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Application of the Gradient Smoothing Technique to the
Natural Neighbour Galerkin Method for the Couple-Stress

Elasticity

K. Wang1, S.J. Zhou2,3 and Z.F. Nie4

Abstract: The natural neighbour Galerkin method is tailored to solve bound-
ary value problems of the couple-stress elasticity to model the size dependent be-
haviour of materials. This method is based on the displacement-based Galerkin
approach, and the calculation of the global stiffness matrix is performed using gra-
dient smoothing technique combined with the non-Sibsonian partition of unity ap-
proximation scheme. This method possesses the following properties: the complex
C1-continuous approximation scheme is avoided without using either Lagrange
multipliers or penalty parameters; no domain integrals involved in the assembly of
the global stiffness matrix; and the imposition of essential boundary conditions is
straightforward. The validity and accuracy of this method are investigated through
numerical examples. The results show that strong size effects can be captured by
the numerical method when the length of deformation field and the characteristic
length of the material are comparable, and good agreements with analytical solu-
tions are obtained.

Keywords: Meshless method, size effect, couple stress, gradient smoothing, nat-
ural neighbour interpolation, partition of unity.

1 Introduction

The mechanical behaviour of materials in the micron scale has been experimen-
tally observed to be size dependent [Fleck and Hutchinson (1993); Fleck, Muller,
Ashby and Hutchinson (1994); Fleck and Hutchinson (1997)]. Classical contin-
uum theories are unable to explain these phenomena because these theories assume
that materials are homogeneous and continuous and there have been no material
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characteristic length quantities in their constitutive equations. In these theories, the
stresses at a material point are functions of the strains at the same point, which has
been proved to be adequate when the length of deformation field is much larger than
the characteristic length of materials. But in the micron scale or dealing with some
materials with a granular, fibrous, and cellular structure, where the microstructures
of the body are significant, the assumptions of classical theories are questionable.
In fact, under these circumstances, the micro-structure of the materials can not be
neglected and the stresses at a material point would not only depend on the strains
but also on their gradients.

One remedy against the deficiency of the classical theories is to use higher-order
theories, e.g. the couple-stress theory [Mindlin and Tiersten (1962); Mindlin (1962)]
and the strain gradient theory [Toupin (1962); Mindlin (1964); Fleck and Hutchin-
son (1997)]. In these theories, the potential energy densities depend on both the
strain and strain gradient, which is expressed as the second-order gradient of dis-
placement. As characteristic length quantities are introduced in the constitutive
equations, these theories have the abilities to model the size effects phenomeno-
logically. The governing equations of these theories are of fourth order, and the
boundary conditions are more complicated. For conventional displacement-based
Galerkin approaches, the interpolation of displacement requires C1-continuity and
second-order completeness in order to ensure the convergence. However, devel-
opments of C1-continuous elements are so complicated and their performances are
not good enough. This drives the developments of various C0-continuous elements
by using mixed formulations to relax the continuity requirement. Shu, King and
Fleck (1999) introduced six isoparametric types of C0-continuous elements for the
strain gradient theory. The nodal degrees of freedom include nodal displacements
and corresponding gradients, and the kinematic relations between them are en-
forced via the Lagrange multiplier method. Amanatidou and Aravas (2002) also
developed C0-continuous elements for Mindlin’s form I and form III strain gradi-
ent formulations [Mindlin (1964)]. Zervos (2008) developed 2D and 3D elements
for Form II strain gradient theory using penalty method. From the developments
of various mixed methods, we can observe that the use of either Lagrange mul-
tipliers or penalty parameters will bring about some side effects. On one hand,
the employment of the Lagrange multipliers will introduce additional unknowns,
which dramatically expands the scale of the system equations. On the other hand,
the use of penalty parameters has some intrinsic disadvantages, e.g. no theoretical
criterion available to determine the proper penalty parameter for universal prob-
lems. Besides, the approximation schemes for independent field variables should
be chosen carefully such that the LBB condition can be satisfied.

In recent years, the so-called meshless methods [Belytschko, Krongauz, Organ,
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Fleming and Krysl (1996); Atluri (2004)] were also applied to strain gradient the-
ories. It seems that meshless methods are good at handling such problems. Pamin,
Askes and Borst (2003) used element-free Galerkin method (EFG) for the gradi-
ent plasticity analysis. Tang, Shen and Atluri (2003) used meshless local Petrov-
Galerkin method (MLPG) to solve the boundary value problems of strain gradient
elasticity. In Tang’s work, the degrees of freedom consist of only nodal displace-
ments, and the MLS is used to generate the displacement approximation space
with higher-order continuity and completeness. However, the usage of only nodal
displacements may introduce difficulty in imposition of the essential boundary con-
dition of normal derivatives of displacement, which are linear independent of dis-
placements.

The objective of this work is to develop a natural neighbour Galerkin method
[Sukumar, Moran, Semenov and Belikov (2001)], which uses relatively low-cost
C0-continuous meshless approximation scheme, for solving boundary value prob-
lems of couple-stress elasticity without using either Lagrange multipliers or penalty
parameters. This is realized by two techniques. Firstly, a gradient smoothing op-
eration [Onate and Zarate (2000); Yoo, Moran and Chen (2004); Liu, Nguyen, Dai
and Lam (2007); Liu (2008)] is employed within each integration sub-domain, and
subsequently the rotation gradients can be expressed as the first-order gradients of
displacement, which relaxes the C1-continuity requirement. Secondly, the natural
neighbour interpolation [Belikov and Semenov (2000)] is enriched with the idea of
partition of unity method (PUM) [Babuska and Melenk (1997)] such that the re-
sulting approximation functional space possesses second-order completeness. This
enrichment not only gives the approximation the second-order reproducing ability
but also enables easy imposition of the essential boundary conditions.

This paper is organized as follows: In section 2, the couple-stress elasticity is briefly
reviewed. The application of gradient smoothing technique combined with the non-
Sibsonian PUM to the natural neighbour Galerkin method for the couple-stress
elasticity is proposed in section 3. In section 4, several numerical examples are
presented to investigate the proposed method. This paper ends with the conclusions
in section 5.

2 Review of the couple-stress theory

In this section, the couple-stress theory is briefly reviewed. The detailed deriva-
tions are skipped, and the reader is referred to the original publication by Mindlin
and Tiersten [Mindlin and Tiersten (1962)] or the publications by Fleck and his
colleagues [Fleck, Muller, Ashby and Hutchinson (1994); Fleck and Hutchinson
(1997)] for details. Tensor index notation is used with the usual summation conven-
tion. A comma in the subscript signifies differentiation with respect to the indices
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following it.

2.1 Equilibrium equations and boundary conditions

In absence of body forces and body couples, the equilibrium equations and bound-
ary conditions can be written as:

σi j, j + τi j, j = 0 in Ω (1a)

µ jk, j + ei jkτi j = 0 in Ω (1b)

ui = ūi, θi = θ̄i on Γu (1c)

(σi j + τi j)ni = T̄i, µi jn j = M̄i on Γt (1d)

where Ω is the problem domain bounded by the boundary Γ = Γt + Γu, σi j and
τi j are the symmetric and anti-symmetric parts of the Cauchy stress tensor, µi j is
couple stress tensor, ei jk is the alternating symbol, n j is the unit outward normal
vector to the boundary Γ, T̄i and M̄i are the prescribed tractions and couples on
the boundary Γt , ūi and θ̄i are prescribed displacements and micro-rotations on the
boundary Γu, respectively. The couple stress tensor µi j can be split into its trace
part p and its deviatoric part mi j.

p =
1
3

µii, mi j = µi j− pδi j (2)

It was shown that the trace part of the couple stress p dose not enter the field equa-
tions, and can be assumed to vanish without loss of generality; thusµi j = mi j. Eq.1a,
Eq.1b and Eq.2 can be combined into an alternative form of the equilibrium equa-
tion.

σmn,m−
1
2

eimnm ji, jm = 0 (3)

2.2 Deformation produced by stress and couple-stress

In the couple-stress theory, it is assumed that the micro-rotation vectorθi is equal
to the macro-rotation vector ωi represented by the curl of the displacement vector,
that is:

θi = ωi =
1
2

ei jkuk, j (4)

The symmetric strain tensor is the same as that of the classical theory:

εi j = (ui, j +u j,i)/2 (5)
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And the traceless rotation gradient tensorκi j is defined as:

κi j = θi, j = ωi, j =
1
2

e jklul,ki(κii = 0) (6)

The above equation indicates that the rotation gradient can be expressed as the
second-order gradient of displacement. Actually, the rotation gradient accounts
for eight components out of eighteen components of the second-order gradient of
displacement in 3D. Toupin (1962) and Mindlin (1964) generalized the couple-
stress theory to include all the eighteen components of the second-order gradient of
displacement. This generalization can be coined as Toupin-Mindlin strain gradient
theory or strain gradient theory [Fleck and Hutchinson (1997)].

2.3 Constitutive law

The total deformation energy density depends on both the symmetric strain tensor
εi j and the rotation gradient tensorκi j. For linear elastic center-symmetric isotropic
materials, the potential energy density is defined as [Fleck and Hutchinson (1993)]:

w = 2µl2
κi jκi j + µεi jεi j +

1
2

λε
2
ii (7)

Where µ and λ are usual Lame constants, l is the additional characteristic length
quantity related to the micro-structure of materials. The symmetric part of Cauchy
stress σi j and couple stress tensor µi j are work-conjugates with the strain tensor εi j

and the rotation gradient tensor κi jvia the constitutive equations:

σi j =
∂w
∂εi j

= λδi jεmm +2µεi j (8a)

µi j =
∂w
∂κi j

= 4µl2
κi j (8b)

It should be noted there is no work-conjugate with the anti-symmetric part of the
Cauchy stress tensor τi j, so it dose not contribute to the internal energy, and there-
fore τi j is left indeterminate.
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3 The natural neighbour Galerkin method with gradient smoothing tech-
nique

3.1 Weak form

For brevity, the functional of potential energy with no body forces and body cou-
ples, can be expressed in matrix form by:

Π =
1
2

∫
Ω

εεε
T

σσσdΩ+
1
2

∫
Ω

κκκ
T

µµµdΩ

−
∫

Γt

uT T̄dΓ−
∫

Γt

θθθ
T M̄dΓ

(9)

By taking the first variation δΠ = 0, gives∫
Ω

δδδεεε
T

σσσdΩ+
∫

Ω

δδδκκκ
T

µµµdΩ

=
∫

Γt

δδδuT T̄dΓ+
∫

Γt

δδδθθθ
T M̄dΓ

(10)

Where δδδεεε and δδδκκκ are expressed in terms of δδδu via

δδδεεε = Lδu, δδδκκκ = L′δu (11)

For 2D cases, these matrices are defined as follows:

u =
[
ux uy

]T (12)

δδδεεε =
[
δεx δεy δγxy

]T (13a)

δδδκκκ =
[
δκx δκy

]T (13b)

σσσ =
[
σx σy τxy

]T (14a)

µµµ =
[
µx µx

]T (14b)

T̄ =
[
T̄x T̄y

]T (15a)

M̄ = [M̄] (15b)

L =

[
∂

∂x 0 ∂

∂y
0 ∂

∂y
∂

∂x

]T

(16a)

L′ =
1
2

[
− ∂ 2

∂y∂x
∂ 2

∂x2

− ∂ 2

∂y2
∂ 2

∂x∂y

]
(16b)

where γxy = 2εxy is the shear strain.
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3.2 Integration scheme for domain integrals

The evaluation of the integrals over global domain in Eq.10 could be carried out
on the Delaunay triangles (Ti, i=1,...m). The second domain integral of l.h.s. of
the Eq.10 includes second-order gradient of displacement. In order to evaluate it,
a C1-continuous approximation scheme should be used to make the integral inte-
grable. However, construction of a C1-continuous interpolation needs much more
effort and increases the computational costs. If we want to relax the continuity re-
quirement, the order of the integrand should be reduced. Onate and Zarate (2000)
developed rotation-free triangular plate and shell elements by incorporating the fi-
nite volume method. In their work, the curvature within each control domain, is
assumed to be constant and can be expressed as the first-order gradient of displace-
ment. Consequently, the domain integrals are transformed into line integrals and
the order of the integrand is reduced. Motivated by their work, we could relax the
continuity requirement by following this strategy.

Ti1

Ti2
Ti3

Ti4
n

I

C

D
 

Figure 1: Sub-division of the Delaunay triangle

Firstly, we decompose each Delaunay triangle, e.g.∆IDC in Fig.1, into four identi-
cal small triangles by connecting the mid-points of its edges. The kth sub-triangle
in the ith Delaunay triangle is denoted by Tik. By considering the constitutive rela-
tion, the second domain integral of l.h.s. of the Eq.10 could be evaluated as∫

Ti

(L′δu)T
µµµdΩ =

4

∑
k=1

(∫
Tik

(L′δu)T D′κdΩ

)
(17)

Where D′ is the constitutive matrix defined by

D′ =
[

4µl2 0
0 4µl2

]
(18)
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Secondly, over each integration sub-domain Tik, the gradient smoothing technique
[Yoo, Moran and Chen (2004); Liu, Nguyen, Dai and Lam (2007); Liu (2008)] is
adopted, and the constant rotation gradient field is defined as a weighted average
(non-local curvature):

κ̃κκ =
∫

Tik

L′uφ(x)dΩ (19)

The smoothing function φ(x) satisfies at least the unity property:∫
Tik

φ(x)dΩ = 1 (20)

Here, the following constant smoothing function is used:

φ(x) =

{
1

Aik
if x ∈ Tik

0 if x /∈ Tik
(21)

Where Aik is the area of Tik. Using divergence theorem, Eq.19 becomes:

κ̃κκ =
1

Aik

∫
∂Tik

N′∇′udΓ (22)

where

N′ =
[
nx ny

]T
, ∇

′ =
1
2

[
− ∂

∂y
∂

∂x

]
(23)

By Eq.22, the constant rotation gradient field is defined, i.e. κκκ=̇κ̃κκ , within each
integration sub-domain Tik. Thus, Eq.17 can be expressed as:∫

Ti

(L′δu)T
µµµdΩ

=
4

∑
k=1

{[∫
Tik

(L′δu)T dΩ

]
D′κ̃

} (24)

Integrating by parts the domain integral in the r.h.s of Eq.24 and substituting Eq.22
into it, gives∫

Ti

(L′δu)T
µµµdΩ

=
4

∑
k=1

{[∫
∂Tik

(
N′∇′δδδu

)T dΓ

]
D′
(

1
Aik

∫
∂Tik

N′∇′udΓ

)} (25)
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The r.h.s of Eq.25 includes only the first-order gradients of displacements, and
therefore the C0-continuous interpolation could be used to evaluate it.

As to the first domain integral of Eq.10, although it can be evaluated by the usual
procedure [Sukumar, Moran, Semenov and Belikov (2001); Sukumar, Moran and
Belytschko (1998)], it is reported that the usage of the gradient smoothing operation
can obtain more accurate results and higher convergence rate without increasing
computational cost [Liu, Nguyen, Dai and Lam (2007); Liu(2008)]. Therefore, we
adopt the same operation to improve the accuracy and construct a uniform code
structure. Similarly, the first integral over the global domain can be expressed as:∫

Ti

(Lδu)T
σσσdΩ

=
4

∑
k=1

{[∫
∂Tik

(Nδu)T dΓ

]
D
(

1
Aik

∫
∂Tik

NudΓ

)} (26)

WhereD is the usual elastic constitutive matrix and N is the matrix defined by:

N =
[

nx 0 ny

0 ny nx

]T

(27)

3.3 The non-Sibsonian partion of unity method

The non-Sibsonian interpolation [Sukumar, Moran, Semenov and Belikov (2001);
Belikov and Semenov (2000)] is a kind of the so-called natural neighbor interpo-
lations based on the Voronoi diagram of the scattered nodes. The non-Sibsonian
interpolation shape functionϕI(x) is calculated by:

ϕI(x) =
sI(x)/hI(x)

∑
n
J=1 [sJ(x)/hJ(x)]

(28)

Where n is the number of natural neighbours of the point x, sI is the Lebesgue mea-
sure of the Voronoi boundary associated with node I(here is the length of Voronoi
edge in 2D case), and hI is the distance between the evaluated point x and the node
I. This kind of interpolation shares many properties with the Sibson interpola-
tion [Sukumar, Moran and Belytschko (1998)], e.g. linear completeness, partition
of unity and the Kronecker Delta property, and is less computationally expensive.
However, this interpolation scheme only has linear completeness and C0-continuity
at the node, which restricts its applications to the couple-stress elasticity. Although,
a C1-continuous natural neighbour interpolation shape function which has second-
order completeness can be constructed [Sukumar and Moran (1999)], the more effi-
cient way to increase the completeness is to enrich the natural neighbour interpola-
tion using the idea of PUM. The PUM can be viewed as a generalized framework to
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construct proper approximation spaces with any desired completeness or including
any prior knowledges for solving partial differential equations. The approximation
schemes used in meshless methods or finite element methods can be considered as
special cases of the PUM. Many researchers [Duarte, Babuska, and Oden (2000);
Fan, Liu and Lee (2004); Wells, Sluys and De Borst (2002)] have used the PUM
to enrich the interpolation extrinsically in Galerkin methods. Gonzalez, Cueto and
Doblare (2004) used the PUM to enrich the non-Sibsonian interpolation with poly-
nomial basis in the mixed approximation to verify the LBB condition.

 
Figure 2: Overlapping patches contributing to the evaluating point x in the NSPU
approximation

As the non-Sibsonian interpolation shape function has the property of partition of
unity, we can use it to construct an approximation space of second-order com-
pleteness which combines features of the non-Sibsonian interpolation shape func-
tion. This approximation scheme can be called the non-Sibsonian partition of unity
(NSPU). In the NSPU, the problem domain is covered by overlapped patches, as
shown in Fig.2. Each patch coincides with the support of the nodal non-Sibsonian
shape function ϕI(x), and therefore there is a one-to-one corresponding relation-
ship between each patch and each node. On each patch, a local approximation
spaceVI , also known as the cover function, is constructed by a linear combination
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of the influence function ψIJ [Fan, Liu and Lee (2004)]

VI(x) =
m

∑
J=1

aIJψIJ(x) (29)

Then the global approximation space V is constructed by

V (x) =
n

∑
I=1

ϕI(x)VI(x) (30)

Where n is the number of natural neighbours of the evaluating point x. This is dif-
ferent from the general PUM where all nodes, be it near or far, will contribute a
share to the total sum at an arbitrary location. For example, in Fig.2, the evaluating
point x has five natural neighbours, i.e. A, B, C, D and E, and a typical patch of
node C is illustrated. These five patches cover the evaluating point x. Only the local
approximation spaces defined on these patches contribute to the evaluating point,
and the nodal non-Sibsonian shape function ϕI(x) defines the percentage contribu-
tion from the node I’s patch. This ensures the local property of the approximation
and a subsequent compact banded stiffness matrix. As the important property of
the PUM is that the global approximation space V inherits the approximation prop-
erties of the local space VI and the smooth of the partition of unity, the resultant
non-Sibsonian PU approximation scheme remains C0-continuity.

The influence function ψIJ can be chosen with great flexibility. The most straight-
forward choice is polynomial functions [Duarte, Babuska and Oden (2000)]. It is
worth noting that different influence functions could be used for different patches.
While, adopting a single repetitive type of influence function is quite convenient
here. In order to achieve the second-order completeness, the polynomials {1,x,y} is
used to construct the local cover function VI[Gonzalez, Cueto and Doblare (2004)],
such that the resultant approximation is

Φ = ϕI×{1,x,y}, I = 1, ...,n (31)

As non-Sibsonian interpolation shape function has the linear completeness, there
exist constants ax

I and ay
I ,I = 1, ...,n, such that

n

∑
I=1

ϕI = 1,
n

∑
I=1

ϕIax
I = x,

n

∑
I=1

ϕIa
y
I = y (32)

From the above equations, we have [Duarte, Babuska and Oden (2000)]

n

∑
I=1

(ϕIx)ax
I = x

n

∑
I=1

ϕIax
I = x2 (33a)
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n

∑
I=1

(ϕIx)a
y
I = x

n

∑
I=1

ϕIa
y
I = xy (33b)

n

∑
I=1

(ϕIy)a
y
I = y

n

∑
I=1

ϕIa
y
I = y2 (33c)

n

∑
I=1

(ϕIy)ax
I = y

n

∑
I=1

ϕIax
I = yx (33d)

Therefore, it can be concluded that

span{Φ}= span{1,x,y,xy,x2,y2} (34)

In the numerical implementation, setting the origin of the local polynomial enrich-
ment to the node being enriched ensures a well-conditioned system irrespective of
the global dimensions [Wells, Sluys and De Borst (2002)]. Thus, the local approx-
imation is calculated by

VI = aI1(x− xI)+aI2(y− yI)+aI3 (35)

By using the above NSPU, the displacement field over a volume can be interpolated
by

uh(x) =
n

∑
I=1

ϕI[aI1(x− xI)+aI2(y− yI)+aI3] (36)

The above equation can also be written as

uh(x) =
n

∑
I=1

ϕIaI3

+
n

∑
I=1

[ϕI(x− xI)aI1 +ϕI(y− yI)aI2]
(37)

In above equation, the first part of the r.h.s can be viewed as the conventional non-
Sibsonian interpolation, and the second part is the enrichment. In 2D problems, the
displacement vector has two components, that is

u =
[
ux uy

]T =
n

∑
I=1

φφφ IûI (38)

where

φφφ I =
[

ϕI1 ϕI2 ϕI3 0 0 0
0 0 0 ϕI1 ϕI2 ϕI3

]
(39)
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ûI =
[
ax

I1 ax
I2 ax

I3 ay
I1 ay

I2 ay
I3

]T (40)

Where ϕI1 = ϕI(x− xI), ϕI2 = ϕI(y− yI) and ϕI3 = ϕI are defined for simplicity,
and the ûI is the column vector containing the generalized nodal parameters. When
the evaluating point x reaches the node, e.g. xI , because of the Kronecker Delta
property of the non-Sibsonian shape function, i.e.ϕI(xJ) = δIJ , the displacement
uh(x) will only depends on the local approximation defined on the node I’s patch,
and therefore

uh(xI) = aI1(xI− xI)+aI2(yI− yI)+aI3 = aI3 (41)

Therefore, the components ax
I3 and ay

I3 can be considered as the “regular” nodal
degrees of freedom of displacements and the other four parameters can be consid-
ered as their spatial derivatives approximately. This is quite similar with the C1

natural neighbour interpolation [Sukumar and Moran (1999)], and facilitates the
imposition of essential boundary condition for the couple-stress and strain gradient
theories. It is worth noting that either setting all influence functions to unity or set-
ting the enriched nodal parameters to zero will reduces the NSPU to the tradition
non-Sibsonian interpolation.

3.4 Discrete form and numerical implementation

By substituting Eq.38 into Eq.25 and Eq.26 and subsequently into Eq.10, the matrix
form of discrete equations can be expressed by:

K6N×6N û6N = F6N (42)

KIJ =
m

∑
i=1

4

∑
k=1

(
BT

I DBJ +B′TI D′B′J
)

Aik (43)

FI =
∫

Γt

φφφ
T
I T̄dΓ+

∫
Γt

(
∇
′
φφφ I
)T M̄dΓ (44)

Where N denotes the total number of nodes placed on the boundary and in the
domain. The matrices included in above equations, e.g. BI and B′I , are defined by

BI =
1

Aik

∫
∂Tik

Nφφφ IdΓ (45)

B′I =
1

Aik

∫
∂Tik

N′∇′φφφ IdΓ (46)

The pseudo code shown in Tab. 1 can be used to construct the global stiffness ma-
trix. Obviously, the assembly of the stiffness matrix here is quite different from that
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of the original natural neighbour Galerkin method. There are no domain integrals
involved in the calculation of the stiffness matrix. However, the line integrations in-
volved in the matrix BI and B′I would influence the result greatly. It is reported that
the application of the trapezoidal quadrature rule to the line integrals might cause
problems. Instead, the employment of the Gaussian quadrature rule proves to be
suit with the properties of the non-Sibsonian interpolation [Yoo, Moran and Chen
(2004)]. In our work, one Gaussian points per interior segment and two Gaussian
points per boundary segment are used. This provides the ease of weight computa-
tion for interior segment, as the weight is the length of the segment itself.

Table 1: The pseudo code for assembly of the global stiffness matrix

 

4 Numerical examples

In order to test the performance of the proposed numerical method and observe
its ability of modelling the size effect, three numerical examples having analytical
solutions are presented. In all the examples, the geometric dimensions are fixed
and the material length is varied in order to observe the size effect easily. In the last
example, we follow Cordes and Moran (1996) to treat the material discontinuity.
The material interface is modeled by a set of nodes that belong to both materials.
Any points contained in the material #1 can only be influenced by nodes in material
#1 plus the interface nodes and vice versa.
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Figure 3: Square with hole in a field of biaxial tension

4.1 Square with hole under biaxial tensions

An infinite square plate with a centric circular hole under biaxial tension is illus-
trated in Fig.3a. According to the work by Mindlin (1963), couple stresses have
no effect at all on the stresses around a circular hole when p is equal to q. When
p equals to zero, this problem becomes the uniaxial tension, the maximum nor-
mal stress in the vicinity of the hole will be reduced due to the effect of couple
stresses. If p equals q in magnitude but have opposite signs, i.e. p=-q, the other
extreme case of pure shear occurs and the effect of couple stresses is even greater
than that of the uniaxial tension. In this example, we will deal with the latter two
extreme cases. The analytical solution for stresses, couple stresses and the stress
concentration factor of this problem are given by Mindlin (1962).

Due to symmetry, only the upper right quadrant of the plate is modeled as shown is
Fig.3(b). The length of the plate L and the radius of the hole r are chosen to be 7.5
and 0.5, respectively. As the ratio of L to r is 15, the plate can be approximately
considered as infinite. Symmetric conditions are imposed on the left and bottom
boundaries, where the micro-rotationθ = 0 is also set. The traction boundary con-
ditions are set as follow:

For the uniaxial tension problem

• On the right boundary:Tx = q=1.0, Ty = M=0.0

• On the top boundary:Tx =Ty = M=0.0

For the pure shear problem
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Figure 4: The discrete model with 259 irregular nodes
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Figure 5: Normal stress σx along left edge at x = 0
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• On the right boundary:Tx =q=1.0, Ty =0.0

• On the top boundary:Tx =0.0, Ty =p=-1.0

In the numerical computation, the plane stress condition is assumed with mate-
rial constants E=1.0 and ν=0.3. Irregular nodal arrangement with only 259 nodes
shown in Fig.4 is used.

When the material length l=0.0 is taken, the ratio of the radius of the hole r to the
material length l approaches infinity. As we can predict, the couple stresses can be
neglected and the classical theory will be reproduced. First, we test the influence
of the number of integration points on the accuracy of the solution. This can be
observed from the Fig.5, where the normal stress σx along left edge at x=0 for
the case l=0.0 is plotted. If one Gaussian point for both interior and the boundary
segment are used (Ni=1, Nb=1), the oscillatory solution is obtained (although, the
usage of much more nodes will give some remedy for this). On the contrary, stable
and accurate solution is obtained using one Gaussian point per interior segment and
two Gaussian points per boundary segment (Ni=1,Nb=2).
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Figure 6: Normal stress σx along left edge at x = 0

In Fig.6, the comparison between solutions for l=0.0 and l=0.5 is presented. Due
to the existence of the couple stress, the normal stress σx in the vicinity of the hole
is lowered and the stress concentration factor is reduced to 2.07 for the uniaxial
tension. The numerical and analytical solutions are matched quite well. It is known
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that the stress concentration factor depends on both Poisson’s ratio and the ratio of
the radius of the hole r to the material length l[Mindlin (1962)]. In Tab.2 and Tab.3,
the stress concentration factors for uniaxial tension and pure shear problems are
shown, respectively, for a range of r/l and with different Poisson’s ratio. From these
two tables, we can observe that as r/l increases, the stress concentration factors
increase as well. When r/l approaches infinity, the obtained stress concentration
factors will approach the usual value 3.0 for the uniaxial tension and 4.0 for the
pure shear problem.

Table 2: Stress concentration factor: V =0.3

r/l
Uniaxial tension Pure shear

Analytical Numerical % error Analytical Numerical % error
0.5 1.9239 1.8845 2.05 1.8478 1.7664 4.41
1.0 2.0666 2.0159 2.45 2.1332 2.0129 5.64
2.0 2.3356 2.3082 1.17 2.6712 2.5422 4.83
4.0 2.6580 2.6844 0.99 3.3161 3.2367 2.39
5.0 2.7439 2.7861 1.54 3.4877 3.4263 1.76
8.0 2.8737 2.9362 2.17 3.7474 3.7066 1.09

10.0 2.9129 2.9790 2.27 3.8259 3.7863 1.04
100 2.9989 3.0532 1.81 3.9978 3.9210 1.92

Table 3: Stress concentration factor: V =0.4999

r/l
Uniaxial tension Pure shear

Analytical Numerical % error Analytical Numerical % error
0.5 2.0916 1.9544 6.56 2.1833 1.8617 14.73
1.0 2.2305 2.0856 6.50 2.4612 2.1340 13.29
2.0 2.4755 2.3913 3.40 2.9512 2.6789 9.23
4.0 2.7431 2.7660 0.83 3.4863 3.3666 3.43
5.0 2.8100 2.8626 1.87 3.6201 3.5475 2.01
8.0 2.9081 2.9973 3.07 3.8162 3.8034 0.34

10.0 2.9370 3.0323 3.24 3.8741 3.8711 0.08
100 2.9992 3.0782 2.63 3.9984 3.9718 0.67

4.2 Simple shear problem

Consider a block of width w, length L, and height H undergoing a simple shear
deformation, as shown in Fig.7. Assume that w and L are much larger than H such
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that they both can be viewed as infinite. The displacement ūx=1.0 is prescribed
on the top surface y = H. The analytical solution to this problem is given in the
reference [Yang, Chong, Lam and Tong (2002)].

y
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o

 
Figure 7: Simple shear problem

 
Figure 8: Nodal arrangement for the simple shear problem.

In the computation, the length and the height of the block are taken to be L=10.0
and H=1.0. The plane strain condition is assumed with material parameters E = 1.0
and ν=0.3. The irregular nodal arrangement with 299 nodes shown in Fig.8 is used.

The numerical solutions of displacement and shear strain along y-axis at x=0 against
the analytical ones for different material lengths are plotted in the Fig.9 and Fig.10.
We can observe that the numerical solution reduced to the classical solution when
the material length vanished. When the material length l and the length of the
deformation field H can be comparable, strong size effects was captured by the nu-
merical solution. In both situations, numerical and analytical solutions are matched
very well.

4.3 Boundary layer near a bimaterial interface

The couple-stress theory predicts the existence of boundary layers (BL) adjacent
to certain types of boundaries such as material interfaces [Fleck and Hutchinson
(1993)]. In this test, we consider an interface between two elastic solids under a
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Figure 9: Nodal arrangement for the simple shear problem.
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Figure 10: Shear strain γ = 2εxy in the block.
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remote shear stress σ∞
yx = 1.0 as shown in Fig.11a. If the length of deformation

field is comparable with the material length, according to the couple-stress theory,
the shear strain γ = 2εxy has a continuous but non-uniform distribution within a
boundary layer adjacent to the interface. The analytical solution of shear strain to
this problem is given in the paper of Fleck and Hutchinson (1993).

γ =
σ∞

yx

G1

{
1+

G1−G2

G2
· G2l2

G1l1 +G2l2
· ey/l1

}
for y < 0

γ =
σ∞

yx

G2

{
1+

G2−G1

G1
· G1l1

G1l1 +G2l2
· e−y/l2

}
for y > 0

(47)

Where Gi = Ei/2(1 + νi) is the shear modulus. In order to normalize the solution
in dimensionless form, we define the average shear strain as

γ̄ = σ
∞
yx(G1 +G2)/(G1G2) (48)

The normalized shear strain is defined as the ratio of γ to γ̄ .

            
(a)                                (b) 

 

Figure 11: (a) The bimaterial under a remote shear stress and (b) The analytical
model

In the numerical computation, the material constants are arbitrarily chosen to be
E1=2E2=2.0, l1 = l2 = l and ν1 = ν2 = 0.3. The material length l is taken to be
0.0, 1.0 and 2.0 to observe the size effect. This problem is modeled as shown in
the Fig.11b. The width w and the height hof the model are chosen to be w=1.0 and
h=50.0 to represent the dimensional infinity. A central region of length L=20.0 is
used to simulate the BL. The ux = uy=0 is set at the left-bottom corner A and uy=0 at
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the right-bottom corner B to avoid the rigid movement, and besides, the following
boundary condition are prescribed.

On the left boundary AD : Tx = Ty = M = uy = θ = 0

On the right boundary BC: Tx = Ty = M = uy = θ = 0

On the bottom boundary AB: Tx =−σ
∞
yx, Ty = M = 0

On the top boundary DC: Tx = σ
∞
yx, Ty = M = 0

In the Fig.12, the discrete model consisting of 280 nodes is used in the computation.
The discrete model is scaled and rotated 90 degree for illustration purpose. There
are 4×31 regular nodes placed on the BL, and 156 irregular nodes arbitrarily placed
on the remaining part.

 
Figure 12: Nodal arrangement with 280 nodes
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Figure 13: The normalized shear strain
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The numerical solutions of the normalized shear strains along line mn against the
analytical ones are shown in the Fig.13, where the solid lines denote the analytical
solutions and the scattered points denote the numerical solutions. Perfect matches
are observed for all the three cases even though only 280 nodes are used. From
this figure, we can observe that the shear strain jumps in magnitude at the inter-
face, from σ∞

yx/(γ̄G1) = 0.333 in material #1, to σ∞
yx/(γ̄G2) = 0.667 in material #2

when material length l vanishes, which is coincident with the classical solution.
When the material length and the length of the deformation field is comparable, the
couple stress solutions of the shear strain for l=1.0 and l=2.0 at the interface are
continuous. It also indicates from the figure that the larger the material length is
the smaller slope of the distribution can be observed.

5 Conclusions

The gradient smoothing technique combined with the non-Sibsonina PUM is used
to tailor the natural neighbour Galerkin method for the couple-stress elasticity to
model the size dependent behaviour of materials. Although, the proposed numer-
ical method only considers eight components of the second-order gradient of dis-
placement, the generalization of the proposed method to the strain gradient theory
is straightforward. By virtue of the techniques adopted in this method, the domain
integrals are transformed into line integrals and the order of integrands are reduced.
As a result, this method possesses the following properties: The complicated C1-
continuous approximation scheme is avoided without using either Lagrange mul-
tipliers or penalty parameters; the non-Sibsonian partition of unity is used to con-
struct approximation space with second-order completeness, and therefore the im-
position of essential boundary conditions is straightforward; no domain integrals
involved in the assembly of the global stiffness matrix. The validity and accuracy
of the proposed method are investigated through numerical examples. The numer-
ical results indicate: the classical solutions will be reproduced when the material
length quantities are omitted; On the contrary, strong size effects can be observed
when the length of deformation field and the material length are comparable. In all
tests, good agreements with analytical solutions are obtained.
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