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A Pseudo Flow Theory of Plasticity Based Constitutive
Equation for Inverse Analysis Method and its Industry

Verification in Sheet Metal Stamping

B.T. Tang1,2, X.Y. Lu1 and H. Xie2

Abstract: The Traditional Inverse Analysis Method (TIAM) of sheet metal stamp-
ing has the shortcoming of neglecting the effects of deformation history on stress
prediction. An Updated Inverse Analysis Method (UIAM) is proposed based on
the final workpiece in Euler coordinate system. The UIAM uses the constitutive
equation based on pseudo flow theory of plasticity to consider the loading history.
In order to avoid numerous iterations to ensure the numerical stability in Newton-
Raphson scheme to obtain plastic multiplier ∆λ , the equation in unknown stress
vectors is transformed into a scalar equation using the notion of the equivalent
stress. Thus a scalar equation of two orders and only one unknown factor ∆λ is ob-
tained. A simple transformation matrix is introduced to reverse this matrix, so that
the multiplier ∆λ can be solved explicitly. Results obtained with the TIAM based
on deformation theory of plasticity and the updated one based on pseudo flow the-
ory of plasticity are compared with those of the incremental forward finite element
solver LS-DYNA. The comparisons of blank configurations and the effective strain
distribution show that the proposed plasticity integration algorithm is effective and
reliable.

Keywords: Sheet metal stamping, inverse analysis method, constitutive equa-
tions, deformation theory of plasticity, flow theory of plasticity

1 Introduction

The sheet metal forming is a method widely used in the automotive industry for
body panels and structures (truck lids, rails ...). In general, the process of develop-
ing a stamping part is time and money consuming. Indeed, it is based on a series of
trial-and-errors that heavily depend on the experience and intuition of the designer
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to eliminate defects, such as indentation, cracks and folds. As a result, manufac-
turers are very interested in reducing the number of trials and replacing them with
numerical simulations. In recent years, thanks to the development of computer
technology, numerical analysis methods have been widely used in the field of de-
sign and manufacturing.

There are now several numerical simulation software (FASTSTAMP, FastForm,
Autoform/One-step, etc..) using simplified methods based on the geometry of fi-
nal stamped workpiece to determine the unknowns, such as the contours of initial
blank, strains and stresses in the final workpiece only in one step. The simpli-
fied assumptions on the law of material behavior (theory of total plastic strain) and
the action of the tools are used. The method known as "The ideal forming the-
ory" proposed in the early 90’s by Chung and Richmond (1992a,b,c) calculated the
displacement field by means of minimizing the plastic work. The method called
"Inverse Approach" developed by Batoz and Guo (1990, 2000) calculated the con-
tours of initial blank based on the desired final shape with the hypothesis of a radial
loading. The method called "multi-step inverse analysis" proposed and developed
by Lee and Huh (1998) was based on the same concept as the simplified Inverse
Approach except that the finite element analysis of deformation paths was done in
several steps instead of one. Tang (2007a,b) improved the simplified method with
a double section curve expanding method to get initial solutions of intermediate
configurations which can take into account of plastic deformation characteristics.

Because of the constitutive equation based on deformation theory of plasticity, the
TIAM can not well reflect the loading history, such as bending/unbending and thus
loading/unloading condition. To overcome this difficulty, UIAM has been proposed
and developed to inherit both the advantages of TIAM and conventional incremen-
tal approach: with high computational efficiency and consideration of the deforma-
tion history.

In order to take account of the deformation history, UIAM uses the flow theory of
plasticity instead of the deformation theory of plasticity. The use of Radial Return
Mapping Algorithm proposed by Simo (1998) requires a number of iterations and
sometimes leads to a considerable CPU time. In the paper, a special matrix and
a scalar equation using the notion of the equivalent stress are used and thus lead
to a direct resolution of the plastic multiplier. This algorithm greatly reduces the
computation time.

2 Radial return algorithm

In the UIAM, the flow theory of plasticity must be used to reflect the deformation
history. The assumptions of plane stress and isotropic hardening rule are adopted.
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The rate of deformation is decomposed into an elastic part and a plastic part:

{ε̇}= {ε̇e}+{ε̇ p} (1)

The associated flow rule of plasticity gives the normality of plastic strain rate:

{ε̇ p}= λ̇
∂ f

∂ {σ}
= λ̇ [P]{σ}/σeq (2)

σeq is the equivalent stress and defined by:

σeq = (〈σ〉 [P]{σ})1/2 (3)

And the rate of equivalent plastic strain is defined by:

˙̄ε p =
(
〈ε̇ p〉 [P]−1 {ε̇ p}

)1/2
=

(
λ̇ 〈σ〉〈P〉

σeq
[P]−1 λ̇ [P]{σ}

σeq

)1/2

= λ̇ (4)

[P] is a constant matrix defined by the coefficients of anisotropy.

The elastic constitutive equation is given by Hook’s law:

{σ̇}= [He]{ε̇e} (5)

Combining equations (2), (4) and (5) gives the strain rate with the rate of plastic
multiplier λ :

{σ̇}= [He] ({ε̇}−{ε̇ p}) = [He]

(
{ε̇}− λ̇ [P]{σ}

σeq

)
(6)

The stress vector at step n+1 can be expressed as an incremental form:

{σn+1}= {σn}+[He]{∆ε}− ∆λ [He] [P]{σn+1}
σeq,n+1

(7)

Eq. (7) is transformed into:

{σn+1}=
(

[I]+
∆λ

σeq,n+1
[He] [P]

)−1{
σ

Tria
n+1
}

(8)

with{
σ

Tria
n+1
}

= {σn}+[He]{∆ε} (9)



174 Copyright © 2011 Tech Science Press CMES, vol.73, no.2, pp.171-182, 2011

The stress vector {σn+1} at step n+1 is determined using an elastic prediction and
plastic correction method. We assume that the strain increment is purely elastic to
estimate the stress.

Let γ {∆ε}, (1− γ){∆ε} are partitions of elastic and plastic deformations, respec-
tively. In order to predict elastic strain increment, the strain is considered fully
elastic.

{
σ

γ

n+1 (γ)
}

is then the function of γ and {∆ε}. Then the Hill’s yielding
criterion is written as:

f
({

σ
γ

n+1 (γ)
})

= 0 (10)

with{
σ

γ

n+1 (γ)
}

= {σn}+ γ [He]{∆ε} (11)

This nonlinear equation will be solved by the Newton-Raphson iterations:

γk+1 = γk−
(

d f
dγ

)−1

γ=γk

f (γk) (12)

After γ is obtained, the equivalent plastic deformation of step n + 1 can be calcu-
lated by:

ε̄
p
n+1 = ε̄

p
n +(1− γ)

(
〈∆εn+1〉 [P]−1 {∆εn+1}

)1/2
= ε̄

p
n +(1− γ)∆ε̄n+1 (13)

Similarly, the nonlinear equation of ∆λ can be written as:

f (∆λ ) = σeq,n+1− σ̄n+1 = (〈σn+1〉 [P]{σn+1})1/2− σ̄n+1 (14)

A Newton-Raphson iterative algorithm is required to solve this nonlinear equation:

∆λk+1 = ∆λk−
(

d f
dλ

)−1

λ=λk

f (∆λk) (15)

Typically, the iterative method converges with the initial value ∆λ0 = 0. However it
must use small increments and many iterations to ensure numerical stability. In the
following section, a robust and efficient algorithm is proposed to obtain ∆λ without
iterations.



A Pseudo Flow Theory of Plasticity Based Constitutive Equation 175

3 New algorithms for the plasticity integration

The idea of this algorithm is to introduce a transformation equation into a scalar
equation whose only unknown is ∆λ . Then a direct solver is used to find ∆λ .

A transformation matrix is introduced:

[Q] =
√

2
2

1 −1 0
1 1 0
0 0

√
2

 (16)

Then Eq.(8) becomes:

[Q]−1 {σn+1}=
(

[I]+
∆λ

σeq,n+1
[Q]−1[He] [P] [Q]

)−1

[Q]−1 ({σn}+[He]{∆ε}) (17)

Then Eq. (17) gives:

[I]+
∆λ

σeq,n+1
[Q]−1[He] [P] [Q] =

(
1+

b∆λ

σeq,n+1

)
[I]+

∆λ

σeq,n+1
(a−b)

1 0 0
0 0 0
0 0 0


(18)

with a = E(1+ν)
(1−ν2)(1+r) , b = E(1−ν)(1+2r)

(1−ν2)(1+r)

Some definitions:

{
σ
∗
n+1
}

= [Q]−1 {σn+1}=
√

2
2
〈

σx +σy σy−σx
√

2τxy
〉

(19)

[P∗] = [Q]−1 [P] [Q] (20)

with σx, σy and τxy the stress of step n+1

Then Eq. (17) is expressed as:(
[I]+

∆λ

σeq,n+1
[Q]−1[He] [P] [Q]

){
σ
∗
n+1
}

= [Q]−1 ({σn}+[He]{∆ε}) (21)

As the stress of step n and the strain increment of step n + 1 are known, the value
of the right of Eq. (21) is determined. The right of Eq.(21) is defined as matrix [A],
then

A = 〈A〉 [P∗]{A}= (〈σn〉+ 〈∆ε〉 [He]) [P] ({σn}+[He]{∆ε}) (22)
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The above equation can prove the value A is the equivalent stress of elastic trial
stress

{
σ e

n+1

}
. According to Eq. (8), in order to obtain {σn+1}, ∆λ should be

firstly defined. An efficient and robust method is proposed to obtain ∆λ without
iterations.

Eq. (20) is transformed into:

〈
σ
∗
n+1
〉(

[I]+
∆λ

σeq,n+1
[Q]−1 [P] [He] [Q]

)
[P∗](

[I]+
∆λ

σeq,n+1
[Q]−1[He] [P] [Q]

){
σ
∗
n+1
}

=
(

1+
b∆λ

σeq,n+1

)2

σ
2
eq,n+1 +

∆λ (a−b)(1+b∆λ )(σx +σy)
2

1+ r

+
∆λ

2 (a−b)2 (σx +σy)
2

2(1+ r)
(23)

Then the unknown stress of step n+1 is expressed by its equivalent σeq,n+1. Based
on Hill’s yield criterion and uniaxial stress-strain curves σeq,n+1 = σ̄n+1 = σ̄

(
ε̄

p
n+1

)
,

Eq.(21) is changed from vector expression to a quadratic scalar equation with only
one variable ∆λ :

∆λ
2

(
b2 +

1
2

(
a2−b2

)
(σx +σy)

2

σ2
eq,n+1 (1+ r)

)
+∆λ

(
2b+

(a−b)(σx +σy)
2

σ2
eq,n+1 (1+ r)

)
+1

=
A

σ2
eq,n+1

(24)

Eq. (24) cannot be solved since stress σx¡¢σy of step n+1 are unknown. According
to Eq. (19), the relation [He] = E[P]−1 can be obtained. Thus,

a = b = E (25)

Now substituting Eq. (25) into Eq. (24), one obtaines:(
1+

∆λE
σeq,n+1

)2

σ
2
eq,n+1 = A (26)

Then ∆λ can be obtained directly:

∆λ =
(√
〈A〉 [P]{A}− σ̄n+1

)
/E (27)
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4 Case study

The drawing of a square box is simulated by our in-house code INVERSTAMP
based on flow theory of plasticity and commercial software LS-DYNA for valida-
tion of the novel constitutive equation (Fig. 1). The geometry and material data can
be found in Tab.1. The uniaxial stress-strain relationship is defined:
σ̄ = 545(0.004+ ε̄)0.263 MPa

Table 1: Material parameters

Elastic Poisson Average Friction Sheet Binder
Modulus ratio anisotropic coefficient thickness force
E / GPa µ coefficient r µ δ0/mm Fb/kN

210 0.3 1.87 0.15 0.80 40.0

The geometry of square cup discretized by 6163 shell elements and 3156 nodes is
shown in Fig. 1. The Pentium(R) 4 CPU 2.26GHz, 512MB memory PC takes 62
iterations and 5 minutes to calculate the blank shape by TIAM and 60 iterations and
6 minutes by the UIAM which is shown in Fig. 2. The computing time is compared
to the incremental finite element analysis. The elasto-plastic incremental analysis
takes 30 minutes to calculate the flange contour. The above comparisons show that
the UIAM is more appropriate to accurately calculate the blank contour than both
TIAM and incremental analysis method.

 

Figure 1: CAD modeling of drawn part

The calculated initial blank shape obtained from the TIAM based on deformation
theory of plasticity is compared with that obtained from the updated one based
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Figure 2: Blank configuration with inverse analysis method

on flow theory of plasticity in Fig. 3. The blank size of TIAM is smaller than
that of UIAM with the orientation of 45˚ from the rolling direction and almost the
same with the orientations of 0˚ and 90˚ from the rolling direction in the square
cup drawing case. The elasto-plastic incremental finite element simulation using
LS-DYNA with the blank shapes obtained from the two inverse analysis, the flange
contours are compared in Fig. 4. The flange contour using the blank shape from
UIAM is in better agreement with the desired contour than that of TIAM. It shows
that the optimum blank contour obtained with the UIAM is better than the one with
the TIAM.

Strain distribution is one of the most important factors in the final shape of a part.
Homogenous distribution displays the high quality of the part. Fig. 5 and Fig. 6
show the thickness strain distributions calculated by UIAM, TIAM and LS-DYNA
along diagonal and transverse direction respectively. Though both figures confirm
similar pattern in the strain distributions with different analysis method, the results
with UIAM are significantly close to those of LS-DYNA.
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Figure 3: Blank contours with TIAM and UIAM
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Figure 4: Workpiece contours with different blanks
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Figure 5: Workpiece contours with different blanks
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Figure 6: Equivalent strain distribution along transverse direction
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5 Conclusion

A novel constitutive equation based inverse analysis method has been developed
recently in order to consider the loading history and to improve the stress estimation
in keeping the simplicity and rapidity of the TIAM. A new direct algorithm based
on a scalar method is proposed for the plastic integration. In square cup example,
the results of the present method have been compared with those of the TIAM
and conventional forward incremental analysis. The predicted blank obtained by
UIAM is somehow larger than that obtained by TIAM. Both inverse methods have
similar strain patterns but the updated one shows more severe thickness variations
as that of forward incremental FEM. This could be due to the bending effect that is
considered in UIAM.
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