965-975.

Montalvão ,D.; Maia, N.M.M.; Ribeiro,A.M.R.(2006): A review of vibration-
based structural health monitoring with special emphasis on composite materials.
The Shock and Vibration Digest, vol. 38, pp. 1-30.

Morassi,A.(2007): Damage detection and generalized Fourier coefficients. Jour-
nal of Sound and Vibraion, vol. 302, pp. 229-259.

Owolabi,G.M.; Swamidas, A.S.J.; Seshadri,R.(2003): Crack detection in beams
using changes in frequencies and amplitudes of frequency response functions. Jour-
nal of Sound and Vibration, vol. 265, pp. 1-22.

Patil, D.P.; Maiti, S.K.(2003): Detection of multiple cracks using frequency mea-
surements. Engineering Fracture Mechanics, vol.70, pp. 1553-1572.

Perera, R.; Ruiz, A. (2008): A multistage FE updating procedure for damage
identification in large-scale structures based on multiobjective evolutionary opti-
mization. Mechanical System and Signal Processing, vol. 22 , pp. 970-991.

Sekhar,A.S.(2008): Multiple cracks effects and identification. Mechanical Systems
and Signal Processing, vol. 22, pp. 845-878.

Tada,H.; Paris, P.C.; Irwin,G.R.(2000): The Stress Analysis of Cracks Handbook
(Third Edition). New York, The American Society of Mechanical Engineers.

Vampa, V.; Martin, M.T., Serrano, E. (2010): A hybrid method using wavelets
for the numerical solution of boundary value problems on the interval. Applied
Mathematics and Computation, vol. 217, pp. 3355-3367.

Wauer,J.(1990): Dynamics of cracked rotors:literature survey. Applied Mechanics
Reviews, vol. 43 , pp. 13-17.

Wu,X.; Ghaboussi,J.; Gaarrett,J.H.(1992): Use of neural networks in detection
of structural damage. Computers and Structures, vol. 42, pp. 649-659.

Xiang, J.W.; Chen,X. F.; He Y. M.; He,Z.J.(2006): Identification of crack in a
beam based on finite element method of B-spline wavelet on the interval. Journal
of Sound and Vibration, vol. 296, pp. 1046-1052.

Xiang,J.W.; Chen, X. F.; He, Y. M.; He,Z.J.(2007): Identification of crack in a
rotor system based on wavelet finite element method. Finite Elements in Analysis
and Design, vol. 43, pp. 1068-1081.



298 Copyright © 2011 Tech Science Press CMES, vol.73, no.3, pp.267-298, 2011

Xiang ,J.W.; Zhong,Y. T.; Chen,X.F.; He,Z.J.(2008a): Crack Detection in a Shaft
by Combination of the New Wavelet-based Elements and Genetic Algorithm. In-
ternational Journal of Solids and Structures, vol. 45, pp. 4782-4795.

Xiang, J.W., Chen, X.F., Yang L.F. and He, Z.J.(2008b): A Class of Wavelet-
based Flat Elements Using B-spline Wavelet on the Interval and Its applications.
CMES: Computer Modeling in Engineering and Sciences, vol.23, pp.1-12.

Yan, Z.Z.; Wang, Y.S.; Zhang C.Z.(2008): A method based on wavelets for band
structure analysis of phononic crystals. CMES: Computer Modeling in Engineering
and Sciences, vol. 38, pp.59-88.

Yuan, S.F.; Wang,L.; Peng, G.(2005): Neural network method based on a new
damage signature for structural health monitoring. Thin-Walled Structures, vol. 43,
pp. 553-563.

Zachiarias,J.; Hartmann, C.; Delgado, A. (2004): Damage detection on crates of
beverages by artificial neural networks trained with finite-element data. Computer
methods in applied mechanics and engineering, vol. 193, pp. 561-574.

Zhou Y.H., Zhou J.(2008a): A modified wavelet approximation of deflections for
solving PDEs of beams and square thin plates. Finite Elements in Analysis and
Design, vol. 44, 773-783.

Zhou Y.H., Zhou J.(2008b): A modified wavelet approximation for multi-resolution
AWCM in simulating nonlinear vibration of MDOF systems .Computer Methods
in Applied Mechanics and Engineering, vol.197, pp.1466-1478.


