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An Overrange Collocation Method
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Abstract: In this paper, a new meshless method called the overrange colloca-
tion method (ORCM) is proposed. By introducing some collocation points, which
are located at outside of domain of the analyzed body, unsatisfactory issue of the
positivity conditions of boundary points in collocation methods can be avoided.
Because the overrange points are used only in interpolating calculation, no over-
constrained condition is imposed into the solved boundary value problems. Pois-
son’s problem and the linear elastic cantilever beam problem are analyzed by using
the ORCM.
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1 Introduction

Many meshless methods have been proposed. The early representatives of mesh-
less methods are the diffuse element method [Nayroles, Touzot, Villon (1992)], the
element free Galerkin method [Belytschko, Lu, Gu (1994)], the reproducing kernel
particle method [Liu et al. (1995)], the finite point method [Onate et al. (1996a)],
the hp-clouds method [Duarte, Oden (1996)], the partition of unity method [Me-
lenk, Babuska (1996)], the meshless local Petrov-Galerkin (MLPG) approach [Atluri,
Zhu (1998)], the local boundary integral equation method [Zhu, Zhang, Atluri
(1998)], and the point collocation method (PCM) based on reproducing kernel ap-
proximations [Aluru (2000)]. Some meshless methods are based on weak form, in
which background meshes are inevitable in implementation to obtain the numeri-
cal integration. Some meshless methods are truly meshless methods, in which no
background mesh is introduced. In most meshless techniques, however, compli-
cated non-polynomial interpolation functions are used which render the integration
of the weak form rather difficult. Failure to perform the integration accurately re-
sults in loss of accuracy and possibly stability of solution scheme. The integration
of complicated non-polynomial interpolation function also costs much CPU time.
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The collocation method is a kind of truly meshless method, and has no issues of the
integration scheme, the integration accuracy and the integration CPU time. Several
collocation methods based on different types of approximations or interpolations
have been proposed in the literature. Onate et al. [Onate et al. (1996a)] have pro-
posed a finite point method based on weighted least squares interpolations for the
analyses of convective transport and fluid flow problems. Onate et al. [Onate et
al. (1996b)] have also proposed a residual stabilization procedure, adequate for the
finite point method, and further extended the finite point method to the solution of
the advective-convective transport equations as well as those governing the flow of
compressible fluids. Boroomand, Tabatabaei and Onate [Boroomand, Tabatabaei,
Onate (2005)] have presented a stabilized version of the finite point method to
eliminate the ill-conditioning effect due to directional arrangement of the points.
Aluru [Aluru (2000)] has presented a point collocation method based on reproduc-
ing kernel approximations for numerical solution partial differential equations with
appropriate boundary conditions. Jin, Li and Aluru [Jin, Li, Aluru (2004)] have
shown the robustness of collocation meshless methods can be improved by en-
suring that the positivity conditions are satisfied when constructing approximation
functions and their derivatives. Atluri, Liu and Han [Atluri, Liu, Han (2006a)] have
presented a MLPG mixed collocation method by using the Dirac delta function as
the test function in the MLPG method, and shown that the MPLG mixed collo-
cation method is more efficient than the other MLPG implementations, including
the MLPG finite volume method. Atluri, Liu and Han [Atluri, Liu, Han (2006b)]
have proposed a finite difference method, within the framework of the MLPG ap-
proach, for solving solid mechanics problems. Wu, Shen and Tao [Wu, Shen,
Tao (2007)] have used the MLPG collocation method to compute two-dimensional
heat conduction problems in irregular domain. Li and Atluri [Li, Atluri (2008a)]
have demonstrated the suitability and versatility of the MLPG mixed collocation
method by solving the problem of topology-optimization of elastic structures. In
addition, the MLPG mixed collocation method has also been successfully used in
material orientation and topology optimization of anisotropic solids and structures
[Li, Atluri (2008b)]. Chantasiriwan [Chantasiriwan (2006)] has provided results
of using the multiquadric collocation method to solve the lid-driven cavity flow
problem. Wen and Hon [Wen, Hon (2007)] have performed a geometrically non-
linear analysis of Reissner-Mindlin plate by using a meshless collocation method
based on the smooth radial basis functions. Kosec and Sarler [Kosec, Sarler (2008)]
have explored the application of the mesh-free local radial basis function colloca-
tion method in solution of coupled heat transfer and fluid flow problems in Darcy
porous media. Wu, Chiu and Wang [Wu, Chiu, Wang (2008)] have developed
a mesh-free collocation method based on differential reproducing kernel approx-
imations for the three-dimensional analysis of simply-supported, doubly curved
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functionally graded magneto-electro-elastic shells under the mechanical load, elec-
tric displacement and magnetic flux. Yang et al. [Yang et al. (2008)] have intro-
duced a computational procedure based on meshless generalized finite difference
method and serial magnetic resonance imaging data to quantify patient-specific
carotid atherosclerotic plaque growth functions and simulate plaque progression.

While, the robustness of the collocation methods is an issue especially in which
scattered and random points are used. To improve the robustness of the collocation
methods, Nayroles, Touzot and Villon [Nayroles, Touzot, Villon (1992)] suggested
that the positivity conditions could be important when using the collocation meth-
ods. Jin, Li and Aluru [Jin, Li, Aluru (2004)] have proposed techniques, based on
modification of weighting functions, to ensure satisfaction of positivity conditions
when using a scattered set of points. For boundary points, however, the positivity
conditions cannot be satisfied, obviously, so that it is possible to get large numeri-
cal errors from the boundary points when using the collocation methods. Guo [Guo
(2009)] has proposed a hybrid PCM/FEM, by introducing a boundary layer of finite
element in boundary domain of body, unsatisfactory issue of the positivity condi-
tions of boundary points can be avoided, and the complicated boundary conditions
can be easily imposed with the boundary layer of finite element.

In this paper, a new meshless method called the overrange collocation method
(ORCM) is proposed. By introducing some collocation points, which are located
at outside of domain of the analyzed body, unsatisfactory issue of the positivity
conditions of boundary points in collocation methods can be avoided. Because
the overrange points are used only in interpolating calculation, no over-constrained
condition is imposed into the solved boundary value problems. The ORCM does
not demand any specific kind of partial differential equation, therefore it shows
promise of wide engineering applications of the ORCM. Poisson’s problem and the
linear elastic cantilever beam problem are analyzed by using the ORCM.

This paper is organized as follows. In Section 2, collocation scheme of the ORCM
is described, in which overrange points are introduced. In Section 3, a modified
MLS approximation is developed, whose shape functions have Kronecker-delta
property. In Section 4, a local coordinate system is introduced, which rends for-
mulas of the shape function derivatives very simple. In Section 5, the positivity
conditions are described. In Section 6, Poisson’s equation and the linear elastic
cantilever beam problem are tested, and their numerical solutions are compared
with the exact solutions to illustrate the implementation and convergence of the
ORCM. In Section 7, conclusions are drawn.
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2 Collocation Scheme

Let us assume a scalar problem governed by a partial differential equation:

D(u) = b, in Ω (1)

with boundary conditions

T (u) = t, on Γt (2)

u−uc = 0, on Γu (3)

to be satisfied in a domain Ω with boundary Γ = Γt ∪Γu, where D and T are appro-
priate differential operators, u is the problem unknown function, b and t are external
forces or sources acting over Ω and along Γt , respectively. uc is the assigned value
of u over Γu.

Consider taking some collocation points in Ω, at which Eq. 1 is satisfied, and some
collocation points on Γt , at which both Eq. 1 and Eq.2 are satisfied, as well as some
collocation points on Γu, at which both Eq.1 and Eq.3 are satisfied. Besides the
collocation points over Ω, let us assume other collocation points located at outside
of Ω and call them overrange points (see Fig. 1), at which no satisfaction of any
governing partial differential equation or boundary condition is needed. Therefore,
no over-constrained condition is imposed into the boundary value problem. While
the overrange points can be used in interpolating calculation of boundary points,
so that the unsatisfactory issue of the positivity conditions of boundary points in
collocation methods can be avoided.

 

Figure 1: Overrange points, boundary points and points in domain
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Let us assume that the number of points in domain is Kd, the number of boundary
points is Kb and the number of overrange points is Ko, then the number of unknown
variables is 2(Kd +Kb +Ko) for a 2-D problem. Because the number of equations
of the ORCM is 2(Kd +Kb)+2Kb, by taking the same number of the equations with
that of the unknown variables, we obtain that the number of the overrange points
Ko must be equal to the number of boundary points Kb.

3 The MLS approximation with Kronecker-delta property

In the classical moving least-square (MLS) approximation, the shape functions
have no Kronecker-delta property, so that the essential node condition cannot be
imposed on boundaries. In this paper, a modified MLS approximation is used, its
shape functions have Kronecker-delta property. Therefore, the unsatisfactory issue
of the essential node condition can be avoided in the modified MLS approximation.

Consider a small domain Ωx, the neighborhood of a point x1, which is located in
Ω or on Γ. Over Ωx, u can be approximated by the MLS approximation. The
MLS approximation with quadratic basis is not sensitive to the number of nodes in
a sub-domain [Onate et al. (1996a)]. Derivatives of interpolations using the MLS
approximation show smaller oscillations than those in the partition of unity method,
[Atluri, Kim, Cho (1999)].

Over a number of randomly located nodes {xi} , i = 1, 2, · · · , n, the MLS approx-
imation uh of u can be defined by

uh = pT (x) ααα, ∀x ∈Ωx (4)

where pT (x) = [p1 (x) p2 (x) · · · pm (x)] is a complete monomial basis of order m
which is a function of the space coordinates x = [x y z]T. ααα is a vector of unknown
polynomial coefficients.

ααα =
[
α1 α2 · · · αm

]T (5)

For example, for a 2-D problem,

pT (x) =
[
1 x y x2 xy y2] (6)

this is a quadratic basis, and m=6.

A weighted least-square solution is obtained for ααα from the following system of n
equations in m unknown (n is larger than m):

uh = H ααα (7)
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where

uh =
[
uh

1 uh
2 · · · uh

n
]T (8)

is a vector of the nodal MLS approximation of function u, and

H =


pT (x1)
pT (x2)

...
pT (xn)


n×m

(9)

The classical least-square solution of the above over-constrained system does not
guarantee exact satisfaction of any of the equations of Eq. 7. Non-satisfaction of
the first equation would then mean uh

1 6= pT (x1) ααα , which, in turn, means that the
least-square interpolation at node 1 is not equal to value of the node. Hence, a
different approach to weighted least-squares solution can be adopted: Out of the
n equations of Eq. 7, let the first equation (corresponding to node 1) be satisfied
exactly and the rest in the least-square sense. This is done by using the first equation
to eliminate α1 from the rest of equations:

α1 = uh
1− (α2x1 +α3y1 +α4x2

1 +α5x1y1 +α6y2
1) (10)

Substituting for α1 in Eq. 7, the reduced system of equations can be obtained:

ūh = H̄ ᾱαα (11)

where

ūh =
[
uh

2−uh
1 uh

3−uh
1 · · · uh

n−uh
1

]T (12)

H̄ =


x2− x1 y2− y1 x2

2− x2
1 x2y2− x1y1 y2

2− y2
1

x3− x1 y3− y1 x2
3− x2

1 x3y3− x1y1 y2
3− y2

1
...

...
...

...
...

xn− x1 yn− y1 x2
n− x2

1 xnyn− x1y1 y2
n− y2

1

=


p̄T (x2)
p̄T (x3)

...
p̄T (xn)

 (13)

ᾱαα =
[
α2 α3 · · · αm

]T (14)

The coefficient vector ᾱαα is determined by minimizing a weighted discrete L2 norm,
defined as:

J =
n

∑
i=2

w(xi)
[
p̄T (xi) ᾱ− ūi

]2 =
[
H̄ ᾱαα− ū

]T W
[
H̄ ᾱαα− ū

]
(15)
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where w(x) is the weight function, with w(x)>0 for all nodes in the support of
w(x) (the support is considered to be equal to Ωx in this paper), xi denotes the
value of x at node i, and the matrices W is defined as

W =


w(x2) 0 · · · 0

0 w(x3) · · · 0
· · · · · · · · · · · ·
0 0 · · · w(xn)


(n−1)×(n−1)

(16)

ūi = ûi− û1, i = 2, 3, · · · , n (17)

and

ū = [û2− û1 û3 - û1 · · · ûn− û1]
T (18)

where ûi, i = 1, 2, · · · , n are the fictitious nodal values of the function u.

Minimizing J in Eq. 15 with respect to ᾱαα yields

ᾱαα = A−1 B ū (19)

where

B = H̄T W (20)

A = B H̄ (21)

Substituting Eq. 19 into Eq. 11 gives a relation which may be written as the form
of an interpolation function, as

ūh = H̄ A−1 Bū (22)

Eq. 10 can be rewritten as:

α1 = uh
1− s(x1) ᾱ (23)

where

s(x1) =
[
x1 y1 x1

2 x1y1 y2
1
]

(24)

Eq. 4 can be written as:

uh = α1 + s(x) ᾱ (25)



8 Copyright © 2011 Tech Science Press CMES, vol.73, no.1, pp.1-22, 2011

where

s(x) =
[
x y x2 xy y2

]
(26)

Substituting Eq. 19 and Eq. 23 into Eq. 25, the following equation can be obtained:

uh = uh
1 +q(x) A−1Bū (27)

where

q(x) = s(x) − s(x1) (28)

∵ q(x1) = 0 (29)

∴ uh (x1) = uh
1 (30)

û may be defined as:

û = [û1 û2 · · · ûn]
T (31)

then, from Eq. 27, the following equation may be obtained:

uh = N(x) û (32)

where

N(x)
1×n

=

[
1−

(
q(x)

1×(m - 1)
A−1

(m - 1)×(m−1)
B

(m - 1)×(n−1)
1

(n - 1)×1

)
...

q(x)
1×(m - 1)

A−1

(m - 1)×(m−1)
B

(m - 1)×(n−1)

]
(33)

In Eq. 33, 1 is vector of dimension (n-1) with all entries being equal to unity.

Recall form Eq. 29, using this result in Eq. 33, the Kronecker-delta property of
N(x) may be established:

N(x1)
1×n

=
[
1 0 0 · · · 0

]
(34)

It means that at node 1, the shape function for node 1 takes a value of unity and all
other shape function take zero values. Therefore, Eq. 33 is the shape functions of
the MLS approximation with Kronecker-delta property.
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From Eq. 32 and Eq. 30, the following result can be obtained:

û1 = uh (x1) = uh
1 (35)

In this paper, the weight functions w(x) may use a spline function as follows:

w(x) = 1−6
(

d
r

)2

+8
(

d
r

)3

−3
(

d
r

)4

, 0≤ d ≤ r (36a)

w(x) = 0, d ≥ r (36b)

where d = |x−x1| is the distance from point x to the center node x1, and r is the
radius of Ωx, which is taken as a circle for a 2-D problem and its center is the point
x1.

4 The local coordinate system

As anisotropy of the point distribution in Ωx, matrix A in Eq. 21 becomes ill-
conditioned and the quality of the approximation deteriorates. In order to prevent
such undesirable effect, a local coordinate system ξ , η is chosen with origin at the
node x1 for a 2-D problem, see [Boroomand, Tabatabaei, Onate (2005)],

ξ =
x− x1

Rx
(37a)

η =
y− y1

Ry
(37b)

where Rx and Ry denote maximum distances along x and y measured from the point
x1 to exterior nodes in Ωx. In Eq. 36a, the spline function has now the following
form in terms of the local coordinates:

w(ξξξ ) = 1−6
(

ξ 2 +η2

ρ2

)
+8
(

ξ 2 +η2

ρ2

) 3
2

−3
(

ξ 2 +η2

ρ2

)2

(38)

ρ = 6 is used in this paper and as usual −1≤ ξ ≤ 1, −1≤ η ≤ 1.

The matrix A is not longer dependent on the dimensions of Ωx. The approximate
function is also expressed in terms of the local coordinates as

uh(ξξξ ) = N(ξξξ )û (39)

A−1B in Eq. 33 can be defined as C:

C = A−1B (40)
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Then, from Eq. 33, entries of N(x) for the quadratic basis (m=6) can be written as:

N1 (x) = 1−

[
(x− x1)

n−1

∑
i=1

C1i +(y− y1)
n−1

∑
i=1

C2i+

(
x2− x2

1
) n−1

∑
i=1

C3i +(xy− x1y1)
n−1

∑
i=1

C4i +
(
y2− y2

1
) n−1

∑
i=1

C5i

]
(41)

Ni+1 (x) = (x− x1)C1i +(y− y1)C2i +
(
x2− x2

1
)

C3i

+(xy− x1y1)C4i +
(
y2− y2

1
)

C5i (i = 1, 2, · · · , n−1) (42)

where C ji, ( j = 1, 2, · · · , 5; i = 1, 2, · · · , n−1) are entries of C.

At the point x1, because ξ1 = 0, η1 = 0, then the first-order derivatives of the shape
function with the local coordinates can be obtained from Eqs. 41 and 42:

∂N(ξξξ 1)
∂ξ

=
[
−

n−1
∑

i=1
C1i C11 C12 · · · C1(n−1)

]
(43)

∂N(ξξξ 1)
∂η

=
[
−

n−1
∑

i=1
C2i C21 C22 · · · C2(n−1)

]
(44)

From Eqs. 43 and 44, we may see that formulas of the shape function derivatives
with the local coordinates are very simple, and in fact, it is a merit of the ORCM
using the local coordinates.

5 The positivity conditions

The positivity conditions on the approximation function Ni (x) of Eq. 33 and its
second-order derivatives are stated as [Jin, Li, Aluru (2004)],

Ni (x j)≥ 0 (45)

∇
2Ni (x j)≥ 0, j 6= i (46)

∇
2Ni (xi) < 0 (47)

where Ni (x j) is the approximation function of a point i evaluated at a point j.

Patankar [Patankar (1980)] included the positivity conditions in a series of basic
rules for the construction of finite differences and pointed out that the consequence
of violating the positivity conditions give a physically unrealistic solution. It has
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been shown that the satisfaction of the positivity conditions ensures the conver-
gence of the finite difference method with arbitrary irregular meshes for some class
of elliptic problems [Demkowicz, Karafilt, Liszka (1984)]. It has been shown that
the significance of the positivity conditions in meshless collocation approaches, and
violation of the positivity conditions can significantly result in a large error in the
numerical solution [Jin, Li, Aluru (2004)].

For a point x1 on Γ, if no overrange point is used in its Ωx, the positivity conditions
on the boundary point cannot be satisfied, obviously. But by introducing some
overrange points of Ω in the Ωx, the unsatisfactory issue of the positivity conditions
of the boundary point can be avoided in the ORCM.

6 Numerical examples

6.1 Poisson’s equation

Firstly, Poisson’s equation is analyzed by using the ORCM, and their numerical
solutions are compared with the exact solutions to illustrate the implementation
and convergence of the present ORCM.

For the purpose of error estimation and convergence studies, the Sobolev norm
‖u‖0, and the norm of the first-order derivative vector of u, ‖q‖0 are calculated.
These norms are defined as

‖u‖0 =

∫
Ω

u2dΩ

1/2

(48)

‖q‖0 =

∫
Ω

qT ·q dΩ

1/2

(49)

where

q =
[
∂u/∂x ∂u/∂y

]T =
[
qx qy

]T (50)

The relative errors for ‖u‖0 and ‖q‖0 are defined as

R0 =
‖unum−uexa‖0
‖uexa‖0

(51)

Rq =
‖qnum−qexa‖0
‖qexa‖0

(52)
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The results from the ORCM are studied for the Poisson’s equation with a given
source function p = (x+ y)/10 in the 1×1 domain, for which the exact solution is
taken to be

u =− 1
12
(
x3 + y3)+ 3

10
(
x2y+ xy2) (53)

A Dirichlet problem is solved, for which the essential boundary condition is im-
posed on all sides, and two mixed problem, the first mixed problem ( the essential
boundary condition is imposed on left and right sides and the flux boundary con-
dition is prescribed on top and bottom sides of the domain ) and the second mixed
problem ( the essential boundary condition is imposed on top and bottom sides and
the flux boundary condition is prescribed on left and right sides of the domain ), are
solved, too.

Regular nodal models of 89(9×9+8) (Kd = 5×5, Kb = Ko = 32) nodes, 129(11×
11+8) (Kd = 7×7, Kb = Ko = 40) nodes and 177(13×13+8) (Kd = 9×9, Kb =
Ko = 48) nodes are used to study the convergence with nodal model refinement of
the ORCM. Overrange points of one layer, which are located at outside of the four
sides of the domain, are used. To meet the condition of Kb = Ko, 8 nodes are added
to the boundary points, which are located on the boundary near the four corners of
the domain, for all the three nodal models.

The results of relative errors and convergence are shown in Fig. 2 for the first mixed
problem. This figure shows that the ORCM works quite well.

Figs. 3, 4 and 5 show values of u of Poisson’s equation at x=0.5 by regular nodal
model of 89 nodes, for Dirichlet problem, the first mixed problem and the second
mixed problem, respectively. Figs. 6, 7 and 8 show values of ∂u/∂x of Poisson’
equation at x=0.5 by regular nodal model of 89 nodes, for Dirichlet problem, the
first mixed problem and the second mixed problem, respectively. Figs. 9, 10 and
11 show values of ∂u/∂y of Poisson’ equation at x=0.5 by regular nodal model
of 89 nodes, for Dirichlet problem, the first mixed problem and the second mixed
problem, respectively. It can be seen that some accurate results for the unknown
variable and its derivatives are obtained.

One irregular nodal model of 89 (Kd = 25, Kb = Ko = 32) nodes is used, too. Fig.
12 shows distribution of the nodes in domain and the boundary nodes of the irreg-
ular nodal model.

Figs. 13, 14 and 15 show values of u of Poisson’s equation at x=0.5 by irregular
nodal model of 89 nodes, for Dirichlet problem, the first mixed problem and the
second mixed problem, respectively. It can be seen that some accurate results for
the unknown variable and its derivatives are obtained by using the irregular nodal
model, too.
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Figure 2: Relative errors and conver-
gences for the first mixed problem of
Poisson’s equation (n is number of the
nodes)

 

Figure 3: Values of u at x=0.5 by regu-
lar nodal model of 89 nodes, for Dirich-
let problem of Poisson’s equation

 

Figure 4: Values of u at x=0.5 by regu-
lar nodal model of 89 nodes, for the first
mixed problem of Poisson’s equation

 

Figure 5: Values of u at x=0.5 by regu-
lar nodal model of 89 nodes, for the sec-
ond mixed problem of Poisson’s equa-
tion

6.2 The linear elastic cantilever beam problem

Secondly, the linear elastic cantilever beam problem is analyzed by using the ORCM,
and their numerical solutions are compared with the exact solutions to illustrate the
implementation and convergence of the ORCM.

The displacement and energy norms, ‖u‖ and ‖ε‖ are calculated. These norms are
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defined as

‖u‖=

∫
Ω

uT ·u dΩ

1/2

(54)

 

Figure 6: Values of ∂u/∂x at x=0.5 by
regular nodal model of 89 nodes, for
Dirichlet problem of Poisson’s equation

 

Figure 7: Values of ∂u/∂x at x=0.5 by
regular nodal model of 89 nodes, for the
first mixed problem of Poisson’s equa-
tion

and

‖ε‖=

1
2

∫
Ω

σ
T · ε dΩ

1/2

(55)

whereu =
[
u v

]T is the displacement vector, and ε =
[
ε11 ε22 γ12

]T and σ =[
σ11 σ22 σ12

]T are the strain vector and stress vector, respectively.

The relative errors for ‖u‖ and ‖ε‖ are defined as

Ru =
‖unum−uexa‖
‖uexa‖ (56)

Re =
‖εnum− εexa‖
‖εexa‖ (57)

The results from the ORCM are studied for the linear elastic cantilever beam prob-
lem (see Fig. 16), for which the following exact solution is given as

u =− P
6EI

(
y− D

2

)
[3x(2L− x)+(2+ν)y(y−D)] (58a)
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Figure 7:  Values of xu ∂∂  at x=0.5 by regular nodal model 

of 89 nodes, for the first mixed problem of Poisson’s 
equation 
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Ω
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where [ ]Tvu=u  is the displacement vector, and 

[ ]T122211 γεε=  and [ ]T122211 σσσ=  are the 

strain vector and stress vector, respectively. 

The relative errors for u  and  are defined as 

 

 

Figure 7:  Values of xu ∂∂  at x=0.5 by regular nodal model 

of 89 nodes, for the first mixed problem of Poisson’s 
equation 

 

 

Figure 8:  Values of xu ∂∂  at x=0.5 by regular nodal model 

of 89 nodes, for the second mixed problem of Poisson’s 
equation 

 

exa

exanum

uR
u

uu −
=                                                          (56) 

exa

exanum

eR
−

=                                                         (57) 

The results from the ORCM are studied for the linear elastic 
cantilever beam problem (see Fig. 16), for which the 
following exact solution is given as 

 

Figure 9:  Values of yu ∂∂  at x=0.5 by regular nodal model 

of 89 nodes, for Dirichlet problem of Poisson’s equation 

 

Figure 8: Values of ∂u/∂x at x=0.5 by regular nodal model of 89 nodes, for the
second mixed problem of Poisson’s equation

 

Figure 9: Values of ∂u/∂y at x=0.5 by
regular nodal model of 89 nodes, for
Dirichlet problem of Poisson’s equation

 

Figure 10: Values of ∂u/∂y at x=0.5 by
regular nodal model of 89 nodes, for the
first mixed problem of Poisson’s equa-
tion
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v =
P

6EI

[
x2 (3L− x)+3ν (L− x)

(
y− D

2

)2

+
4+5ν

4
D2x
]

(58b)

I =
D3

12
(59)

 

Figure 11: Values of ∂u/∂y at x=0.5
by regular nodal model of 89 nodes, for
the second mixed problem of Poisson’s
equation

 

Figure 12: Irregularly distributed nodes
in domain and boundary nodes used in
Poisson’s equation

The stress corresponding to Eqs. 58a and 58b are

σ11 =−P
I

(L− x)
(

y− D
2

)
(60a)

σ22 = 0 (60b)

σ12 =−Py
2I

(y−D) (60c)

The problem is solved for the plane stress case with P=1, E=1, D=10, L=40. ν =
0.25 is used. Boundary conditions of nodes on the left and the right boundaries
(including the corner nodes) are chosen as:

u = uexa (61a)

v = vexa (61b)

Boundary conditions of nodes on the top and the bottom boundaries are chosen as:

σ12 = 0 (62a)
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Figure 13: Values of u at x=0.5 by ir-
regular nodal model of 89 nodes, for
Dirichlet problem of Poisson’s equation

 

Figure 14: Values of u at x=0.5 by irreg-
ular nodal model of 89 nodes, for the
first mixed problem of Poisson’s equa-
tion

σ22 = 0 (62b)

Regular nodal models of 53(9×5+8)(Kd = 5×1, Kb = Ko = 24)nodes, 85(11×
7 + 8) (Kd = 7×3, Kb = Ko = 32) nodes and 125(13×9+8) (Kd = 9× 5, Kb =
Ko = 40) nodes are used to study the convergence with nodal model refinement
of the ORCM. Overrange points of one layer, which are located at outsides of
boundary of the elastic cantilever beam, are used. To meet the condition of Kb =
Ko, 8 nodes are added to the boundary points, which are located on the boundary
near the four corners of the domain, for all the three nodal models.

The results of relative errors and convergence are shown in Fig. 17 for the linear
elastic cantilever beam problem. This figure shows that the ORCM works quite
well.

Fig. 18 shows values of u of the linear elastic cantilever beam problem at x=0.5L
by regular nodal model of 125 nodes. Fig.19 shows values of v of the linear elastic
cantilever beam problem at y=0.5D by regular nodal model of 125 nodes. Figs. 20
and 21 show values of σ11and σ12at x=0.5L by regular nodal model of 125 nodes,
respectively. Figs. 22 and 23 show distributions of numerical displacement vectors
(by the ORCM with regular nodal model of 125 nodes) and exact displacement
vectors of the linear elastic cantilever beam problem, respectively. It can be seen
that some accurate results for the displacements and the stresses are obtained by
using the ORCM.
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Figure 15: Values of u at x=0.5 by ir-
regular nodal model of 89 nodes, for
the second mixed problem of Poisson’s
equation

D

L 

y P

x

 

Figure 16: The linear elastic cantilever
beam with a parabolic-shear end load

 

Figure 17: Relative errors and convergences for the linear elastic cantilever beam
problem (n is number of the nodes)

7 Conclusions

In this paper, the ORCM is proposed. By introducing some collocation points,
which are located at outside of domain of the analyzed body, unsatisfactory issue of
the positivity conditions of boundary points in collocation methods can be avoided.
Convergence studies in the numerical examples show that the ORCM possesses
good convergence for both the unknown variables and their derivatives. Poisson’s
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Figure 18: Values of u at x=0.5L by reg-
ular nodal model of 125 nodes, for the
linear elastic cantilever beam problem

 

Figure 19: Values of v at y=0.5D by
regular nodal model of 125 nodes, for
the linear elastic cantilever beam prob-
lem

 

Figure 20: Values of σ11 at x=0.5L by
regular nodal model of 125 nodes, for
the linear elastic cantilever beam prob-
lem

 

Figure 21: Values of σ12 at x=0.5L by
regular nodal model of 125 nodes, for
the linear elastic cantilever beam prob-
lem

problem and the linear elastic cantilever beam problem are analyzed by using the
ORCM, and quite accurate numerical results have been obtained. The ORCM does
not demand any specific kind of partial differential equations, therefore it shows
promise of wide engineering applications of the ORCM. The directions of future
investigations on the ORCM will be solving problems of nonlinear partial differen-
tial equations and metal forming.
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Figure 22: Numerical displacement
vectors of the linear elastic cantilever
beam problem by ORCM with regular
nodal model of 125 nodes

 

Figure 23: Exact displacement vec-
tors of the linear elastic cantilever beam
problem at the same points with Fig. 22
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