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Application of Polygonal Finite Elements to
Two-Dimensional Mechanical and Electro-Mechanically

Coupled Problems

K. Jayabal1 and A. Menzel1,2

Abstract: Naturally evolving Voronoi discretisation of two-dimensional plane
domains renders representative microstructures that turn out to be useful for the
modelling and simulation of polycrystalline materials. Hybrid finite element ap-
proaches are employed on such polygonal discretisations to solve, for instance,
mechanical and electromechanical problems within a finite element context. In
view of solving mechanical problems, varying order of polynomial functions are
suggested in the literature to sufficiently approximate stresses within the polygonal
finite elements. These are, in addition to the order of the approximation functions
for the displacements, characterised by the number of edges in the polygonal ele-
ments. It appears, as demonstrated in this work, that the naturally evolving Voronoi
discretisations exhibit a specific property when combined with a hybrid polygonal
finite element approach. This property allows the choice of stress approximating
functions in polygonal finite elements to be based only on the order of the displace-
ment approximating functions regardless of the number of edges in the element.
Such a relation also appears to hold in coupled electromechanical problems be-
tween the approximating functions for the electric displacements and the electric
potential. The realisation of such a property is demonstrated through several stan-
dard numerical examples and also with an application on a representative piezoce-
ramic microstructure.

Keywords: Polygonal finite element, Voronoi discretisations, approximation
functions, electromechanically coupled problems, piezoceramics.

1 Introduction

Discretisation of the domain of interest is one of the preliminary steps for finite
element simulations to solve complex boundary value problems. A great deal of
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effort has been directed towards meshing algorithms in accomplishing such parti-
tions. Within standard finite element approaches applied to the discretisation and
modelling of polycrystalline microstructures, for instance piezoceramics, the grain
structure may be represented either by, for example, rectangular elements (Kamlah,
Liskowsky, McMeeking, and Balke, 2005) or hexagonal elements (Haug, Huber,
Onck, and Van der Giessen, 2007; Kim and Jiang, 2002) with each element repre-
senting an individual grain. Randomly oriented crystal axes within the finite ele-
ments, or rather grains, together with the corresponding material properties realise
the locally anisotropic nature of the polycrystalline structure. The grain to grain
interaction effects, which are explicitly taken into account by the finite element
formulation, depend on how the material properties vary between one element and
its neighbouring elements. The potential deficit of restricted grain shapes can be
relatively overcome by considering a Voronoi-cell-based discretisation of the poly-
crystalline microstructure. Voronoi discretisation is widely considered to be one of
the most fundamental geometric structures associated with a discrete set of points
(Aurenhammer, 1991). Given a set of isolated points in a plane, the associated
Voronoi diagram partitions the plane according to the nearest neighbour rule. Each
of the given points is associated with the region of the plane closest to it, called
its Voronoi cell. By this Voronoi discretisation, a representative microstructure of
a polycrystalline material is constructed by the underlying Dirichlet tessellation so
that each irregular polygon, i.e. the Voronoi cell, represents a single grain.

With this Voronoi discretisation in hand, one way to proceed further towards the
micromechanical modelling of polycrystalline materials is to subdiscretise the in-
dividual polygons or rather grains by means of several standard quadrilateral or tri-
angular elements. In fact, this approach might turn out to be computationally rather
expensive especially in view of iterative finite element formulations for nonlinear
problems. Alternatively, one may apply a Voronoi-cell-based finite element method
(Ghosh and Mallett, 1994; Ghosh and Moorthy, 1995) which is also referred to as
the polygonal finite element method (PolyFEM). Such a hybrid formulation, as pro-
posed earlier by Pian (1964), allows to avoid further subdiscretisation of a crystal
grain, the geometry of which is here assumed to be represented by a Voronoi poly-
gon. An application of this framework to the simulation of the nonlinear behaviour
of ferroelectrics has been investigated by Sze and Sheng (2005). While solving
mechanical boundary value problems, the PolyFEM approximates stresses within
polygonal finite elements in addition to defining mechanical displacements as de-
grees of freedom. In the case of coupled electromechanical problems, in addition
to the stresses and displacements, the electric displacements and the electric poten-
tial are also approximated, respectively, within the element and along the element
boundary. Upon application of the PolyFEM, it is suggested to employ varying
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order polynomial approximation functions for stresses (Ghosh and Mallett, 1994)
and electric displacements (Sze and Sheng, 2005) based on the number of edges
in the polygonal element in order to avoid rank deficiency by the element stiffness
matrices. For instance, when the displacement is defined by a linear polynomial
function along the element edges, a constant and a fourth order polynomial func-
tions are introduced for stress approximations in polygonal finite elements with
three and eleven edges respectively. On the contrary, several simulations in the
present work show that Voronoi-polygon-based meshes seem to provide a certain
facilitation on the selection of approximation functions for stresses in the PolyFEM.
Accordingly, the approximation function for stresses in a polygonal element may
be chosen based only on the order of polynomial function defining the displace-
ments along element edges without paying any attention to the number of edges
in the element. In the case of electromechanically coupled problems, the above
mentioned relation also holds between the approximation functions of the electric
displacements and the electric potential.

This paper is arranged as follows: section 2 reviews the formulation of the
PolyFEM for coupled electromechanical problems which can easily be reduced
to purely mechanical or electrical cases. With numerical examples, section 3 and 4
discuss on the selection of the order of polynomial approximation functions for the
stresses and the electric displacements within the elements based on the approx-
imation functions, defining the displacements and the electric potential along the
element edges respectively. Application of the PolyFEM to a poled piezoceramic
microstructure is presented in section 5 and the paper closes with a brief summary
in section 6.

2 PolyFEM for electromechanical problems

Unlike for standard isoparametric finite element formulations, within the PolyFEM
the displacements and the electric potential are introduced only along the interele-
ment boundaries. On the other hand, the corresponding flux terms, i.e. the stresses
and the electric displacements, are defined in the interior of each polygonal ele-
ment. The construction of the element stiffness matrix for the PolyFEM will briefly
be reviewed for electromechanically coupled problems in this section. For more de-
tails, see Sze and Sheng (2005). By removing either the electrical or mechanical
contributions, the following derivation reduces to purely mechanical (Ghosh and
Mallett, 1994) or electrical problems, respectively.

2.1 Basic equations

Electromechanical equilibrium, or rather the local balance of linear momentum
together with the local form of Gauss’ law, of a piezoelectric body under static
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conditions allows representation as,

∇ ·σσσ +bbb = 000 , ∇ ·DDD−q = 0 , (1)

where σσσ and bbb denote the stresses and volume forces and DDD and q refer to the
electric displacements and volume electric charge density. As this work proceeds,
bbb and q are considered negligible. Assuming that the strains εεε remain sufficiently
small, suitable deformation measures are introduced based on the displacement
field uuu, and the electric field EEE is derived from the electric potential φ , i.e.

εεε = 1
2 [∇uuu+∇tuuu ] = ∇symuuu , EEE =−∇φ . (2)

The linear constitutive relations of coupled electromechanical problems, for in-
stance in piezoelectric materials, can be expressed in matrix or rather Voigt (index
v) notation as[

σσσv
DDD

]
=
[

sssv eeet
v

eeev −hhh

]
·
[

εεεv
−EEE

]
= SSS ·

[
εεεv
−EEE

]
, (3)

wherein sss, eee, hhh denote the elastic stiffness, piezoelectric and dielectric tensors
respectively, and SSS refers to the electromechanical stiffness matrix; see e.g. Nye
(1985). Assuming the body forces and volume charge densities to vanish and con-
sidering a quasi-static case, the principle of electromechanical virtual work can be
represented as∫
B

σσσ : δεεε−DDD ·δEEE dv−
∫

∂Bt

t̄tt ·δuuu da+
∫

∂Bw

w̄δφ da = 0 , (4)

with B denoting the configuration of the body considered. The boundary is char-
acterised by ∂Bt and ∂Bw with prescribed surface traction t̄tt and surface charge
density w̄; see Landis (2002) among others.

2.2 Approximation based on PolyFEM

After discretising the considered plane area by means of Voronoi-discretisation-
based-polygonal finite elements Be and by application of the divergence theorem
in combination with the use of the electromechanical fluxes σσσ and DDD being in equi-
librium, Eq. (4) can be rewritten as

Π = ∑
e

∫
∂Be

[
σσσv ·nnn
DDD ·nnn

]
·
[

uuu
φ

]
da−

∫
Be

1
2

[
σσσv
DDD

]
·SSS−1 ·

[
σσσv
DDD

]
dv

−
∫

∂Be
t

t̄tt ·uuu da+
∫

∂Be
w

w̄φ da ,
(5)
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where nnn denotes the outward unit normal vector of element edges and Π is of-
ten referred to as Hellinger-Reissner functional. As seen in Eq. (5), solely σσσ and
DDD need to be determined within the element (Be), whereas uuu and φ have to be
specified only along the element boundary (∂Be) satisfying continuity conditions.
These properties allow to introduce any number of element edges for a polygonal
finite element. The polynomial approximation of the flux terms is chosen such that
the equilibrium conditions are satified. In this context, using an element-related
matrix-vector-type notation results in the representation[

σσσv
DDD

]
≈

[
MMMσ 000
000 MMMD

]
·
[

βββ σ

βββ D

]
= MMM ·βββ e , (6a)

[
uuu
φ

]
≈

[
NNNu 000
000 NNNφ

]
·
[

qqqu
qqqφ

]
= NNN ·qqqe , (6b)

where βββ e and qqqe are vectorial quantities collecting the coefficients for the approx-
imation of the fluxes and the nodal degrees of freedom on the element level. The
matrix-entries in MMM are polynomial functions in element coordinates, whereas the
nodal interpolation functions NNN are defined by the boundary coordinates qqqe. Hence,
it turns out that linear shape functions are sufficient for plane problems to interpo-
late qqqe as they are defined only along the element edges. The comination of Eq. (5)
and (6) then yields the functional Π to take the more compact form

Π = ∑
e

βββ e ·GGGe ·qqqe−
1
2

βββ e · JJJe ·βββ e−qqqe · fff e , (7)

where

GGGe =
∫

∂Be

MMMt · [nnn ·NNN ] da , JJJe =
∫
Be

MMMt ·SSS−1 ·MMM dv , (8a)

fff e =


∫

∂Be
t

NNNu · t̄tt da

−
∫

∂Be
w

NNNφ w̄ da

 . (8b)

By making use of Eq. (7), the stationary point of Π with respect to βββ e—such that
∂βββeΠ = 000—results in βββ e = JJJ−1

e ·GGGe ·qqqe. Next, substituting this relation for βββ e into
Eq. (7) ends up with

Π = ∑
e

1
2

qqqe ·GGGt
e · JJJ−1

e ·GGGe ·qqqe−qqqe · fff e . (9)
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Moreover, the stationary point of Π with respect to qqqe—such that ∂qqqeΠ = 000—
results in

∑
e

GGGt
e · JJJ−1

e ·GGGe ·qqqe = ∑
e

fff e , (10)

which, by analogy with standard linear finite element represenrtations, can be writ-
ten as ∑e KKKe · qqqe = ∑e fff e with KKKe = GGGt

e · JJJ−1
e ·GGGe. After evaluating the nodal elec-

tromechanical degrees of freedom qqqe, the electromechanical flux coefficients of the
element βββ e can be determined. The element electromechanical fluxes can then be
obtained from Eq. (6a) which, in turn, will provide εεε and EEE from Eq. (3).

3 Application of PolyFEM to mechanical problems

The PolyFEM formulation derived in section 2 for coupled electromechanical cases
will reduce to purely mechanical problems by removing the electrical and piezo-
electric terms. Under such conditions, Eqs. (3), (6) and (8) turn out to be,

σσσv = sssv · εεεv = SSS · εεεv ≈ MMMσ ·βββ σ = MMM ·βββ e , (11)

uuu ≈ NNNu ·qqqu = NNN ·qqqe , (12)

GGGe =
∫

∂Be

MMMt
σ · [nnn ·NNNu ] da , JJJe =

∫
Be

MMMt
σ · sssv ·MMMσ dv , fff e =

∫
∂Be

t

NNNu · t̄tt da . (13)

For the approximation of stress fields in Eq. (11), the Airy stress function can be
employed to generate polynomial functions satisfying mechanical equilibrium con-
ditions in polygonal elements. To secure the invariance of the approximation of
the stresses, the assumed polynomial functions should be considered up to certain
polynomial orders. For two-dimensional plane problems, they can be represented
as functions of coordinates, say, x and z, as

MMM0
σ =

 0 0 1
1 0 0
0 1 0

 , MMM1
σ =

MMM0
σ

0 0 x z
x z 0 0
0 −x −z 0

 , (14a)

MMM2
σ =

MMM1
σ

0 0 x2 2xz z2

x2 2xz z2 0 0
0 −x2 −2xz −z2 0

 , (14b)

MMM3
σ =

MMM2
σ

0 0 x3 3x2z 3xz2 z3

x3 3x2z 3xz2 z3 0 0
0 −x3 −3x2z −3xz2 −z3 0

 , (14c)
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Table 1: The order of polynomial function MMMσ suggested for approximating the
stresses based on the number of edges in the polygonal element(Ghosh and Mallett,
1994).

approximation of number of edges in polygonal element
displacements uuu 3 4 5 6 7 8 9 10 11 12
linear 0 1 1 2 2 3 3 3 4 4
quadratic 2 3 3 4 4 5 5 6 6 7
cubic 3 4 5 5 6 7 7 8 8 9

where the superscripts indicate the order of polynomial functions that approximate
the stress fields in polygonal elements. Further higher orders of MMMσ can be con-
structed by adopting the same procedure. It is clear from Eqs. (12) and (13) that
the displacements need to be defined only along the element boundaries. Hence,
even a linear polynomial function in terms of the edge coordinates would suffice
to define displacements along the element edge–here a line–whereas higher order
approximations may also be considered. The element stiffness matrix KKKe should
satisfy the following necessary but not sufficient condition to be rank sufficient,

m ≥ i∗d− r , (15)

where m, i, d and r refer to, respectively, the rank of the element stiffness matrix,
number of nodes in the polygonal element, degree of freedom per node and the
number of rigid body modes of the element. For plane problems, d and r become
two and three denoting two displacements per node and three rigid body motions
of the element – two translations and one rotation. Since a polygonal discretisa-
tion of plane domains results in elements with varying edges, for instance, three to
eleven, the size of individual element stiffness matrices are not the same. Further
elaborating the elment stiffness matrix and (13) reveals that the rank of KKKe not only
depends on the number of nodes in the polygonal element but also on the choice
of stress approximation functions or, in other words, on the number of columns in
MMMσ . Hence, consistent with Eq. (15) and also for the completeness of polynomial
approximation functions, it has been suggested to use different higher order repre-
sentations of MMMσ for stresses to make every individual KKKe rank sufficient (Ghosh
and Mallett, 1994). Accordingly, Tab. 1 indicates the order of MMMσ to be consid-
ered based on the number of edges in the polygonal element and also on the order
of the approximation functions for the displacements. This way, the global stiff-
ness matrix turns out to be free of any singularities and can straightforwardly be
inverted. On the other hand, it is evident that the use of higher order polynomial
functions leads to considerable computational cost. For instance, let us consider a
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case wherein a linear polynomial function approximates displacements along the
element edges. According to Tab. 1, polynomial approximation MMMσ of first and
fourth order has to be applied to the stress field for polygonal elements with four
and eleven edges. The order of MMMσ for the same elements will increase to four and
eight when cubic approximations are employed for the displacements. One may
observe from Eq. (13) that the size of the matrices GGGe and JJJe and also the compu-
tational time to determine KKKe increase with the order of polynomial approximation
MMMσ for the stresses. Hence, the use of higher order MMMσ for PolyFEM leads to
higher computational cost, especially when nonlinear problems are solved.

In this context, it is observed as the work proceeds that there appears to be a spe-
cific property associated with the Voronoi-based discretisation of plane domains.
This property reveals that there is no necessity to make each and every individual
KKKe to be rank sufficient while applying PolyFEM to Voronoi based discretisations
in order to render the global stiffness matrix, after enforcing the essential boundary
conditions, rank sufficient. As a consequence, instead of choosing varying order
of polynomial stress approximations for different polygonal elements, a common
polynomial approximation can be employed in all polygonal elements. Further-
more, such a polynomial function can be selected only based on the order of the
polynomial function defining the displacements along the element edges. For in-
stance, while using linear approximation functions for uuu, only MMM1

σ needs to be
employed in all polygonal elements in the Voronoi based mesh regardless of the
number of edges in the element. Similarly, MMM2

σ and MMM3
σ would be adequate to de-

fine stresses in all polygonal elements when quadratic and cubic approximations
are chosen for uuu. Such a relation between the approximation functions of stresses
and displacements allows the global stiffness matrix, although not all the individual
KKKe, to always turn out rank sufficient after enforcing the essential boundary condi-
tions. This specific behaviour of Voronoi based discretisation is demonstrated by
some standard numerical examples in the following sections.

3.1 Numerical examples

A 1×1 mm2 two-dimensional plane domain is discretised by Voronoi based poly-
gons with the total number of elements chosen as 10, 50, 100, 200, 300 and 500.
The number of edges in the polygonal elements is found to be varying from three
to eleven. The Voronoi based mesh with 50 polygonal elements is shown in Fig. 1
where l and h denote the length and height of the discretised domain. In order to
apply identical essential boundary conditions for all six types of discretisations, the
node lying on the left boundary of the domain with its z coordinate closest to 1

2 h
was moved to the position [0, 1

2 h] for all polygonal meshes. Similarly, to facilitate
the comparison of the simulated results with the exact solutions, the node lying on
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Figure 1: (a) Voronoi based discretisation of a plane domain with 50 polygonal
elements and visualisation of the essential boundary conditions. Tractions enforced
at x = l for (b) tension and (c) pure bending.

the right boundary of the domain and z coordinate closest to 1
2 h was moved to [l, 1

2 h]
for all polygonal meshes. Homogeneous and isotropic material properties are as-
signed to all the elements with a Young’s modulus E of 30 GPa and a Poisson’s
ratio ν of 0.3.

3.1.1 Tension test

A simple tension test under plane strain conditions is considered. As homogeneous
material properties are taken into account, the displacements should vary linearly in
longitudinal and transverse directions and the stresses remain constant for the ex-
act solutions. While applying PolyFEM, linear polynomial functions are employed
to approximate the displacements along element edges. Instead of considering the
different stress approximations as suggested in Tab. 1, only first order polynomial
approximation, i.e., MMM1

σ is used for all polygonal elements irrespective of the num-
ber of edges. The displacement and traction boundary conditions are applied as
displayed in Fig. 1(a) and (b), i.e.

ux = 0 at x = 0 ,

uz = 0 at [x,z] = [0, 1
2 h] ,

t̄x =T at x = l .
(16)
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Table 2: Comparison of the displacements (in µm) between the analytical and the
PolyFEM solution for tension loading.

ux at A uz at A ux at B uz at B ux at C uz at C
analytical 0.6667 0.1 0.6667 0 0.6667 -0.1
PolyFEM 0.6667 0.1 0.6667 0 0.6667 -0.1

Use of MMM1
σ for all the elements produced the element stiffness matrices of the polyg-

onal elements with more than five edges to become rank deficient. However, the
global stiffness matrix pertained to all six types of Voronoi based meshes turned
out full rank after enforcing the essential boundary conditions. For illustrative pur-
poses, the results based on the PolyFEM are compared with the analytical solutions
at three points A, [l, 0], and B, [l, 1

2 h], as well as C, [l, h], as represented with re-
spect to the x− z coordinates in Fig. 1(a). A comparison of the respective displace-
ments at these points is presented in Tab. 2 for T = 20 MPa. Identical results are
obtained while using varying order of stress approximations for different polygonal
elements according to the Tab. 1 along with linear approximations of the displace-
ments. Although the stresses are constant throughout the domain for this loading
case, attempts to use a constant stress approximation MMM0

σ in all elements caused the
global stiffness matrix to suffer from rank deficiencies for all six meshes.

3.1.2 Bending test

A pure bending case is considered next to further elaborate the Voronoi based dis-
cretisations in combination with the PolyFEM. The essential boundary conditions
from Eq. (16) are retained and tractions t̄x(z) = T[z− 1

2 h] are applied as shown in
Fig. 1(c). While applying the PolyFEM, the displacements are approximated by
quadratic polynomial functions along the element edges. Again, without adopt-
ing different higher polynomial stress approximations from Tab. 1 according to the
number of element edges, only MMM2

σ was used for all polygonal elements. For the
bending case considered, the expressions for the analytical solution of the displace-
ments can be derived based on the specified coordinate system as

ux =
1
E

Tx [z− 1
2 h]; uz = − 1

2E
T
[
ν [z− 1

2 h]2 + x2
]
. (17)

On analysing the rank of individual element stiffness matrices, all KKKe except those
of triangular elements, arise rank deficient as expected. For instance, refer to the
Voronoi based discretisation with 10 polygonal elements in Fig. 2(a) wherein no
triangular element is included. None of the individual element stiffness matrices
turned out to be rank sufficient in that mesh for the present case considered. How-
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(a) (b)

MPa
σxx σxx

Figure 2: Visualisation of stress component σxx under pure bending for a discretisa-
tion with (a) 10 and (b) 500 polygonal elements. The undeformed domain boundary
is shown in dashed lines whereas the deformed contour (here and in the follow-
ing plots) is magnified by a factor of 100. While quadratic polynomial functions
approximate the displacements along the element edges, MMM2

σ is employed for the
stress approximations for all polygonal finite elements, regardless of the number of
edges.

ever, after the essential boundary conditions are enforced, the global stiffness ma-
trix of that Voronoi mesh turns out to possess full rank which is the case for all
other types of meshes as well. The PolyFEM produced exact solutions in combi-
nation with all types of Voronoi based meshes, and the displacements obtained at
points A, B and C are compared with the analytical solutions (classical beam the-
ory) in Tab. 3 for T = 20 MPa/mm. The distribution of the stress component along
the x-axis, σxx, is visualised in Fig. 2 for discretisations with 10 and 500 polygonal
meshes. Both types of meshes yield the same stress distribution across the domain.
Use of only MMM0

σ or MMM1
σ in all polygonal elements caused the global stiffness matrix

to fall short of rank in all six meshes. The introduction of stress approximations
of polynomial order three in all polygonal elements apparently produced the exact
solutions.
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Table 3: Comparison of the displacements (in µm) between the analytical (classical
beam theory) and the PolyFEM solution for pure bending.

ux at A uz at A ux at B uz at B ux at C uz at C
analytical -0.3333 -0.3583 0 -0.3333 0.3333 -0.3583
PolyFEM -0.3333 -0.3583 0 -0.3333 0.3333 -0.3583

 

C

A

z 

x

B

l

h

t̄z(z), t̄x(z) t̄z(z)

(a) (b) (c)

Figure 3: The boundary conditions for the loading case described in section 3.1.3
are displayed for (a) the displacements, and the tractions at (b) x = 0 and (c) at x = l.

3.1.3 Longitudinal and shear loading

Next, a more complex loading case is considered such that the displacements in
the domain of interest vary cubically for the analytical solution. To accomplish
this, a cantilever with a cross section of unit width is bent by a force applied at the
free endings. The boundary conditions required to realize such a loading case, as
specified in Fig. 3, can be expressed as,

ux = 0 at [x,z] = { [0,0], [0, 1
2 h], [0,h]} ,

uz = 0 at [x,z] = [0, 1
2 h] ,

(18a)

t̄z =− 1
h3 6Tz [h − z] at x = 0 and x = l ,

t̄x =− 1
h3 6T l [h − 2z] at x = 0 ,

(18b)
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Table 4: Comparison of the displacements (in µm) between the analytical and the
PolyFEM solution for the loading case represented in Fig. 3.

ux at A uz at A ux at B uz at B ux at C uz at C
analytical -0.5 -1.125 0 -1.125 0.5 -1.125
PolyFEM -0.5 -1.125 0 -1.125 0.5 -1.125

where T denotes the resultant force (per unit thickness) of traction t̄z at the right
(or left) boundary of the domain, i.e.

∫ h
0 t̄z dz =T. The analytical solution for the

displacement field for the problem at hand can be derived from Chapter 3, sec-
tion 21, Timoshenko and Goodier (1970) by enforcing the displacement boundary
conditions as described in Fig. 3(a) or as given in Eq. (18a)

ux =
1

Eh3 T [h − 2z] [3x(2l− x)− z(2+ν)(h− z)] , (19a)

uz =
2

Eh3 T
[
(l− x)3− l3 +3ν(l− x)(1

2 h− z)2 + x(3l2 +h2 + 5
4 νh2)

]
. (19b)

When solving the above mentioned boundary value problem with the PolyFEM,
a cubic polynomial function is used to approximate the displacements along the
element edges. According to Tab. 1, a fourth and an eighth order polynomial
function would be required for approximating the stresses in polygonal finite el-
ements, respectively, for four and eleven edges. On the contrary, MMM3

σ is applied
here for all polygonal elements and for all types of meshes. Recall that, apart from
a very few elements, all other polygonal elements include between four and eleven
edges. Hence, almost all individual KKKe are rank deficient when making use of MMM3

σ .
The global stiffness matrix, however, turns out to be rank sufficient for all types
of Voronoi based meshes after incorporation of the essential boundary conditions.
The use of the order of polynomial stress approximation below three in all polyg-
onal elements along with cubic approximation of the displacements results in rank
deficient global stiffness matrices in all six types of meshes. Application of stress
approximations higher than three or according to Tab. 1 would also produce the
exact solutions, though they are not investigated here, but obviously with higher
computational cost. The PolyFEM produces exact solutions by employing only
MMM3

σ in all polygonal elements for all Voronoi based discretisations along with cu-
bic approximation of the displacements. The obtained results are compared with
analytical solutions in Tab. 4 for T = –5 kN/m. In addition, the distribution of the
stress components σxx and τxz for a discretisation with 200 polygonal elements is
presented in Fig. 4 which also reflects the exact distribution.
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(a) (b)

MPa MPa
σxx τxz

Figure 4: Distribution of stress components (a) σxx and (b) τxz for a discretisa-
tion with 200 polygonal finite elements for the loading case visualised in Fig. 3.
While cubic polynomial function approximates the displacements along the ele-
ment edges, MMM3

σ is employed for the stress approximation for all polygonal ele-
ments.

3.1.4 A brief summary

The simulations and comparisons suggest that there is no necessity to make each
and every individual element stiffness matrix to be rank sufficient while applying
the PolyFEM on random Voronoi based discretisations to solve mechanical bound-
ary value problems. Hence, varying higher order stress approximations are not
required as given in Tab. 1 to approximate the stresses in polygonal finite ele-
ments with different number of edges. Instead, one needs to select the same order
of stress approximation function in all polygonal elements based on the order of
the approximation function for displacements along the element edges. Together
with the use of appropriate integration rules, this renders the global stiffness ma-
trix to be of full rank once the essential boundary conditions are incorporated. It
is to be emphasised that the above mentioned property was studied only for spe-
cific discretisations based on random Voronoi generated tessellation. In general,
this would not hold for special types of Voronoi discretisations where the mesh
consists of repeated regular polygonal elements. For instance, if a plane domain is
discretised by repeated square or rectangular elements, the above realisation does
not hold – i.e., when using MMM2

σ or MMM3
σ for all elements in the mesh together with
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employing quadratic or cubic polynomial approximations for uuu. This could result
in rank deficient global stiffness matrices. In summary, for Voronoi-based meshes
not randomly generated, one may have to choose the order of MMMσ according to
Tab. 1.

The observations made above on the usage of interpolation functions for stresses
in the context of the PolyFEM with Voronoi-based discretisations is here investi-
gated to solve linear problems. Note that the global degrees of freedom (displace-
ments) are approximated along the element edges while the flux terms (stresses)
are interpolated within the element domain. If attempts are made to solve problems
with constraints, for instance the analysis of incompressible media, one may have
to take into account the ellipticity requirement and the Ladyzhenskaya-Babuska-
Brezzi(LBB) condition; see Oden and Carey (1983); Brezzi and Fortin (1991);
Braess (2001). This would ensure whether the polynomial shape functions used
for the approximated fields provide stable elements and convergent solutions for
such saddle point problems.

4 Application of PolyFEM to coupled electromechanical problems

The formulation discussed in section 3 holds in complete for electromechanically
coupled problems and the electric and piezoelectric terms are now retained from
section 2. Similar to the derivation of stress approximation functions, the polyno-
mial functions of different orders satisfying electric equilibrium conditions can be
derived from a potential function to approximate the electric displacements in the
polygonal elements; see Sze and Sheng (2005). These polynomial approximations
for the electric displacement, MMMD, should be taken up to certain complete polyno-
mial orders to secure invariance. In the case of two-dimensional problems specified
in the x− z coordinate system, they take the form

MMM0
D =

[
0 1
1 0

]
, MMM1

D =
[

MMM0
D

0 x z
x −z 0

]
, (20a)

MMM2
D =

[
MMM1

D
0 x2 2xz z2

x2 −2xz −z2 0

]
, (20b)

MMM3
D =

[
MMM2

D
0 x3 x2z 3xz2 z3

x3 −3x2z −xz2 −z3 0

]
, (20c)

where the superscripts of MMMD denote the order of approximation functions of the
electric displacements DDD. Further higher order approximation functions can also be
constructed by adopting the same procedure. As seen in Eq. (5), the electric poten-
tial φ needs to be defined only along the element boundary like the displacements
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Table 5: The order of polynomial function MMMD suggested for approximating the
electric displacements based on the number of edges in the polygonal finite ele-
ment(Sze and Sheng, 2005).

approximation of number of edges in the element
electric potential, φ 3 4 5 6 7 8 9 10 11 12
linear 0 1 1 1 2 2 2 2 3 3
quadratic 1 2 2 3 3 4 4 4 5 5
cubic 2 3 3 4 4 5 5 6 6 6

in mechanical problems. Hence, even a linear polynomial function in terms of the
edge coordinates would suffice to define φ along element edges, whereas higher
order approximations may also be considered if necessary. While solving elec-
tromechanically coupled problems in a numerical framework as the finite element
method, an element stiffness matrix KKKe will have full rank if the rank requirement
conditions for mechanical and electrical parts are satisfied independently, apart
from using appropriate integration rules. The rank requirement condition of a me-
chanical element is defined by Eq. (15) which, in the case of a solely electrical
element, turns out to be

m ≥ i− r . (21)

In the above equation, m refers to the rank of the element stiffness matrix of a
purely electrical element and i to the number of degrees of freedom of the element.
With φ being the only degree of freedom per node, i equals the number of nodes
of the element. As there is one constant electric potential in a plane electrical el-
ement, r takes the value of one. As detailed in section 3 for mechanical cases,
the rank of KKKe for electrical elements depends not only on the number of nodes
in the polygonal element but also on the choice of approximation function of DDD –
to be specific, on the number of columns in MMMD. Hence, consistent with Eq. (21)
and also for the completeness of the polynomial functions, it has been suggested
to use different higher order approximation functions depending on the number of
edges in the polygonal element, as well as on the order of approximation of φ to
make every individual KKKe rank sufficient as indicated in Tab. 5 (Sze and Sheng,
2005). However, it is proposed here to fix the order of MMMD for all polygonal ele-
ments – in view of boundary value problems discretised with randomly generated
Voronoi based meshes – only based on the approximation order of φ and not on the
number of edges of the element. This is consistent with our suggestion for poly-
nomial approximation functions for stresses in section 3. Thus, while combining
the PolyFEM with random Voronoi based discretisations to solve electromechani-
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cally coupled problems, the order of MMMσ and MMMD can be chosen only based on the
order of approximation functions of uuu and φ and not based on Tab. 1 and Tab. 5.
This will obviously result in many of the individual element stiffness matrices to
be rank insufficient. However, the so-thought unique property of the Voronoi based
discretisations enables the global stiffness matrices to be of full rank after the es-
sential boundary conditions are enforced. This is demonstrated by some examples
in the following section.

4.1 Numerical examples

A 1×1 mm2 piezoelectric plane domain is discretised with the same Voronoi based
polygonal meshes that are used for the purely mechanical problems in section 3.1.
Homogeneous material properties are assigned to all polygonal elements. Under
plane strain conditions, the elastic, piezoelectric and dielectric terms defined in Eq.
(3) are expressed as

sssv =

 s11 s13 0
s13 s33 0
0 0 s44

 ; eeet
v =

 0 e31
0 e33

e15 0

 ; hhh =
[

h11 0
0 h33

]
(22)

where s11 = 139; s13 = 74.3; s33 = 113; s44 = 25.6 GPa, e15 = 13.44; e31 = -6.98; e33
= 13.84 C/m2 and h11 = 6; h33 = 5.47 C/GV/m; compare (Park and Sun, 1995).

4.1.1 Piezoelectric response under tension

A tensile load is applied to the piezoelectric domain of interest along the x-axis
as the poling direction of the material is considered to coincide with the z-axis.
In addition to the mechanical boundary conditions from Fig. 1(a) and (b), the
following electrical boundary conditions are enforced on the piezoelectric domain

φ = 0 at z = 0 ,
w̄ = 0 at z = h ,
w̄ = 0 at x = 0 and x = l .

(23)

The analytical solution of tensile loading on a piezoelectric specimen under plane
strain conditions can easily be derived based on the coordinate system specified in
Fig. 1 as

ux = c11 T x , uz = c13 T [z− 1
2 h] , φ = g31 T z , (24)

where c11 = 7.9218 × 10−12 m2/N, c13 = −3.03 × 10−12 m2/N and g31 =
−1.7778× 10−2 m2/C. These values are determined by inverting the electrome-
chanical stiffness matrix SSS. While solving the above coupled problem within the
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Figure 5: Distribution of the electric potential φ for discretisations of (a) 50 and
(b) 300 polygonal finite elements under tension, T = 20 MPa. While linear polyno-
mial functions approximate displacements and electric potential along the element
edges, MMM1

σ and MMM1
D are employed for the approximation of the stresses and the

electric displacements for all polygonal elements irrespective of their number of
edges.

PolyFEM, uuu and φ are linearly approximated along the element edges. With-
out considering the stress and electric displacement approximation functions from
Tab. 1 and Tab. 5, MMM1

σ and MMM1
D are employed in all polygonal elements regardless

of the number of edges of each element. The global stiffness matrix turned out to
possess full rank for all types of Voronoi meshes and the exact solutions are pro-
duced. A comparison between the analytical and PolyFEM solutions at points A, B
and C is presented in Tab. 6 for uuu and φ for T = 20 MPa. The distribution of φ , as
determined by the PolyFEM, on the discretisations of 50 and 300 polygonal finite
elements is shown in Fig. 5 which is also consistent with the analytical solution.

4.1.2 Piezoelectric response under bending

Now, a pure bending case for the piezoelectric domain is considered to ascertain
the specific properties of the random Voronoi based discretisations. Retaining the
mechanical boundary conditions from Fig. 1(a) and (c), the following electrical
boundary conditions are also enforced to achieve the bending loading,

φ = 0 at z = 0 and z = h ,
w̄ = 0 at x = 0 and x = l ,

(25)
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Table 6: Comparison of the displacements (in µm) and the electric potential (in
V ) between the analytical and the PolyFEM solution for the piezoelectric domain
loaded under tension.

point A point B point C
analytical PolyFEM analytical PolyFEM analytical PolyFEM

ux 0.1584 0.1584 0.1584 0.1584 0.1584 0.1584
uz 0.0303 0.0303 0 0.0000 -0.0303 -0.0303
φ 0 0 -177.7838 -177.7838 -355.5677 -355.5677

Table 7: Comparison of the displacements (in µm) and the electric potential (in V )
between the analytical and the PolyFEM solution for a piezoelectric bending case.

point A point B point C
analytical PolyFEM analytical PolyFEM analytical PolyFEM

ux -0.1584 -0.1584 0 0.0000 0.1584 0.1584
uz -0.1736 -0.1736 -0.1584 -0.1584 -0.1736 -0.1736
φ 0 0 88.8919 88.8919 0 0

for which the analytical solutions, based on the specified x− z coordinate system,
can be derived as

ux = 2c11 T x [z− 1
2 h] , uz = c13 T [z− 1

2 h]2− c11 Tx2 , (26a)

φ = g31 T
[
(z− 1

2 h)2− 1
4 h2
]
. (26b)

To solve the above problem with the PolyFEM, quadratic approximations for uuu and
φ are used along the element edges, and MMM2

σ and MMM2
D are employed in all polyg-

onal elements. As seen in the previous cases, many of the individual KKKe possess
rank deficiencies. The global stiffness matrix, however, always turns out to be rank
sufficient after applying the essential boundary conditions. Exact solutions are re-
produced for all types of discretisations considered and a comparison with the ana-
lytical solutions is provided in Tab. 7 for T = 20 MPa/mm. The distributions of σxx

and φ for a discretisation with 200 polygonal finite elements are also highlighted
in Fig. 6. The results are consistent with the exact solutions. The same results
are reproduced by all types of meshes, while using MMM3

σ and MMM3
D for all polygonal

elements along with cubic approximations of uuu and φ . Nevertheless, for the same
cubic approximations of uuu and φ , the use of polynomial functions for σσσ and DDD with
an order less than two results in rank deficient global stiffness matrices for all six
meshes. As seen for the mechanical cases, the relation between the approximation
functions of the electromechanical fluxes (σσσ and DDD) and the electromechanical de-
grees of freedom (uuu and φ ) appears to hold for the meshes generated by random
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Figure 6: Distributions of (a) σxx and (b) φ are visualised on the piezoelectric
domain discretised by 200 polygonal elements for the pure bending case. While
quadratic polynomial functions approximated the displacements and electric po-
tential along the element edges, only MMM2

σ and MMM2
D were employed for the approxi-

mation of the stresses and electric displacements respectively in all elements.

Voronoi based discretisations. To give an example, when the piezoelectric domain
is discretised by meshes with regular polygons like square or rectangular elements,
the use of MMM2

σ and MMM2
D for all elements along with quadratic approximations of uuu

and φ resulted in rank deficient global stiffness matrices for all meshes. Similarly,
while using MMM3

σ and MMM3
D along with cubic approximations of uuu and φ in these reg-

ular meshes, the global element stiffness matrices turned out rank insufficient. For
meshes different from the naturally evolving or rather the random Voronoi based
discretisations, the order of polynomial approximation functions for the stresses
and the electric displacements should be chosen from Tab. 1 and Tab. 5.

5 Application of the PolyFEM to a piezoceramic microstructure

Homogeneous material properties were assigned to the discretisations studied in
sections 3 and 4, since the main focus was to investigate a patch-test type behaviour
of the polygonal finite element examples; similar to the ones applied to the stan-
dard finite elements (Taylor, Simo, Zienkiewicz, and Chan, 1986). On the other
hand, mesoscopic or micromechanical modelling includes, in addition to other ef-
fects such as the switching phenomena, intergranular effects arising from the crys-
tallographic orientation mismatch between neighbouring grains. Piezoceramics or
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rather ferroelectrics of ABO3 crystal structure possess a microstructure wherein
the strains, as well as the polarisations vary in different grains. These ferroelectrics
are widely used as piezoelectric materials after poling – a process during which a
strong electric field is applied onto the specimen to transform it from a ferroelec-
tric to a piezoelectric material. During this process, most of the underlying unit
cells or rather crystal variants with similar spontaneous polarisations, also called
domains, align their polarisation directions according to the poling axis. This po-
larisation reorientation process is called domain switching (Jaffe, Cook, and Jaffe,
1971). After poling, the spontaneous polarisation of all variants in piezoceramics,
from a modelling point of view, may be considered to fall within a 45◦ cone, the
central axis of which is aligned with the poling axis (Kamlah, 2001). In this con-
text, we assume that the average polarisation of a grain in a poled piezoceramic
will be oriented close to the poling axis within certain bounds. For piezoceram-
ics of tetragonal crystal structure, this bound can reasonably be considered to be
within the range of ±45◦. The material properties of piezoceramic grains can then
be assigned based on their average polarisation directions. Thus, each grain will
differ from its neighbouring ones in terms of the averaged strains and polarisations
and also in terms of the material properties. The corresponding mismatch or rather
intergranular effects can directly be addressed by the PolyFEM.

To represent such a poled piezoceramic microstructure in the simulations, the two-
dimensional plane specimen is discretised with random Voronoi based polygons,
and each polygonal element is considered to represent a single piezoelectric grain.
Treating the z-axis as the poling axis, randomly generated orientations within±45◦

to the z-axis are assigned to the grains or rather elements to denote the average
polarisation directions. Eq. (22) provides the material properties directly for the
elements whose average polarisations align with the z-axis. For other elements,
the material properties are assigned after appropriate transformations; refer Jaya-
bal, Arockiarajan, and Sivakumar (2008); Menzel, Arockiarajan, and Sivakumar
(2008). Thus, the heterogeneity of the poled piezoceramic microstructure, i.e. the
randomness in the grain geometries and in the material properties, are realised in
a way to realistically represent the material’s microstructure. While applying the
PolyFEM to such a poled piezoceramic microstructure, linear approximations on uuu
and φ are introduced along the element edges. To define the stresses and electric
displacements within the elements, MMM1

σ and MMM1
D are employed in all polygonal el-

ements. A tensile load of T = 20 MPa is applied on the discretisation of the poled
piezoceramic using the same boundary conditions detailed in section 4.1.1. The dis-
tribution of σxx and Ez across the discretisation with 100 polygonal finite elements
is shown in Fig. 7(a) and (b). As highlighted in the contour plots, the maximum
values of σxx reach up to 24 MPa and Ez approaches 0.5 MV/m. For the same load-
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Figure 7: Distribution of (a) σxx and (b) Ez for a discretisation with 100 Voronoi
polygonal finite elements corresponding to a representative microstructure of a
poled piezoceramic. Due to the intergranular effects and different crystallographic
orientations, the values of the stress and electric field increase in some regions
which, in general, can cause localised domain switching in the material.

ing conditions, σxx and Ez remain constant throughout the material at 20 MPa and
0.3556 MV/m respectively in section 4, where homogeneous material properties
are used. Higher magnitudes of stresses and electric fields, beyond their coercive
values, induce domain switching in piezoceramics resulting in modifications of
macroscopic material properties (Jaffe, Cook, and Jaffe, 1971; Lynch, 1996). This
would, in turn, affect the performance of the devices employing the piezoceramic
specimens. Hence, while designing piezo devices, especially of small length scales,
these localised higher magnitudes of stresses and electric fields are important and
influence the long-life properties of the device. Within the approach discussed in
this work, the naturally evolving irregular polygons of Voronoi discretisations rea-
sonably resemble the grain geometry – definitely better than discretisations where
one quadrilateral or regular hexagon represents one grain – whereas their mate-
rial properties correspond to that of a poled piezoceramic. Such a representation
combines the advantages of both micro and macro modelling aspects – bringing ad-
ditional insight of the microstructure into an efficient numerical framework while
keeping the computational cost reasonably low.
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6 Summary

In this work, a specific advantage of employing a hybrid finite element approach
on random Voronoi based discretisations is identified. Accordingly, contrary to the
conditions imposed in the literature that different higher order approximation func-
tions would be required in mechanical problems to approximate stresses within the
polygonal finite elements based on the number of element edges, it is proposed here
to use the same approximation function in all elements. Also, the order of polyno-
mial approximation function for the stresses can be chosen based on the order of
approximation functions defining the displacements along the element edges and
not related to the number of edges of the polygonal elements. To be more specific,
the order of the stress approximation function can be chosen of equal order as that
of the approximation function for the displacements. By analogy with purely me-
chanical problems, the approximation function for the electric displacements can
be chosen based only on the order of approximation function of electric potential
along the element edges. Although this procedure may cause many of the indi-
vidual element stiffness matrices to become rank insufficient, the global stiffness
matrix always turned out to possess full rank on enforcing the essential boundary
conditions. This is demonstrated in this work by means of several representative
examples. Some of the examples are set up by analogy with standard patch tests
and were performed for different Voronoi based polygonal discretisations. The re-
lation is expected to hold for any randomly generated Voronoi polygonal mesh.
Once more, it is emphasised that the above relation holds only for naturally evolv-
ing or rather random Voronoi based discretisations and not for the special case of
Voronoi meshes with, for instance, regular polygons like square or rectangular ele-
ments. The conclusion from this work is to save considerable computational costs
when simulating boundary value problems with the PolyFEM, as the polynomial
degree for the approximation chosen can be reduced. This makes the application of
the PolyFEM to simulations of polycrystalline microstructures even more efficient
which becomes of cardinal importance for nonlinear boundary value problems.
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