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Uncertainty Quantification of the Interaction of a Vortex
Pair With the Ground
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Abstract: The evolution of a two-dimensional vortex pair in ground effect was
studied under the influence of random initial inputs comprising vortex strength (cir-
culation) or initial vortex position. The paper addresses the questions of how do
variations and uncertainties of initial conditions translate to the variability of vor-
tex pair evolution. The stochastic solutions were obtained recurring to the Polyno-
mial Chaos Expansion method of random processes applied to the Navier-Stokes
equations for a laminar flow. The method quantifies the extent, dependence and
propagation of uncertainty through the model system and, in particular, a method-
ology for the calculation of the vortices trajectory variability, i.e. their confidence
interval, could be obtained, provided that the random inputs are not sufficiently high
to destroy the mean solutions coherence. The random initial vortex position or the
vortex circulation with a variability coefficient of 10% promote after t∗ = 3, one
vortex turnover, vortex trajectories that within a 90% confidence interval display
an error bar with lengths up to 2r0 (two times the initial vortex radius).
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1 Introduction

Most of the engineering problems concerned with solid mechanics or fluid me-
chanics require the modeling of input or initial uncertainties and their propagation
thought the system under consideration, see e.g. Ghanem and Spanos (1991); Cui
and Yu (2009); Fleissner and Eberhard (2009); Turrin (2009); Gao (2009). Several
stochastic approaches are available nowadays in order to quantify the propagation
of uncertainty from the input parameters into the model outputs. Spectral Projection
(SP) methods based on Polynomial Chaos (PC) expansion, see e.g. Xiu and Kar-
niadakis (2002); Knio (2006); Najm (2009), are more appropriate and suitable for
large degree of parametric uncertainty than the computationally expensive Monte-
Carlo (MC) method, see e.g. Caduci (2003) because Monte-Carlo type methods
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conduct only statistical analysis on the solution of deterministic simulations per-
formed with randomly selected conditions. The procedure does not readily provide
information about the sensitivity of the model output to specific parametric uncer-
tainties. Monte Carlo techniques have a high computational cost due to the required
large amount of samples needed, therefore this approach is often restricted to prob-
lems with fast deterministic simulations, see e.g. Maïtre (2001).

PC based methods require the model parameters to be characterized as aleatory un-
certainties, i.e. it is presumed that sufficient probabilistic information exists about
the parameters Najm (2009). In SP methods, the uncertain model parameters are
made dependent on additional random dimensions along with time and space and
the stochastic variables of the model are projected on these random dimensions
using appropriate PC expansions. The objective of SP methods is to calculate the
PC expansion mode coefficients, which are then used to extract probabilistic infor-
mation about the stochastic model solution, such as statistics, confidence intervals,
probability density functions (PDF) or sensitivity to parametric uncertainty.

SP methods may be formulated using two different approaches: intrusive and non-
intrusive, see e.g. Cui and Yu (2009); Fleissner and Eberhard (2009). In the Intru-
sive SP approach, (ISP), the model governing equations are reformulated in order
to directly propagate the uncertainty through the model during the simulation, see
e.g. Xiu and Karniadakis (2002). Although their approach is effective, it may
not be practically suitable for commercial or complex codes. The non-Intrusive
SP (NISP) approach evaluates a posteriori the PC expansion mode coefficients of
the stochastic model solution using deterministic solution samples. This approach
shares with MC methods the advantage of using the original deterministic code as
a black box. However as the number of uncertain parameters increases it requires
sophisticated methods to implement such that it becomes competitive with the ISP
approach (Parussini and Pediroda (2008)). Several authors have compared the two
basic strategies embodied in specific numerical methods for fluid flow see Loeven
and Bijl (2008); Parussini and Pediroda (2008, 2007).

The objective of this work is to study the stochastic two dimensional interaction
of a vortex pair with a wall considering different uncertainty sources: i) Vortex
Reynolds number (circulation), ii) Position of the vortices relative to each other.
The present study focuses on uncertainties existing in a vortex pair interacting with
a wall and the uncertainty quantification problem is addressed using an intrusive
spectral projection based method. The study considers relatively low Reynolds
number, Re = 5000. The same problem at a much higher Reynolds numbers is
of direct relevance for aircraft wake vortices. This topic has received particular
attention in the past due to their impact in safety and efficiency of airports, see e.g.
Spalart (1998); Gerz (2005), for a review.
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The physics of wake vortex decay is now well understood but their application
to real scenarios faces the problem of large uncertainties in many of the param-
eters that affect the motion of lift-generated vortex wakes generated by aircrafts.
Among the uncertainty parameters the meteorological conditions, wind velocity
components (crosswind), turbulence and thermal stratification combined with air-
craft weight, type, velocity and distance from the ground, create large uncertainty
sources that affect the prediction of the wake-hazardous region for single or parallel
runways in busy airports.

The calculation of the stochastic Navier-Stokes equations allows us to capture the
events that are more likely to occur and to establish confidence intervals by pro-
viding an ensemble of solutions associated to a certain probability of occurrence.
The calculation of the stochastic Navier-Stokes equations with classical methods
requires a prohibited number of different unsteady Navier-Stokes simulations to
obtain converged statistics and a simple parametric study with a smaller number of
samples would not be enough to quantify the uncertainty. The present paper inves-
tigates the evolution of a vortex pair in ground effect two idealized scenarios. The
first scenario comprises the initial circulation is in the range of 0.9Γ0 ≤ y ≤ 1.1Γ0
with Γ0 being the initial vortex circulation. The second scenario corresponds to a
vortex pair with the same initial circulation but with the initial vertical position of
one vortex is in the range of 0.9yc ≤ y≤ 1.1yc with yc being the initial position of
the other vortex.

Stochastic Navier-Stokes simulations allow to answer the following questions: Where
is the most probable trajectory? What is the uncertainty (dispersion) along the most
probable trajectory? What are the average energy decay and the error bar for a 90%
confidence interval? What is the vortex circulation along the most probable tra-
jectory? The present calculations were performed for a Reynolds number of 5000
and up to a non-dimensional time, t∗ = 3, where the two-dimensionality of the flow
structure is supported by three-dimensional numerical simulations by Duponcheel
(2006).

2 Stochastic Navier-Stokes Equations

2.1 Governing equations

The important issue of the parameters and the accurate calculation of the propa-
gation of the uncertainty through the model can be performed by the spectral rep-
resentation of the uncertainty via polynomial chaos (PC). Wiener (1938) proposed
a spectral representation of general random variables based on Hermite orthogo-
nal polynomials of the Gaussiam random variable. The span of these orthogonal
variables forms a basis for L2 and is called a Polynomial Chaos (PC). The PC Ex-
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pansion Method for its effectiveness, for short time integration has been used for the
calculation of stochastic PDE’s (Partial Differential Equations) and is based on the
spectral representation of random variables. The PC representation of general ran-
dom variables is convergent (in the L2 sense) for the Gaussian measure, provided
that the random variable is of second order, see Cameron and Martin (1947). This
method was first applied in the context of PDE’s with random inputs by Ghanem
and Spanos (1991). Later development of decompositions based on non-Gaussian
random variables was made by Xiu and Karniadakis (2002) which has been called
the Generalized Polynomial Chaos (gPC) and uses orthogonal polynomials from
the Askey family with weighting functions similar to PDF’s. A formal exposition
and a generalization of the theory to arbitrary probability measures were accom-
plished by Soize and Ghanem (2004). Local PC expansions, suited for long term
integration and discontinuities in the stochastic differential equation, were studied
by Le Maître, Najm, and Knio (2004). A general random process X of a random
variable ξ can be represented using the polynomial chaos expansion

X(ξ ) =
∞

∑
n=0

anΨn(ξ ) (1)

where the functions Ψn form a basis of orthogonal polynomials of the random
variable in the space L2 with the inner product

〈u,v〉=
∫

Ω

u(ξ )v(ξ )w(ξ )dξ (2)

w is the weighting function (defined in Ω) that is similar to a given probability
density function (Gaussian, Beta, Binomial,...). Orthogonal polynomials which
have weighting functions that closely resemble PDF’s can be found in the Askey
family of hypergeometric polynomials (Xiu and Karniadakis (2002)). A general
differential equation containing random variables can be represented by

z(x, t,ξ ,u) = f (x, t,ξ ) (3)

where x, t and ξ represent the space coordinates, time, and the random variable.
Substituting the expansion (1) in the differential equation we obtain the following

〈
z(x, t,

P

∑
n=0

unΨn),Ψk

〉
= 〈 f (x, t),Ψk〉 (4)
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The equation terms can be projected into the space spanned by the polynomial
basis in order to absorb the random variable and to minimize the representation
error. This procedure leads to (5) and (6) where the first P+1 terms were retained.
This means that instead of solving a system of differential equations with random
variables, one has to solve a larger system of coupled deterministic equations. As-
suming the PC-expansions of the primary variables for the Navier-Stokes equations
(for an incompressible fluid with constant properties)

u(x, t,ξ ) =
P

∑
n=0

un(x, t)Ψn(ξ ) (5)

p(x, t,ξ ) =
P

∑
n=0

pn(x, t)Ψn(ξ ) (6)

and performing the projection into each element of the polynomial basis leads to
the following system of deterministic partial differential equations

∇ ·uk = 0 (7)

∂uk

∂ t
+

1
‖Ψk‖2

P

∑
i=0

P

∑
j=0

ei jk [ui∇] ·u j =− 1
ρ

∇pk +
1

‖Ψk‖2

P

∑
i=0

P

∑
j=0

ei jkνi∇
2u j (8)

where

ei jk =
∫

Ω

ΨiΨ jΨkw(ξ )dξ (9)

and it was assumed that the viscosity may be a random variable (r.v.). The term ei jk
in equation (8) is a sparse, constant and symmetric tensor and can be calculated a
priori with a high degree of accuracy. Equation (7) corresponds to the continuity
equation and forms a set of independent partial differential equations, which means
that all modes are divergence free. On the other hand, equations (8) form a coupled
set. These equations are coupled by the convective term and the diffusive term. An
important aspect of these equations is that they are "equivalent" for all the stochas-
tic modes, which means that all modes are subjected to convection, diffusion and
dissipation phenomena.
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The solution of the system (7) and (8) provides the fields uk(x, t) and pk(x, t) which
contain all the statistics (statistical moments, correlations and PDF’s) of the flow.
Other quantities other than the primary variables will be calculated, such as the
mean vorticity and mean energy. The mean vorticity (and its higher order modes)
can be calculated easily because the rotational operator is linear, therefore

ω = ∇×~u ⇒ ωk = ∇× ~uk (10)

2.2 Numerical Method

A Runge-Kutta 4th order explicit time integration method together with sixth order
spatial central differences approximation as used to solve the system of Navier-
Stokes equations for the stochastic modes. This method consists in advancing the
velocity fields

u∗k = un
k +∆tF(Hn,H∗) (11)

The following equation is used to obtain the pressure correction

u∗∗k −u∗k
∆t∗

=−∇pk (12)

The method has a computational cost for the solution of the coupled equations that
is approximately (P + 1) times higher than the cost of solving the corresponding
deterministic problem. The Laplacian operator in equation (12) was discretized us-
ing a second order central differences scheme in order to reduce the computational
effort of solving 4(P+1) linear systems per time step. The parallelized Conjugate
Gradient Method with optimized matrix/vector operations for this specific matrix
was used. The sparseness of the ei jk tensor was also taken into account in order to
reduce the number of floating point operations.

The approximation error for the set of equations (5) and (6) has two sources, the
truncation in the stochastic space and the second is the numerical discretization
error. If we consider ε2

P to be the variance error of a random process a(x, t,ξ )
represented by its expansion coefficients ak(x, t), then
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ε
2
P =

∣∣∣ ∞

∑
k=1

a2
k(x, t)‖Ψk‖2−

P

∑
k=1

ã2
k(x, t)‖Ψk‖2 + ε∆x

∣∣∣
=

∣∣∣ P

∑
k=1

(a2
k(x, t)− ã2

k(x, t))‖Ψk‖2

︸ ︷︷ ︸
I

+
∞

∑
k=P+1

a2
k(x, t)‖Ψk‖2

︸ ︷︷ ︸
II

+ ε∆x︸︷︷︸
III

∣∣∣ (13)

In equation (13) the approximation error sources correspond to: term I is the er-
ror due to the finite mode approximation where the computed modes ãk(x, t) are
slightly different from the exact solution modes ak(x, t); term II is the error due
to not considering stochastic modes higher than P and term III is the numerical
discretization error. These terms are not independent and it can occur that the mag-
nitude of the terms higher than P are small but the error term I is large due to the
coupling of the equations. The coupled system of equations (8) and (9) were solved
considering several approximations and the results obtained with P = 7 displayed
negligible contribution to the higher order modes. This requires the solution of 8
systems of momentum and continuity equations comprising 24 strongly coupled
differential equations in a numerical mesh comprising O[105] points. The instan-
taneous random velocity and pressure fields are obtained through the calculation
of the coefficients in these equations. The first mode in the expansions (5) and (6)
corresponds to the mean velocity and pressure, respectively.

Figure 1: Computational domain and initial setup.
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3 Results

3.1 Deterministic evolution of a vortex pair in ground effect

The computational domain used ([−4,4]× [0,3]) is represented in Figure 1 with the
vortices core size being r0 = 0.05b0. An algebraic vortex model was considered
and the Reynolds number defined in terms of the initial circulation is equal to Re =
Γ0/ν = 5000. The algebraic model is defined by equations (14), (15) and (16) for
the vorticity, circulation and tangential velocity, respectively.

ω(r) =
Γ0

π

r2
0

(r2 + r2
0)2 (14)

Γ(r) = Γ0
r2

r2 + r2
0

(15)

vθ (r) =
Γ(r)
2πr

=
Γ0

2π

r
r2 + r2

0
(16)

A numerical grid comprised 800× 300 points and the Courant number was equal
to 0.4. The grid spacing of r0/∆x = 5 was found to be enough to obtain a good
numerical representation of the solutions. The boundary conditions correspond
to first order extrapolation for the velocities at the open boundaries and no slip
condition at the ground. Figure 2 shows the deterministic vorticity contour, for
comparison purposes.

Initially, a favorable pressure gradient near the ground, due to the vortex induced
velocity, causes the development of a boundary layer. When t∗ = 1 the streamlines
curvature is enough to impose an adverse pressure gradient to the boundary layer
causing it to detach. This detached vortex filament rolls-up into a secondary vortex
of opposite sign which induces the rebound of the primary vortex.

Duponcheel (2006) and Winckelmans (2006) showed that three-dimensional effects
become important after the non-dimensional time t∗ = 3. Their origin is caused by
a short wave instability in the secondary vortex which is a purely three-dimensional
effect caused by self induction. In this work the calculations will be made in the
range of validity of the two-dimensional approximation, up to t∗ = 3.82, corre-
sponding to one loop of the secondary vortex.

3.2 Stochastic Vortex Evolution in Ground Effect

The statistics calculated a posteriori comprised: i) temporal evolution of the most
probable trajectory and their error bar for a confidence interval of 90%, ii) temporal
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Figure 2: Deterministic wake vortices vorticity field evolution (t∗ =
0.00;0.80;1.59;2.39;3.18;3.82).

evolution of the mean energy and their error bar for a confidence interval of 90%,
iii) Temporal evolution of a measure of circulation, expressed as Γ5−15 and its error
bar for a confidence interval of 90%. The parameter Γ5−15 is a measure of the
vortex strength and is used to enable comparison of circulation data of diverse
investigations and is defined by equation (17).

Γ5−15 =
1
b
6

∫ b/4

b/12
Γ(r)dr (17)

where b is the aircraft’s wingspan which is related to the distance between the two
wake vortices by b0/b = π/4. The symbol Γ5−15 originally arise associated with
b = 60m, see, e.g. Gerz (2005). The computation of Γ5−15 requires the integra-
tion of the local random circulation to obtain the mean value. The error, bar for a
90% confidence interval, establishes the range of variation for the Γ5−15 along the
most probable trajectory. Numerical calculations will be presented for the tempo-
ral evolution of a vortex pair with parametric uncertainty either in the initial vortice
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Figure 3: Symmetric wake vortices mean vorticity field evolution with random
initial circulation with cv=10% (t∗ = 0.00;0.80;1.59;2.39;3.18;3.82).
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location or their circulation, Reynolds number, Re = Γ0/ν . The uncertainty is char-
acterized by a constant probability of occurrence, Beta probability, and a variability
of 10%. One should mention that mean variables correspond to the ensemble av-
erage of a large number of events (each corresponding to a vortex evolution from
a certain value with the initial uncertainty range considered). The relation between
the mean velocity field and the mean vorticity field is linear with respect to the ex-
pansion, therefore the mean vorticity can be obtained from those fields. Although
the ensemble vorticity is not a physical quantity, it contains information from all
possible solutions and gives indication of the most probable set of outcomes. The
point of maximum vorticity (or local vorticity centroid) is related to the location
were it is most probable to find a given vortex. Consequently the mean trajectory
is defined by these points (details are presented in appendix A).

3.2.1 Random Initial Circulation

An Uniform (Beta) initial circulation, Γ(ξ ) = Γ0 + Γ1(ξ ) where ξ U(−1,1) was
considered for a coefficient of variation cv of 10%, for the left vortex (vortex 1),
(standard deviation divided by the mean value, cv2 = V [ξ ]/E[ξ ]2). The initial con-
dition for each mode is obtained by applying the definition of expected value and
variance to Γ(ξ ). After this procedure, a relation between the coefficients and the
desired mean and variance for the circulation is obtained.

An approximation with P = 6 is sufficient to capture the most important features of
the high order statistics and provides very good estimates for the mean variables.
Tests with very low uncertainty input, cv = 1% lead to results that are close to the
deterministic denoting numerical consistency with the deterministic Navier-Stokes
equations.

Figure 3 shows isocontours of the ensemble averaged vorticity at different instants
obtained with the left vortex initial circulation with a coefficient of variation equal
to 10%. It is worth mention that the ensemble averaged vorticity, like it would result
from tens of thousands of 2D solutions (samples) with different initial circulations
has no direct physical meaning.

Initially the ensemble average vortices have a circular shape as in the deterministic
case, but as they approach the ground they become slightly of elliptic shape because
of the dispersion of the trajectories. The left vortex, has an initial random circula-
tion, and induces a random descendent velocity field to the right vortex affecting
its trajectory. The random circulation of the left vortex produces a loss of sym-
metry and has an important effect on the other vortex. For this level of variability
of the random input the ensemble mean vortices still maintain their structure after
statistical averaging. The left vortex seems to depend essentially in the transport
and diffusion of its own initial randomness. An analysis of the ensemble average
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vorticity field shows that the right vortex variability is related to non-local effects,
the induced random velocities, which act as an uncertainty source that affects the
vortex trajectory and shape. The variability increases with time due to the loss of
correlation caused by the dispersion of the possible trajectories.

Figure 4: Vortices most probable trajectory (Random initial circulation test case).

Figure 5: Vortices position error bar for a confidence interval of 90% (Random
initial circulation test case), a) longitudinal coordinate, b) normal coordinate

Figure 5a) and b) show the error bars for the coordinates of the most probable vor-
tex centroids IC(xc)/r0, and IC(yc)/r0, for a 90% interval of confidence. The error
bar of the vortices trajectory is directly affected by the circulation 10% uncertainty
and is a measure of the variability along the most probable trajectory (figure 4) and
is calculated by considering the vortex position as the vorticity centroid. Further-
more, this centroid is considered as a random variable and therefore can be repre-
sented in terms of the polynomial chaos expansion (see the Appendix for details).
The obtained expansion for a vortex centroid is used to calculate the r.v.’s probabil-
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Figure 6: Mean energy decay and its error bar (Random initial circulation test case).

Figure 7: Circulation parameter for each vortex (Random initial circulation test
case).

ity density function. The error bar for a 90% confidence interval is calculated by
integrating the obtained PDF at a given time and position of the vortex.

Figure 5a) shows the error bars for the longitudinal coordinate of the vortex loca-
tions, due 10% variability of initial circulation and results in a region within the
2r0 range for a 90% confidence interval along the most probable trajectory. The
normal coordinate as a small error bar, less than r0. The temporal evolution of the
energy’s statistics is also obtained from the calculation of its polynomial chaos rep-
resentation. This quantity has direct physical meaning regarding the average energy
decay of a vortex pair (within the uncertainty considered for the initial circulation
field). It is interesting to see that the mean energy decay (figure 6) remains almost
unaffected by the random input, though having a large uncertainty associated to it.
Clearly at t∗ = 0 the error bar denotes the considered uncertainty in circulation and
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there is a slight decrease of the error bar with time evolution.

Figure 8: Mean vorticity field evolution for cv = 20% (t∗ = 0.80;1.59;2.39). Ran-
dom initial circulation test case.

Figure 9: Deterministic and most probable (mean) trajectory (Random initial posi-
tion test case).

Figure 7 shows the Γ5−15/Γ0 confidence interval as a function of time. The straight
line indicates the deterministic evolution of the circulation that is a physical quan-
tity of prime interest. The ensemble averaged Γ5−15 value given by the curve line
has no physical sense and is kept to give a comparison with the deterministic case.
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Figure 10: Vortices position confidence interval (Random initial position test case).,
a) longitudinal coordinate, b) normal coordinate.

Figure 11: Energy decay (Random initial position test case).

The value of Γ5−15 is obtained from the integration of the vorticity field in a circle
centered in the most probable vortex trajectory position (vortex core position). Con-
sequently, for a high dispersion of the vortex trajectories the Γ5−15 error bar value
may be very high. The initial random circulation of one of the vortices presents val-
ues that may be 10% higher than the mean value, it explains why there are higher
Γ5−15 values than the deterministic case, meaning that there are vortices with a
higher initial circulation that closely follow the most probable trajectory.

Figure 7a) shows the Γ5−15/Γ0 error bar corresponding to the vortice with the 10%
variability. For 1.25 ≤ t∗ ≤ 2.5 the interaction of the main vortex with the created
secondary vortex originating a large uncertainty and the possible vortex trajectories
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Figure 12: Circulation parameter for each vortex (Random initial position test
case).

are different from the most probable one, originating a large error bar. Figure 7b)
shows that up to t∗ = 2 the circulation error bar remains close to the deterministic
and afterwards a large error bar appears due to dispersion of vortex trajectories as
a consequence of the events inherent to the dispersion of trajectories.

The level of variability of the random input chosen (cv = 10%) was sufficiently
low to allow a relative small number of approximation modes. Random inputs
of cv = 20%, not shown for conciseness were also tested and the results showed
that, due to averaging, the mean solution will break down into smaller structures
consisting of ensemble averaged vorticity peaks. In this case it is not possible, after
the rebound (t∗= 1.0), to find singular ensemble averaged "coherent vortices". The
ensemble of possible solutions (events) will form large clouds consisting in various
peaks of vorticity related to clustered groups of events. In this case high order
statistics, i.e. events far from the mean solution, will play an important role and
approximations with P >> 7 will be required but for this level of randomness it
will be very difficult to extract the most probable vortex paths.

3.2.2 Random Initial Position

A uniformly distributed random vortex position, in the vertical coordinate, was con-
sidered (y(ξ ) = y0 + y1ξ ) with a 10% coefficient of variation. The initial random
condition was represented in terms of the stochastic modes, i.e., it was necessary
to have a spectral representation of the initial fields representing a vortex randomly
positioned vortex. The discrete least squares method was used to obtain the co-
efficients of the expansion. The velocity field U [u(x,y),v(x,y)] which defines the
vortex can be subjected to a random input through y(ξ ). This is done simply by
substituting this r.v. in the defining equations (14), (15) and (16). The difficulty
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here is that one needs to generate the stochastic modes Uk which will form the ini-
tial condition for the system of equations (7) and (8). In some cases the analytic
integration of the expressions may not be possible and in other cases an accurate
numerical integration approach may become difficult to obtain. This was solved by
approximating the fields using a least squares approach where the basis functions
were chosen to be the orthogonal polynomials. The least squares problem solution
yields the stochastic modes directly. Furthermore, if the collocation points are the
zeros of the orthogonal polynomials, then the least squares matrix will have good
numerical properties. The collocation points chosen were the zeros of the first 10
Jacobi polynomials (defined in the interval [−1,1]) and the points {−1,1}, which
gives a total of 53 collocation points.

For t∗ = 0 the ensemble averaged vortex shows an elliptic shape as the result of
the averaging operation of a set of randomly sampled fields consisting in vortices
at different locations along the vertical position. An approximation of P = 7 is
sufficient for the representation of this initial condition because the relation of the
first and the seventh mode magnitudes is of O[10−2]. Both the mean solution and
their variance display negligible representation errors. In this case, the circulation
is the same for both vortices and the left ensemble mean vortex of initial elliptic
shape becomes of circular shape until it reaches the rebound height. This means that
the variability will initially decrease. After the rebound, the set of possible paths
increases rapidly due to the interaction with the secondary vortex which causes the
ensemble mean vortex to regain its elliptical shape.

The vortices trajectories are quite different from the deterministic and they present
jumps and oscillations because the ensemble averaged vorticity structures displays
multiple peaks of vorticity corresponding to clustered subsets of solutions, which
explain the irregularity of the trajectories. The variability in the vortices trajectories
is characterized by an amplitude of the confidence interval of length approximately
of 2r0 (figure 8). The mean energy, presented in figure 9 decays slower than the
deterministic case. Its uncertainty is much smaller than in the previous case of
the uncertainty in the circulation. As in the previous case a large variability in the
Γ5−15/Γ0 circulation parameter was found, see figure 10 for the time instants where
the main vortex interacts with the secondary vortex.

4 Conclusion

The evolution of a vortex pair in ground effect and under various random inputs
was investigated using the full 2D incompressible Navier-Stokes equations and the
Polynomial Chaos Expansion method for the representation of stochastic processes.
Two uncertainty sources have been considered: i) Initial circulation of one of the
vortices and ii) Initial position of one of the vortices. A variability of the random
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input of 10% was considered with a uniform probability of occurrence for each of
the random variables. In general, approximations of P = 6 or P = 7 were suffi-
cient to capture the most important features of the randomness propagated by the
stochastic Navier-Stokes equations despite of the continuous loss of correlation in
time that is caused by the increase of the higher order statistics (statistical moments)
importance. For the low variability with 10% initial uncertainty considered and up
to t∗ = 3 the following conclusions can be withdrawn:

i)The non-linearity of the propagation of the uncertainty from the initial circulation
or vortex position is amplified with the vortex interaction with the secondary vortex.
This is notorious in the Γ5−15 and for some cases in the error bar of the vortices most
probable trajectories, which are of ±r0 .

ii)The energy decay evolution depends on the cases considered. For the case of
uncertainty in the circulation the ensemble average energy was indistinguishable
from the deterministic result. For the uncertainty in the vortex position the energy
decayed is slower than the deterministic evolution.

iii)A fast decay of the mean Γ5−15 means that the probability is high to find events
outside the Γ5−15/Γ0 integration range surrounding the most probable vortex tra-
jectory.

iv)The number of stochastic modes and the numerical resolution considered al-
lowed to obtain highly accurate solutions for the 2D unsteady flow. For higher
variability coefficients, e.g. cv = 20%, the produced strong amplification of the un-
certainty input would require P >> 7 and the formation of sets of clustered (simi-
lar) discrete clouds of random events, displayed in the ensemble averaged vorticity,
denote a high dispersion of the vortex trajectories making the most probable vortex
position difficult to calculate. The destruction of the ensemble averaged vortices
coherence means that large a dispersion of trajectories occurred.

v) The computational cost of solving a system of P + 1 sets of Navier-Stokes like
equations was around 9 times higher than the deterministic case corresponding to a
high computational demand regarding a 2D flow case , nevertheless, it is orders of
magnitude smaller than the estimated Monte Carlo based simulation.

Acknowledgement: The Authors are grateful to the EU Project FARWAKE (AST 4−
CT −2005−012238) for their support.
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Appendix A: Determination of the vortices location and statistics

The vortices location at a given instant will be calculated in terms of two different
definitions. The first was considered because it enables us to compare the results
obtained with previously published results. This definition considers that the vortex
is located at the point of maximum vorticity, i.e.

(xc,yc) = max
x,y∈A
|ω(x,y)|

and provides a simple implementation. This definition is not suitable to evaluate
the trajectories uncertainty, which leads us to the second definition. The vortex
position can be defined has the centroid of the vorticity evaluated in some closed
domain B⊂ A
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(x̄, ȳ) =
∫

B(x,y)|ω(x,y)|ds∫
B |ω(x,y)|ds

A circular region centered at the point of maximum vorticity was considered to
perform the integration. The vortex centroid depends on the shape of the vortex and,
in general, is not coincident with the point of maximum vorticity (they are equal if
the vortex has a circular shape, or more generally, if the vortex is bi-symmetrical).
Therefore, the radius of the circular region was chosen such that the trajectories
calculated with the two measures of the vortex position were approximately the
same. After some numerical experimentation, a radius of r′/r0 = 6/5 was chosen.
Considering the centroid to a function of the basic random variable x̄ = x̄(ξ ) and
rewriting the previous as1

x̄(ξ )
∫

B
ω(x,y,ξ )ds =

∫
B

xω(x,y,ξ )ds

multiplying both sides of the equation by Ψk(ξ ) and integrating

∫
Ω

(
x̄(ξ )

∫
B

ω(x,y,ξ )ds
)

Ψk(ξ )w(ξ )dξ =
∫

Ω

(∫
B

xω(x,y,ξ )ds
)

Ψk(ξ )w(ξ )dξ

Considering the left hand side of the equation2

∫
Ω

(
x̄c(ξ )

∫
B

ω(x,y,ξ )ds
)

Ψk(ξ )w(ξ )dξ =

=
∫

Ω

(
P

∑
i=0

x̄iΨi(ξ )
∫

B

P

∑
j

ω j(x,y)Ψ j(ξ )ds

)
Ψk(ξ )w(ξ )dξ

=
∫

B

(∫
Ω

P

∑
i=0

P

∑
j=0

x̄iω j(x,y)Ψi(ξ )Ψ j(ξ )Ψk(ξ )w(ξ )dξ

)
ds

=
∫

B

(
P

∑
i=0

P

∑
j=0

ei jkx̄iω j(x,y)

)
ds

Considering now the right hand side of the equation

1 The modules were dropped to simplify the notation.
2 The integrals can be interchanged and x̄ is not a function of the spacial variables
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∫
Ω

(∫
B

xω(x,y,ξ )ds
)

Ψk(ξ )w(ξ )dξ =

=
∫

B

(∫
Ω

x
P

∑
i=0

ωi(x,y)Ψi(ξ )Ψk(ξ )w(ξ )dξ

)
ds

= ‖Ψk‖2
∫

B
xωk(x,y)ds

To obtain the (P + 1) coefficients of the centroids expansion one must solve the
linear system

∫
B

(
P

∑
i=0

P

∑
j=0

ei jkx̄iω j(x,y)

)
ds = ‖Ψk‖2

∫
B

xωk(x,y)ds


