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Abstract: This paper presents a new control-volume discretisation method, based
on Cartesian grids and integrated-radial-basis-function elements (IRBFEs), for the
solution of second-order elliptic problems in one and two dimensions. The gov-
erning equation is discretised by means of the control-volume formulation and the
division of the problem domain into non-overlapping control volumes is based on
a Cartesian grid. Salient features of the present method include (i) an element
is defined by two adjacent nodes on a grid line, (ii) the IRBF approximations on
each element are constructed using only two RBF centres (a smallest RBF set)
associated with the two nodes of the element and (iii) the IRBFE solution is C2-
continuous across the interface between two adjacent elements. The first feature
guarantees consistency of the flux at control-volume faces. The second feature
helps represent curved profiles between 2 adjacent nodes and leads to a sparse and
banded system matrix, facilitating the employment of a large number of nodes. The
third feature enhances the smoothness of element-based solutions, allowing a bet-
ter estimation for the physical quantities involving derivatives. Numerical results
indicate that (i) the proposed method can work with a wide range of the shape-
parameter/RBF-width and (ii) the proposed technique yields more accurate results
and faster convergence, especially for the approximation of derivatives, than the
standard control-volume technique.
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1 Introduction

Traditional techniques used for solving second-order elliptic differential equations
include overlapping finite difference methods (FDMs), non-overlapping finite el-
ement methods (FEMs), boundary element methods (BEMs) and control volume
methods (CVMs). These methods typically utilise polynomials as an interpolator.
To avoid notorious polynomial snaking phenomena, low-order polynomials such
as linear variations are widely used, usually leading to errors of order h2, where
h is the mesh spacing. For element-based solutions, only the approximating func-
tion (not its partial derivatives) is continuous across elements (i.e. C0 continuity).
The overall error can be reduced by using progressively denser meshes. A mesh
needs be sufficiently fine to mitigate the effects of discontinuity of partial deriva-
tives. It is thus desirable to have discretisation methods that can produce a solution
of higher-order continuity across elements.

Radial basis functions (RBFs) have successfully been used for the approximation
of scattered data over the last several decades. They have also emerged as an attrac-
tive scheme for the numerical solution of ordinary and partial differential equations
(ODEs and PDEs) (e.g. Fasshauer (2007) and references therein). Theoretically,
some RBF-based methods can be as competitive as spectral methods; the two types
of methods can exhibit spectral accuracy. Unlike pseudo-spectral techniques, they
do not require the use of tensor products in constructing the approximations in
two dimensions or more. The RBF approximations usually rely on a set of dis-
tinct points rather than a set of small elements. When this characteristic is com-
bined with the point-collocation formulation, the resultant discretisation methods
are truly meshless (e.g. Kansa (1990)). RBF-based collocation methods can be
applied to differential problems defined on irregular domains without added dif-
ficulties. Apart from point-collocation, RBFs have also been employed as trial
functions in other formulations such as the Galerkin, subregion collocation and in-
verse statements, resulting in enhanced rates of convergence (O(hα) with α > 2)
of these approaches. Works in this research trend include Atluri, Han, and Rajen-
dran (2004); Sellountos and Sequeira (2008); Orsini, Power, and Morvan (2008);
Mohammadi (2008).

In a pivotal paper on function approximation by Franke (1982), it was pointed out
that the multiquadric (MQ) RBF scheme yields the most accurate results. The
present work employs the MQ whose form is defined by

gi(x) =
√

(x− ci)2 +a2
i , (1)

where ci and ai are the centre and the shape parameter of the ith MQ, respectively.
A set of interpolation points is taken to be a set of RBF centres. In Mai-Duy and
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Tran-Cong (2003), the value of the shape parameter was simply chosen as ai = βhi

with β being a given positive number and hi the distance between ci and its nearest
neighbour. When the direct way of computing the interpolants is used, RBF-based
methods such as those using MQs are known to suffer from the so-called uncer-
tainty principle. As the value of β increases, the error reduces while the matrix
condition number increases undesirably. In practice, one desires to use large β s up
to a value at which the system matrix is still in good condition. RBF-based methods
can be classified into two categories: global and local. Global methods use every
RBF on the whole domain to construct the approximations at a point, resulting in a
fully populated system matrix (c.f. Kansa (1990); Sarler (2005); Zerroukat, Power,
and Chen (1998); Mai-Duy and Tran-Cong (2001)). When the number of RBF
centres and/or the value of β increase, the condition of RBF matrices deteriorates
rapidly. Such drawbacks typically render global methods unsuitable for complex
problems, where many points are required for a proper simulation. In addition,
β to be used is confined to small values. For local methods (e.g. Tolstykh and
Shirobokov (2003); Shu, Ding, and Yeo (2003); Lee, Liu, and Fan (2003); Šarler
and Vertnik (2006); Divo and Kassab (2007); Sanyasiraju and Chandhini (2008);
Mai-Duy and Tran-Cong (2009)), only a few RBFs are activated for the approx-
imations at a point. The resultant system matrix is sparse and banded, which is
suitable for handling large-scale problems. However, trade-offs include the loss
of spectral accuracy and high-order continuity of the approximate solution. Var-
ious schemes have been proposed to enhance the performance of local methods.
Using large values of β appears to be an economical and effective way (Cheng,
Golberg, Kansa, and Zammito (2003)). In the case of non-overlapping domain-
decompositions, where a large problem is replaced with a set of sub-problems of
much smaller sizes, the computed solution is only a C1 function across the subdo-
main interfaces (Li and Hon (2004)). It is noted that errors of RBF solutions are
larger near interfaces/boundaries (Fedoseyev, Friedman, and Kansa (2002)) and
with Neumann boundary conditions than with Dirichlet boundary conditions (Li-
bre, Emdadi, Kansa, Rahimian, and Shekarchi (2008)).

In a conventional RBF scheme (Kansa (1990)), the original function is decomposed
into RBFs and its derivatives are then obtained through differentiation. Some RBF
schemes such as those based on MQs are known to possess spectral accuracy with
errors in the O(λ χ), where 0 < λ < 1. Through numerical experiment, for a certain
range of a, Cheng, Golberg, Kansa, and Zammito (2003) established the error esti-
mate as O(λ

√
a/h). In the approximation of kth derivative, Madych (1992) showed

that the convergence rate is reduced to O(λ χ−k). To avoid such reduction of con-
vergence rate caused by differentiation in a conventional scheme, Mai-Duy and
Tran-Cong (2003) proposed an indirect or integral approach. RBFs were used to
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represent highest order derivatives and such RBF-based approximants are then in-
tegrated to yield expressions for lower-order derivatives and eventually the function
itself. This approach is less sensitive to noise than the usual differential approach
and appears to be more suitable for applications involving derivatives such as the
numerical solution of ODEs and PDEs. Recently, towards the analysis of large-
scale problems, a numerical scheme, based on one-dimensional integrated RBFs
(1D-IRBFs), point collocation and Cartesian grids, was reported in Mai-Duy and
Tran-Cong (2007). In this scheme, the 1D-IRBF approximations at a grid point x
only involve nodal points that lie on grid lines crossing at x rather than the whole
set of nodal points, leading to a considerable saving of computing time and mem-
ory space over the original IRBF schemes (e.g. Mai-Duy, Le-Cao, and Tran-Cong
(2008); Le-Cao, Mai-Duy, and Tran-Cong (2009); Ho-Minh, Mai-Duy, and Tran-
Cong (2009); Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2011)).

In the present work, the problem domain, which can be rectangular or non-rectangular,
is represented by a Cartesian grid. Each grid node is associated with a control vol-
ume (CV) of rectangular shape. To estimate the values of the flux at the middle
points on the interfaces, the approximations for the field variable and its derivatives
are constructed using IRBFs over elements defined by two adjacent grid nodes.
Unlike our previous work, e.g. Mai-Duy and Tran-Cong (2010), 1D-IRBFs are
implemented here with two RBF centres only and the approximations are non-
overlapping. Furthermore, the constants of integration are exploited to impose con-
tinuity of second-order derivatives across two adjacent elements. It can be seen that
the use of two RBFs (a smallest RBF set) allows a wide range of β to be used and
leads to sparse system matrices. To enhance accuracy, one can thus increase the
value of β and/or the number of RBFs. Continuity of the approximate solution,
its first and second-order derivatives across two adjacent IRBF elements (or sim-
ply across elements for brevity in the remaining discussion) is guaranteed in the
proposed technique.

An outline of the paper is as follows. In Section 2, a brief review of IRBFs including
1D-IRBFs is given. In Section 3, the proposed C2-CV technique based on 2-node
IRBFEs for second-order elliptic differential problems is presented. In Section 4,
the proposed technique is validated through function approximation and solution
of ODEs and PDEs. Section 5 concludes the paper.

2 Brief review of integrated RBFs

The indirect/integral RBF approach consists in decomposing highest-order deriva-
tives under consideration into RBFs and then integrating these RBFs to yield ex-
pressions for lower-order derivatives and finally the original function itself (Mai-
Duy and Tran-Cong (2003)). In the case of second-order PDEs in two dimensions,
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integrated MQ expressions are given by

∂ 2φ

∂η2 (x) =
n

∑
i=1

wi

√
(x− ci)2 +a2

i =
n

∑
i=1

wiI
(2)
i (x), x ∈Ω, (2)

∂φ

∂η
(x) =

n

∑
i=1

wiI
(1)
i (x)+C1(θ), (3)

φ(x) =
n

∑
i=1

wiI
(0)
i (x)+C1(θ)η +C2(θ), (4)

where Ω is the domain of interest, φ a function, η a component of x, n the num-
ber of RBFs, {wi}n

i=1 the set of RBF weights, C1(θ) and C2(θ) the constants of
integration which are functions of θ (θ 6= η), I(2)

i (x) conveniently denotes the
MQ, I(1)

i (x) =
∫

I(2)
i (x)dη , and I(0)

i (x) =
∫

I(1)
i (x)dη . Explicit forms of I(1)

i (x)
and I(0)

i (x) can be found in Mai-Duy and Tran-Cong (2001).

When the analysis domain Ω is a line segment, expressions (2), (3) and (4) reduce
to

d2φ

dη2 (η) =
n

∑
i=1

wi

√
(η− ci)2 +a2

i =
n

∑
i=1

wiI
(2)
i (η), (5)

dφ

dη
(η) =

n

∑
i=1

wiI
(1)
i (η)+C1, (6)

φ(η) =
n

∑
i=1

wiI
(0)
i (η)+C1η +C2, (7)

where C1 and C2 are simply constant values.

Expressions (5), (6) and (7), called 1D-IRBFs, can also be used in conjunction
with Cartesian grids for solving 2D problems. Advantages of 1D-IRBFs over 2D-
IRBFs are that they possess some “local” properties and are constructed with a
much lower cost. However, numerical experiments show that 1D-IRBFs still cannot
work with large values of β . In the present work, 1D-IRBF-based schemes are
further localised.

3 Proposed C2-continuous control-volume technique

The problem domain is embedded in a Cartesian grid. In the case of non-rectangular
domains, we remove grid points outside the problem domain. Grid points inside the
problem domain are taken to be interior nodes, while boundary nodes are defined
as the intersection of the grid lines and the boundaries. Generally, each nodal point
is associated with a control volume, over which the differential equation is directly
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integrated. For illustrative purposes, the proposed technique is presented for the
following 2D PDE

∂ 2φ

∂x2 +
∂ 2φ

∂y2 = b(x,y), (8)

where b(x,y) is some prescribed function. Following the work of Patankar (1980),
(8) is transformed into a set of discretised equations. A distinguishing feature of
the proposed technique is that the approximations used for the flux estimation at the
interfaces are based on 1D-IRBFs rather than linear polynomials. In our previous
work Mai-Duy and Tran-Cong (2010), 1D-IRBFs were implemented using every
node on a grid line. In contrast, the present 1D-IRBFs are constructed locally
over straight-line segments between two adjacent nodal points only, called 2-node
IRBF elements (IRBFEs). There are two types of elements, namely interior and
semi-interior IRBFEs. An interior element is formed using two adjacent interior
nodes while a semi-interior element is generated by an interior node and a boundary
node. In the remainder of this section, 1D-IRBFs are first utilised to represent
the variation of the field variable and its derivatives on interior and semi-interior
elements, and IRBFEs are then incorporated into the CV formulation. It will be
shown that the approximate solution is a C2 function across IRBFEs.

η

φ1 φ2

∂φ1
∂η

∂φ2
∂η

Figure 1: Schematic outline for 2-node IRBFE.

3.1 Interior elements

1D-IRBF expressions for interior elements are of similar forms. Consider an in-
terior element, η ∈ [η1,η2], and its two nodes are locally named as 1 and 2. Let
φ(η) be a function and φ1, ∂φ1/∂η , φ2 and ∂φ2/∂η be the values of φ and dφ/dη

at the two nodes, respectively (Fig. 1). The 2-node IRBFE scheme approximates
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φ(η) using two MQs whose centres are located at η1 and η2. Expressions (5), (6)
and (7) become

∂ 2φ

∂η2 (η) = w1

√
(η− c1)2 +a2

1 +w2

√
(η− c2)2 +a2

2 = w1I(2)
1 (η)+w2I(2)

2 (η),

(9)
∂φ

∂η
(η) = w1I(1)

1 (η)+w2I(1)
2 (η)+C1, (10)

φ(η) = w1I(0)
1 (η)+w2I(0)

2 (η)+C1η +C2, (11)

where I(1)
i (η) =

∫
I(2)
i (η)dη , I(0)

i (η) =
∫

I(1)
i (η)dη with i = (1,2), and C1 and C2

are the constants of integration. By collocating (11) and (10) at η1 and η2, the
relation between the physical space and the RBF coefficient space is obtained




φ1
φ2
∂φ1
∂η

∂φ2
∂η




︸ ︷︷ ︸
ψ̂

=




I(0)
1 (η1) I(0)

2 (η1) η1 1
I(0)
1 (η2) I(0)

2 (η2) η2 1
I(1)
1 (η1) I(1)

2 (η1) 1 0
I(1)
1 (η2) I(1)

2 (η2) 1 0




︸ ︷︷ ︸
I




w1
w2
C1
C2




︸ ︷︷ ︸
ŵ

, (12)

where ψ̂ is the nodal-value vector, I the conversion matrix, and ŵ the coefficient
vector. It is noted that not only the nodal values of φ but also of ∂φ/∂η are incor-
porated into the conversion system and this imposition is done in an exact manner
owing to the presence of integration constants. Solving (12) yields

ŵ = I −1
ψ̂. (13)

Substitution of (13) into (11), (10) and (9) leads to

φ(η) =
[
I(0)
1 (η), I(0)

2 (η),η ,1
]
I −1

ψ̂, (14)

∂φ

∂η
(η) =

[
I(1)
1 (η), I(1)

2 (η),1,0
]
I −1

ψ̂, (15)

∂ 2φ

∂η2 (η) =
[
I(2)
1 (η), I(2)

2 (η),0,0
]
I −1

ψ̂, (16)

which allows one to express the values of φ and ∂φ/∂η at any point η in [η1,η2] in
terms of four nodal unknowns, i.e. the values of the field variable and its first-order
derivatives at the two extremes (also grid points) of the element.
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3.2 Semi-interior elements

As mentioned earlier, a semi-interior element is defined by two nodes: an inte-
rior node and a boundary node. The subscripts 1 and 2 are now replaced with b
(b represents a boundary node) and g (g an interior grid node), respectively. Ex-
perience shows that boundary treatments strongly affect the overall accuracy of a
numerical solution. Thus several semi-interior elements for the Dirichlet-type and
Neumann-type boundary conditions are proposed and investigated. Their construc-
tion processes are similar to that for interior elements, and therefore only the main
differences are presented in the following sections.

3.2.1 Dirichlet boundary conditions

At ηb, the value of φ is given. We propose three types of semi-interior elements.
The first one can work with problems with irregular geometries while the last two
are limited to the case of 1D problems and 2D problems defined on rectangular do-
mains. For 1D and rectangular domain cases, a boundary node is also a grid node
and one can express the governing equation at that node in terms of one indepen-
dent variable only, i.e. either η ≡ x or η ≡ y. The last two types of semi-interior
elements will take into account information on the governing equation at ηb.

Element IRBFE-D1: At η = ηb, this element uses information on φ only. The
conversion system (12) reduces to



φb
φg
∂φg
∂η


=




I(0)
b (ηb) I(0)

g (ηb) ηb 1
I(0)
b (ηg) I(0)

g (ηg) ηg 1
I(1)
b (ηg) I(1)

g (ηg) 1 0







wb
wg

C1
C2


 . (17)

It can be seen that the interpolation matrix for element IRBFE-D1 is under-determined
and its inverse can be obtained using the SVD technique (pseudo-inversion).

Element IRBFE-D2: At η = ηb, this element uses information on φ and the gov-
erning equation, which leads to the conversion system



φb
φg

∂ 2φb
∂η2

∂φg
∂η


=




I(0)
b (ηb) I(0)

g (ηb) ηb 1
I(0)
b (ηg) I(0)

g (ηg) ηg 1
I(2)
b (ηb) I(2)

g (ηb) 0 0
I(1)
b (ηg) I(1)

g (ηg) 1 0







wb
wg

C1
C2


 . (18)

In (18), ∂ 2φb/∂η2 is a known value, obtained from the governing equation (8).
For example, if η represents x, one has ∂ 2φb/∂x2 = b(x,y)− ∂ 2φb/∂y2 in which
∂ 2φb/∂y2 is easily calculated from the given boundary condition φ on the vertical
line x = xb.
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Element IRBFE-D3: At η = ηb, this element uses information on φ and ∂φ/∂η ,
resulting in the following system




φb
φg
∂φb
∂η

∂φg
∂η


=




I(0)
b (ηb) I(0)

g (ηb) ηb 1
I(0)
b (ηg) I(0)

g (ηg) ηg 1
I(1)
b (ηb) I(1)

g (ηb) 1 0
I(1)
b (ηg) I(1)

g (ηg) 1 0







wb
wg

C1
C2


 , (19)

which has the same form as the interior element.

3.2.2 Neumann boundary conditions

In the context of Cartesian-grid-based methods, the implementation of a Neumann
boundary condition still presents a great challenge. Special treatments, e.g. a
boundary node does lie on a grid point, are required. Here, we restrict our attention
to rectangular domains. At ηb, the value of ∂φ/∂η is given. In the following, we
propose two types of semi-interior elements.

Element IRBFE-N1: At η = ηb, this element uses information on ∂φ/∂η and
∂ 2φ/∂η2. The resultant conversion system is



∂φb
∂η

φg
∂ 2φb
∂η2

∂φg
∂η




=




I(1)
b (ηb) I(1)

g (ηb) 1 0
I(0)
b (ηg) I(0)

g (ηg) ηg 1
I(2)
b (ηb) I(2)

g (ηb) 0 0
I(1)
b (ηg) I(1)

g (ηg) 1 0







wb
wg

C1
C2


 , (20)

Element IRBFE-N2: At η = ηb, this element uses information on φ and ∂φ/∂η .
The corresponding conversion system is exactly the same as that of IRBFE-D3.

It should be pointed out that all nodal values at η = ηb in IRBFE-D1 and IRBFE-
D2 are given, while there is one nodal unknown at η = ηb in IRBFE-D3, IRBFE-
N1 and IRBFE-N2. For the latter cases, one extra equation is needed and how to
generate this equation will be discussed later. Tab. 1 provides a list of semi-interior
elements and their characteristics. Owing to the facts that point collocation is used
and the RBF conversion matrix is not over-determined, all boundary values here
are imposed in an exact manner.

3.3 Incorporation of IRBFEs into the control-volume formulation

Assuming that a Cartesian-grid represents the problem domain Ω. In a control-
volume approach, the domain is subdivided into a set of control volumes in such
a way that there is one control volume surrounding each grid point without gaps
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Table 1: List of semi-interior elements and their characteristics.

Boundary condition Element Nodal values at a boundary point Unknowns

Dirichlet IRBFE-D1 φb None
IRBFE-D2 φb and ∂ 2φb/∂η2 None
IRBFE-D3 φb and ∂φb/∂η ∂φb/∂η

Neumann IRBFE-N1 ∂φb/∂η and ∂ 2φb/∂η2 ∂ 2φb/∂η2

IRBFE-N2 φb and ∂φb/∂η φb

or overlapped volumes between adjacent elements. A typical control volume asso-
ciated with a grid point P, denoted by ΩP, is shown in Fig. 2, where E,W,N and
S are the neighbouring points of P on the horizontal and vertical grid lines. The
governing equation (8) is discretised by means of subregion collocation and this
process is conducted in a similar fashion for all interior grid points of the problem
domain.

By directly integrating (8) over ΩP, the subregion-collocation equation is obtained
∫

ΩP

(
∂ 2φ

∂x2 +
∂ 2φ

∂y2 −b(x,y)
)

dΩP = 0. (21)

Applying the Gauss divergence theorem to (21) results in
∫

ΓP

(
∂φ

∂x
dy− ∂φ

∂y
dx
)
−
∫

ΩP

b(x,y)dΩP = 0, (22)

where ΓP denotes the faces of ΩP. It is noted that partial derivatives of φ in (22)
are of first order only and no approximation is made at this stage. Following the
work of Patankar (1980), (22) reduces to
[(

∂φ

∂x

)

e
−
(

∂φ

∂x

)

w

]
∆y+

[(
∂φ

∂y

)

n
−
(

∂φ

∂y

)

s

]
∆x−b(xP,yP)AP = 0, (23)

where AP is the area of ΩP and the subscripts e,w,n and s are used to indicate that
the flux is estimated at the intersections of the grid lines with the east, west, north
and south faces of the control volume, respectively (Fig. 2).

In the presently proposed technique, 2-node IRBFEs, which are defined over line
segments between P and its neighbouring grid points (E,W,N and S), are incor-
porated into (23) to represent the field variable φ and its derivatives. There are 4
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x

y

ΓP ΩP

N

S

W EP

n

s

ew

Figure 2: Schematic outline for a control volume in 2D.

IRBFEs associated with a control volume. Assuming that PE and WP are interior
elements and making use of (15), the values of the flux at the faces x = xe and
x = xw are computed as

(
∂φ

∂x

)

e
=
[
I(1)
1 (xe), I

(1)
2 (xe),1,0

]
I −1

ψ̂ =
[
I(1)
1 (xe), I

(1)
2 (xe),1,0

]
I −1




φP

φE
∂φP
∂x

∂φE
∂x




with η1 ≡ xP and η2 ≡ xE , (24)

(
∂φ

∂x

)

w
=
[
I(1)
1 (xw), I(1)

2 (xw),1,0
]
I −1

ψ̂ =
[
I(1)
1 (xw), I(1)

2 (xw),1,0
]
I −1




φW

φP
∂φW
∂x

∂φP
∂x




with η1 ≡ xW and η2 ≡ xP, (25)

where I(1)
1 (x), I(1)

2 (x) and I −1 are defined in (9)-(13). Vector ψ̂ may change if PE
and WP are semi-interior elements. For example, one has
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ψ̂ = (φW ,φP,∂φP/∂x)T if WP is a D1 element,
ψ̂ =

(
φW ,∂ 2φW /∂x2,φP,∂φP/∂x

)T if WP is a D2 element,
ψ̂ = (φW ,∂φW /∂x,φP,∂φP/∂x)T if WP is a D3 element,
ψ̂ =

(
∂φW /∂x,∂ 2φW /∂x2,φP,∂φP/∂x

)T if WP is a N1 element,
ψ̂ = (φW ,∂φW /∂x,φP,∂φP/∂x)T if WP is a N2 element.

Expressions for the flux at the faces y = yn and y = ys are of similar forms.

3.4 Inter-element C2 continuity

It can be seen from IRBFE expressions for computing the flux at the faces (e.g. (24)
and (25)), there are three unknowns, namely φ , ∂φ/∂x and ∂φ/∂y, at a grid node P.
Unlike conventional CVMs, the nodal values of ∂φ/∂x and ∂φ/∂y at P here con-
stitute part of the nodal unknown vector. One thus needs to generate three indepen-
dent equations. The first equation is obtained by conducting subregion-collocation
of (8) at P, i.e. (23). The other two equations can be formed by enforcing the local
continuity of ∂ 2φ/∂x2 and ∂ 2φ/∂y2 across the elements at P

(
∂ 2φP

∂x2

)

L
=
(

∂ 2φP

∂x2

)

R
, (26)

(
∂ 2φP

∂y2

)

B
=
(

∂ 2φP

∂y2

)

T
, (27)

where (.)L indicates that the computation of (.) is based on the element to the left
of P, i.e. element WP, and similarly subscripts R,B,T denote the right (PE), bottom
(SP) and top (PN) elements.

Substitution of (16) into (26) and (27) yields
([

I(2)
1 (η2), I

(2)
2 (η2),0,0

]
I −1

ψ̂

)
L

=
([

I(2)
1 (η1), I

(2)
2 (η1),0,0

]
I −1

ψ̂

)
R
, (28)

where η represents x and η2 ≡ η1 ≡ xP, and
([

I(2)
1 (η2), I

(2)
2 (η2),0,0

]
I −1

ψ̂

)
B

=
([

I(2)
1 (η1), I

(2)
2 (η1),0,0

]
I −1

ψ̂

)
T
, (29)

where η represents y and η2 ≡ η1 ≡ yP. The conditions (26)-(27) or (28)-(29)
guarantee that the solution φ across IRBFEs is a C2 function.

As discussed earlier, for IRBFE-D3, IRBFE-N1 and IRBFE-N2 elements, there is
one unknown at a boundary node and one more extra equation needs be formed.
This equation can be generated by integrating (8) over a half control-volume asso-
ciated with that boundary node (Patankar (1980)).
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Collection of the discretised equations at the appropriate nodal points and the con-
tinuity equations at the interior grid points leads to a square system of algebraic
equations that is sparse and banded. Two-point line elements are well suited to
discretisation methods based on Cartesian grids.

4 Numerical results

IRBFEs are now validated through function approximation and solution of boundary-
value problems governed by ODEs and PDEs. For all numerical examples pre-
sented in this study, the MQ width a is simply chosen proportionally to the element
length h by a factor β . The value of β is considered in a wide range from 1 to
85 to study its influence on the accuracy. In the case of non-rectangular domains,
there may be some nodes that are too close to the boundary. If an interior node falls
within a distance of h/2 to the boundary, such a node is removed from the set of
nodal points.

The solution accuracy of an approximation scheme is measured by means of the
discrete relative L2 errors for the field variable and its first-order partial derivatives

Ne(φ) =

√
∑

M
i=1

(
φ

(e)
i −φi

)2

√
∑

M
i=1

(
φ

(e)
i

)2
, (30)

Ne

(
∂φ

∂x

)
=

√

∑
M
i=1

(
∂φ

(e)
i

∂x −
∂φi
∂x

)2

√

∑
M
i=1

(
∂φ

(e)
i

∂x

)2
, (31)

Ne

(
∂φ

∂y

)
=

√

∑
M
i=1

(
∂φ

(e)
i

∂y −
∂φi
∂y

)2

√

∑
M
i=1

(
∂φ

(e)
i

∂y

)2
, (32)

where the superscript (e) refers to the exact solution and M is the length of a test
set that is comprised of groups of 500 uniformly distributed points on grid lines.
Another important measure is the convergence rate of the solution with respect to
the refinement of spatial discretisation

Ne(h)≈ γhα = O(hα), (33)
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in which α and γ are exponential model’s parameters. Given a set of observations,
these parameters can be found by the general linear least squares technique. To
assess the performance of the proposed technique, the standard CVM (Patankar
(1980)) is also implemented here.



A C2-Continuous Control-Volume Technique 313

(a) Straight line & first-order derivative
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(b) Quadratic curve & first-order derivative
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Figure 3: Function approximation: Approximation for functions (left) and their
first-order derivative (right) by using one IRBFE only. It can be seen that the
present two-node IRBFE is able to produce non-linear behaviours (i.e. curved lines)
between the two extremes.
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Figure 4: Function approximation (continued), trigonometric function: Approxi-
mations for the function (left) and its first-order derivative (right).

4.1 Function approximation

The present 2-node IRBFE scheme is first applied to the representation of func-
tions. Consider four different test functions, namely straight line y = x, quadratic
curve y = x2, cubic curve y = x3 and trigonometric function y = sin(2πx). The
domain of interest is [0,1] that is represented by one element only. Values of y and
dy/dx are given at x = 0 and x = 1. Fig. 3 shows the plots of the approximate
and exact functions for the first three cases where good agreement is achieved with
only one element. It should be pointed out that, for the second and third functions,
curved lines are reproduced even only two nodes (i.e. only one element) are em-
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ployed. The fourth function y = sin(2πx) is infinitely smooth and it is clear that one
can construct several other approximate functions that would satisfy the four given
input data. The present scheme picks up one of them, probably the simplest one
(Fig. 4a). As more elements are used, a closer approximation to the exact function
is obtained as shown in Fig. 4b. Numerical results for the last three functions show
that the present two-node IRBFE has the ability to produce curved lines between
its two extremes. This can be seen as a strength of IRBFEs over linear elements
used in conventional techniques.

4.2 Solution of ODEs

4.2.1 Problem 1

Consider a 1D problem governed by

d
dx

(
dφ

dx

)
+φ + x = 0, 0≤ x≤ 1, (34)

and subject to two cases of boundary conditions

Case 1: φ(0) = 0 and φ(1) = 0 (Dirichlet boundary conditions only)
Case 2: φ(0) = 0 and dφ(1)/dx = cot(1)− 1 (Dirichlet and Neumann boundary
conditions).

b

W E

i ≡ P

i− 1/2 i + 1/2

Full CVHalf CV

Figure 5: Control volumes associated with interior and boundary nodes in 1D.

The exact solution of this problem can be verified to be

φ
(e)(x) =

sin(x)
sin(1)

− x. (35)

The problem domain is discretised by n uniformly-distributed points. Each node xi

is associated with a control volume denoted by Ωi. For 2≤ i≤ n−1, Ωi is defined



316 Copyright © 2011 Tech Science Press CMES, vol.72, no.4, pp.299-334, 2011

(a) Field variable
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(b) First-order derivative
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Figure 6: ODE, Problem 1, Dirichlet boundary conditions, n = 9: Comparison of
the exact and approximate solutions for φ and dφ/dx by the present D1-D1 strategy
(left) and the standard CV method (right).
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as [xi−1/2,xi+1/2] (full CV). For i = 1 and i = n, Ωi is taken to be [x1,x1+1/2] and
[xn−1/2,xn] (half CV), respectively. A schematic outline of a full CV and a half CV
is presented in Fig. 5. Generally speaking, to form a set of algebraic equations,
(34) is integrated over full CVs at xi with i = (2,3, · · · ,n−1) for Case 1, and over
full CVs at xi with i = (2,3, · · · ,n−1) and a half CV at xn for Case 2. The resultant
system is thus of dimensions (n−2)× (n−2) for Case 1 and (n−1)× (n−1) for
Case 2.

Hereafter, Di-Dj is used to denote the boundary treatment strategy in which the
boundary region [x1,x2] is represented by element IRBFE-Di and [xn−1,xn] by IRBFE-
Dj, while Di-Nj represents the strategy in which [x1,x2] and [xn−1,xn] are modelled
by elements IRBFE-Di and IRBFE-Nj, respectively. We employ the values of n
ranging from 7 to 151 for h-adaptivity studies and the values of β from 1 to 85 for
β -adaptivity studies.

(a) Field variable (b) First-order derivative
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Figure 7: ODE, Problem 1, Dirichlet boundary conditions: h-adaptivity studies
conducted with several values of β for the D1-D1 strategy. It is noted that results
with β = (5,10,15) are undistinguishable.

Case 1: Fig. 6 shows the plots of φ and dφ/dx by the proposed technique using the
D1-D1 strategy and by the standard CVM. It can be seen that the present solution
is smooth for both φ and dφ/dx even with only a few interior nodes used. On
the other hand, using linear interpolations, the standard CV solution for dφ/dx has
a stair-case shape. To alleviate this zigzag variation, much more grid points are
needed. Grid convergence studies for the proposed method employed with various
values of β and for the standard CVM are depicted in Fig. 7. It can be seen that the
former outperforms the latter. At dense grids, in terms of the error Ne, the results
for dφ/dx show a remarkable four orders of magnitude improvement (Fig. 7b).
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(a) Field variable (b) First-order derivative
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Figure 8: ODE, Problem 1, Dirichlet boundary conditions: Effects of types of
semi-interior elements on the solution accuracy for β = 15.

Fig. 8 and Tab. 2 compare the performance of the proposed method among three
types of semi-interior element strategies, namely D1-D1, D2-D2 and D3-D3. Re-
sults obtained by the standard CVM are also included and they are taken here as
the reference. With more information incorporated into the IRBFE approximations,
the D2-D2 and D3-D3 strategies yield much more accurate results than D1-D1, and
D3-D3 works better than D2-D2 as shown in Fig. 8a-b. Tab. 2 indicates that rates
obtained by the three strategies are generally higher than those by the standard
CVM. For example, D1-D1 yields O(h2.99) for φ and O(h2.61) for dφ/dx, while
the standard CVM gives O(h2.00) for φ and O(h1.03) for dφ/dx. An improvement
in the approximation quality for dφ/dx is thus much bigger than that for φ . It
should be noted that D1-D1 exhibits higher rates of grid convergence but produces
less accurate results than D2-D2 and D3-D3.

In Fig. 9, the effects of β on the solution accuracy for coarse (n = 9) and dense
(n = 153) grids are studied. As β increases, the overall error of the IRBFE solution
is first reduced and then becomes flat/fluctuated. There are dramatic reductions
(i.e. exponential convergence) in Ne(φ) and Ne(dφ/dx) for the D2-D2 and D3-
D3 strategies. In the case of large n and using D2-D2 and D3-D3, it appears that
there exists an optimal value for β , e.g. β = 42 for D2-D2 and β = 32 for D3-D3.
Nevertheless, the present method can work with a wide range of β . This ability is
also clearly seen in Fig. 7.

Case 2: Results obtained by the D1-N1 and D1-N2 strategies using β = 1 and
β = 15 and by the standard CVM are depicted in Fig. 10. The two strategies
have similar performances which are far superior to that by the standard CVM. At
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Figure 9: ODE, Problem 1, Dirichlet boundary conditions: β -adaptivity studies
conducted with n = 9 (left) and n = 153 (right) for three boundary treatment strate-
gies.

dense grids, an improvement is up to one order of magnitude for φ and four orders
of magnitude for dφ/dx. It is also observed that β can be used as an effective
tool to enhance the solution accuracy. Tab. 3 shows that the present two schemes
converge faster than the standard CVM. For example, the rates are O(h3.02) for φ

and O(h2.53) for dφ/dx by the present two strategies (β = 15), and O(h1.97) for φ

and O(h1.03) for dφ/dx by the standard CVM.

4.2.2 Problem 2

In this example, the ODE involves more terms and its solution is highly oscillatory.
The equation takes the form

d2φ

dx2 +
dφ

dx
+φ =−e−5x (9979sin(100x)+900cos(100x)) , 0≤ x≤ 1. (36)
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(a) Field variable
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(b) First-order derivative
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Figure 10: ODE, Problem 1, Dirichlet and Neumann boundary conditions: Effects
of types of semi-interior elements on the solution accuracy for β = 1 (left) and
β = 15 (right). It is noted that plots have the same scaling and results by the two
boundary treatment strategies are undistinguishable.

We consider two cases of boundary conditions: Dirichlet-Dirichlet (Case 1) and
Dirichlet-Neumann (Case 2). The plots of the exact solution φ (e) = sin(100x)e−5x

and its first-order derivative are shown in Fig. 11. Computations are conducted
with the values of n varying from 23 to 403 and the values of β from 1 to 80.
Results concerning h adaptivity and β adaptivity are presented in Fig. 12, Fig. 13
and Tab. 4 for Case 1, and in Fig. 14 and Tab. 5 for Case 2. Remarks here are
similar to those in Problem 1. It should be pointed out that

(i) very high rates of grid convergence, i.e. up to O(h4.23) for φ and O(h3.80)
for dφ/dx (Case 1), and O(h4.38) for φ and O(h3.92) for dφ/dx (Case 2), are
achieved here,

(ii) the IRBFE solution is very stable (i.e. no fluctuation) at large values of β ,
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Figure 11: ODE, Problem 2: Exact solution (a) and its first-order derivative (b).

(iii) given a grid size h and a value of β , the overall errors for Case 2 are as low as
those for Case 1,

(iv) the accuracy improvement is more significant for dφ/dx than for φ .

This problem (Case 1) was also solved in Mai-Duy and Tran-Cong (2008) using the
multidomain (MD) RBF collocation method. Two versions, namely differentiated-
RBF (MD-DRBF) and integrated-RBF (MD-IRBF) schemes, were implemented.
Using two non-overlapping subdomains, β = 1 and 201 nodes/subdomain (i.e. 401
nodes for the whole domain), the obtained Ne errors for φ were 0.2 for MD-DRBF
and 2.72× 10−4 for MD-IRBF. Using the same set of nodes (i.e. 401 points or
400 IRBFEs), β = 15 and D3-D3, the present method yields Ne = 1.28× 10−5,
which is much lower than those by the MD-RBF collocation method. It is noted
that conventional/global RBF methods are able to work with low values of β such
as β = 1.

4.3 Solution of PDEs

The proposed CV method is further validated through the solution of PDEs on both
rectangular and non-rectangular domains. Elements IRBFE-D1 and IRBFE-D2 are
employed to deal with Dirichlet boundary conditions, while IRBFE-N2 is used for
Neumann boundary conditions. It is noted that IRBFE-D1 can be applicable to
problems with regular as well as irregular geometries. All IRBFE calculations here
are carried out with two values of β , namely 1 and 15.
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(a) Field variable
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(b) First-order derivative
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Figure 12: ODE, Problem 2, Dirichlet boundary conditions: h-adaptivity studies
conducted with β = 1 (left) and β = 15 (right).

4.3.1 Problem 1: rectangular domain

Consider the following Poisson equation

∂ 2φ

∂x2 +
∂ 2φ

∂y2 =−2π
2 cos(πx)cos(πy), (37)

on a square domain 0≤ x,y≤ 1 with two different cases of boundary conditions

Case 1:

φ = cos(πy) for x = 0, 0≤ y≤ 1

φ =−cos(πy) for x = 1, 0≤ y≤ 1

φ = cos(πx) for y = 0, 0≤ x≤ 1

φ =−cos(πx) for y = 1, 0≤ x≤ 1
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(a) Field variable
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(b) First-order derivative
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Figure 13: ODE, Problem 2: β -adaptivity studies conducted with n = 103 (left)
and n = 383 (right) for three different semi-interior element strategies.

Case 2:

φ = cos(πy) for x = 0, 0≤ y≤ 1

φ =−cos(πy) for x = 1, 0≤ y≤ 1
∂φ

∂y
= 0 for y = 0, 0≤ x≤ 1

∂φ

∂y
= 0 for y = 1, 0≤ x≤ 1.

The exact solution to this problem can be verified to be

φ
(e)(x,y) = cos(πx)cos(πy). (38)

In Case 1 (i.e. Dirichlet boundary conditions only), the system of algebraic equa-
tions is generated by integrating (37) over full CVs associated with the interior
nodes. In Case 2 (i.e. Dirichlet and Neumann boundary conditions), apart from
the interior nodal variable values, there are additional unknown values of φ at the
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(b) First-order derivative
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Figure 14: ODE, Problem 2, Dirichlet and Neumann boundary conditions: h-
adaptivity (left) and β -adaptivity (right) studies for the D3-N2 strategy.

boundary nodes on y = 0 and y = 1. As a result, one needs to generate not only
full-CV equations associated with the interior nodes but also half-CV equations as-
sociated with the boundary nodes on y = 0 and y = 1. For the latter (Fig. 15), the
IRBFE approximations on y = 0 and y = 1 are constructed as in the case of a grid
line and hence the approximate solution φ is also C2-continuous on these lines. It
can be seen that the size of the discretised system in Case 2 is slightly larger than
that in Case 1.

To study the convergent behaviour of the proposed technique, various grids, namely
(5× 5, 9× 9,..., 73× 73), are employed. Results concerning the relative L2 error
and the rate of convergence with grid refinement by the present and standard CV
methods are shown in Fig. 16 for Case 1, Fig. 17 for Case 2, and Tab. 6 for Case 1
and Case 2.
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Figure 15: Half control volume associated with a boundary node in 2D.

Table 2: ODE, Problem 1, Dirichlet boundary conditions: rates of convergence
O(hα) for φ and ∂φ/∂x for several large β values and semi-interior element types.

α

φ ∂φ/∂x
β D1-D1 D2-D2 D3-D3 D1-D1 D2-D2 D3-D3

5 2.995 2.057 2.009 2.604 1.719 2.096
10 2.987 2.188 2.086 2.606 1.842 2.180
15 2.985 2.332 2.185 2.606 1.983 2.283
20 2.984 2.475 2.332 2.606 2.119 2.391

Standard CVM 2.000 1.034

Table 3: ODE, Problem 1, Dirichlet-Neumann boundary conditions: rates of con-
vergence O(hα) for φ and ∂φ/∂x for two semi-interior element types.

α

φ ∂φ/∂x
β D1-N1 D1-N2 D1-N1 D1-N2

1 1.722 1.722 2.183 2.183
15 3.016 3.016 2.529 2.529

Standard CVM 1.971 1.029
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Table 4: ODE, Problem 2, Dirichlet boundary conditions: rates of convergence
O(hα) for φ and ∂φ/∂x for several β values and semi-interior element types.

α

φ ∂φ/∂x
Boundary treatment β = 1 β = 15 β = 1 β = 15

D1-D1 2.540 2.582 2.554 2.670
D2-D2 2.679 3.965 2.713 3.932
D3-D3 2.971 4.229 2.588 3.801

Standard CVM 2.194 0.971

Table 5: ODE, Problem 2, Dirichlet and Neumann boundary conditions, D3-N2
treatment: rates of convergence O(hα) for φ and ∂φ/∂x for several β values.

α

β φ ∂φ/∂x

1 3.240 2.706
15 4.380 3.919

Standard CVM 2.268 0.970
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(b) First-order derivative with respect to x
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(c) First-order derivative with respect to y
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Figure 16: PDE, Problem 1, rectangular domain, Dirichlet boundary conditions:
h-adaptivity studies for the D1-D1 (left) and D2-D2 (right) strategies.
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It can be seen from Fig. 16 and Fig. 17, the present D1-D1, D2-D2 and D1-N2
strategies employed with a wide range of β produce much more accurate results
especially for ∂φ/∂x and ∂φ/∂y than the standard CV method. For instance, at a
grid of 73×73 and β = 15, the improvement is about one order of magnitude for
the field variable and about three orders of of magnitude for its first-order partial
derivatives. For Case 1 (Fig. 16), results at coarse grids by the D2-D2 strategy are
a bit more accurate than those by D1-D1, probably owing to the fact that the former
uses information about (37) on the boundary.

It can be seen from Tab. 6, the present method yields a faster convergence, espe-
cially for ∂φ/∂x and ∂φ/∂y, than the standard CV method for both Case 1 and
Case 2. For example, in Case 1, the solutions ∂φ/∂x and ∂φ/∂y converge at the
rate O(h2.35) using the D1-D1 strategy, O(h2.10) using D2-D2, and O(h1.00) using
the standard CV method.

Like in 1D problems, the use of β = 15 (i.e. large values) here also leads to better
accuracy and faster convergence especially for first-order partial derivatives than
the use of β = 1 (i.e. small values), and the IRBFE solutions for Case 1 and Case
2 have similar degrees of accuracy.

4.3.2 Problem 2: circular domain

Find φ such that

∂ 2φ

∂x2 +
∂ 2φ

∂y2 = 0, (39)

on a circular domain of radius π/2 centred at (π/2,π/2) with Dirichlet boundary
conditions. The exact solution to this problem is chosen to be

φ
(e)(x,y) =

1
sinh(π)

sin(x)sinh(y), (40)

from which one can easily derive the boundary values of φ .

The problem domain is discretised by a Cartersian grid as shown in Fig. 18. Calcu-
lations are carried out with grids of (5×5, 11×11,..., 151×151) and β = 15. We
employ semi-interior elements IRBFE-D1 for the handling of boundary conditions.
Results obtained are presented in Fig. 19, which plots the solution accuracy Ne

against the grid size h. It can be seen that the error is consistently reduced as a grid
is refined.

Tab. 6 also compares the rate of convergence by the proposed technique between
Problem 1 (rectangular domain) and Problem 2 (circular domain). Using the same
D1-D1 strategy and β = 15, the orders of accuracy of the solutions φ , ∂φ/∂x and
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Figure 17: PDE, Problem 1, rectangular domain, Dirichlet and Neumann boundary
conditions: h-adaptivity studies conducted with β = 1 and β = 15 for the D1-N2
strategy.
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Figure 18: PDE, Problem 2: Geometry and discretisation. Boundary nodes denoted
by ◦ are generated by the intersection of the grid lines and the boundary.

∂φ/∂y for the two types of domains are all greater than 2. It can be seen that the
proposed technique is able to work well not only for rectangular domains but also
for non-rectangular domains.

5 Concluding remarks

In this paper, a new Cartesian-grid-based control-volume technique is proposed
for the solution of second-order elliptic problems in one and two dimensions. In-
tegrated RBFs are utilised to construct the approximations for the field variable
and its derivatives, which are based on two-node elements and expressed in terms
of nodal values of the field variable and its first-order partial derivatives. Various
strategies for the imposition of boundary conditions are presented. The proposed
control-volume method leads to a system matrix that is sparse and produces a solu-
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Figure 19: PDE, Problem 2, circular domain, Dirichlet boundary conditions: the
solution accuracy using the D1-D1 strategy and β = 15.

tion that is C2-continuous on the grid lines. Its solution accuracy can be effectively
controlled by means of the shape parameter (β up to 85) and/or grid size. A series
of test problems including those defined on non-rectangular domains are employed
to validate the present method. Numerical results show that the method is much
more accurate and faster convergence, especially for the approximation of deriva-
tives, than the standard control volume method.
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