
Copyright © 2011 Tech Science Press CMES, vol.72, no.4, pp.273-297, 2011

A Nonlinear Dynamic Model for Periodic Motion of
Slender Threadline Structures

Jinling Long1,2, Bingang Xu1,3 and Xiaoming Tao1

Abstract: Moving slender threadline structures are widely used in various engi-
neering fields. The dynamics of these systems is sometimes time dependent but
in most cases follows a periodic pattern, and slender yarn motion in textile engi-
neering is a typical problem of this category. In the present paper, we propose a
nonlinear approach to model the dynamic behavior of slender threadline structures
with a real example in the analysis of slender yarn motion in spinning. Moving
boundary conditions of yarn are derived and a consequence of the perturbation
analysis for the dimensionless governing equations provides the zero order approx-
imate equation of motion to remove the time dependence. Consequently, the time
dependent problem can be solved by approximate solutions of steady-state govern-
ing equations subject to the derived moving boundary conditions. The simulation
results are more accurate than the results by earlier work and show good agreement
with measurement data. The proposed modeling and perturbation approximation
procedure is thus an accurate and practical way to deal with periodical motion of a
category of slender threadline structures.

Keywords: nonlinear analysis, dynamic model, perturbation analysis, threadline
structure

1 Introduction

A diverse range of disciplinaries in life science and engineering involves large mo-
tions of slender thread like bodies or structures such as DNA, hair, cable, rope, fiber
and yarn [Jurak and Tambca, 1999; O’Reilly, 1996; Coleman, Olson and Swigon,
2003; Kmoch, Bonanni and Magnenat-Thalmann, 2009; Guo and Xu, 2010; Tang
and Advani, 2005; Guo and Xu, 2009; Fraser, Ghosh and Batra, 1992]. Thus, the
steady or unsteady dynamic analysis on the motion of a moving threadline under
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various boundary conditions is of particular interest and importance to researchers
in physics, biology and engineering [Fraser, Ghosh and Batra, 1992; Kinkaid and
O’Reilly, 2001; Tang, Xu and Tao, 2010; Tang, Xu, Tao and Feng, 2011; Clark,
Fraser and Stump, 2001; Luo, 2000; Yang, Wu and Wang, 2009; Yang, Fang, Chen
and Zhen, 2009]. In most unsteady problems, though the elements and the system
parameters are time-dependent, some of them are not arbitrary and indeed follow
a periodic pattern. For the modeling of slender threadline structures, nonlinear rod
theories are commonly used to understand the mechanics of thin long rods with
length scales much larger than the lateral dimensions of the structure. Mathemati-
cally, a rod is modeled as a curve in 3D space with effective mechanical properties
such as bending and torsional stiffness. In the past, much effort has been made
to examine static equilibrium problems and instability of slender threadline struc-
tures [Lu and Perkins, 1994; Coyne, 1990; Lu and Perkins 1995; Tobias, Swigon
and Coleman, 2000; Heijden, Neukirch, Goss and Thompson, 2003]. However,
there are few investigations on nonlinear dynamic responses and computations for
them due to the mathematical complexities incurred in modeling. For this cat-
egory of objects with periodic dynamics, an approximate modeling approach is,
therefore, more desirable and practical for usage because of the adequate accuracy
and reduced complexities incurred in the analysis. In this paper, we attempt to
model the dynamic behavior of a typical slender body of yarn when it slides over a
navel surface in spinning. A new deviation of moving boundary and periodic con-
ditions are developed, and then the perturbation analysis is used to formulate the
zero order approximation of the equations of motion and the periodic dynamics can
be approximated by solving a stationary problem subject to the moving boundary
conditions. Thus, we can remove the time dependence from the governing equa-
tions and consequently the time dependence of the approximation to the solution
is solely controlled by the proposed moving boundary conditions. This procedure
would provide a simple and practical method to model large periodic motions of
thin thread like bodies.

As a real application of this proposed modeling method, dynamics of slender yarns
produced in rotor spinning will be theoretically and numerically analyzed. Yarn
made from natural fibers, carbon nanotubes or other types of fibrous materials is
all formed by twisting an assembly of short or long fibers. During this process, the
dynamics of yarn running on the navel surface is of fundamental importance to the
stability and continuity of yarn formation and its variation may result in possible de-
crease in yarn qualities [Grosberg and Monsour, 1975; Narayana, 2005]. Although
several authors have attempted to investigate this mechanism [Guo, Tao and Lo,
2000; Xu and Tao, 2003; Wang and Huang, 2000; Yu, Cai, Wu and Chen, 2007],
their analysis are all based on the steady state assumption, namely all parameters
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being time-independent. Under this framework, tension distribution is assumed to
be independent of time and solely vary along yarn length during spinning. This
kind of treatment may be appropriate when the yarn leaves the navel directly along
the doffing tube (i.e., exactly along the global –Z′ ( –Z ) axis of the rotating frame
in Figure 3). However, this is not true in practice. As shown in Figure 5, the yarn
slides on the stationary navel, then leaves the navel at the leaving point Q1, and
finally moves out through the doffing tube at a fixed point A. Because of the fixed
point A, the leaving point of the yarn will move forward and backward along a
special trajectory as shown in Figure 4 and the boundary conditions of the yarn at
the leaving point Q1 is thus time varying. As the leaving point of the yarn moves
forward and backward along its trajectory, the yarn motion on the navel is periodic.
Thus, the purpose of the present study is to give a dynamic analysis of the yarn
between the entrance point Q0 and the leaving point Q1. The boundary conditions
at the leaving point are derived by its motion and the continuity conditions of ve-
locity. In this analysis, we approximate the periodic yarn dynamics by solving a
stationary problem subject to the modified boundary conditions at the leaving point.
Perturbation analysis is then used to simplify the time varying motion problem to a
sequence of stationary motion problems with boundary conditions that are periodic
functions of time.

A 0
v

0
ω rotor

navel

 

Figure 1: Schematic view of yarn motion in rotor spinning.

This paper is organized as follows. We will develop the dynamic model of yarn
motion on the navel with derivation of the new boundary conditions at the leaving
point in Section 2. In Section 3, the motion equations will be expressed in terms of
dimensionless variables. The perturbation analysis is then used to approximate the
equation of yarn motion in this section. In Section 4, numerical results are provided
and discussed in detail. Finally, the conclusion is drawn in Section 5.
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2 Nonlinear Dynamic Modeling

To analyze the movement of yarn, we first introduce the yarn formation process
of rotor spinning. The individual fibers are blown into the rotor continually and
rotate with the rotor at a high angular speed. The fibers are then located at the
circumferences notch of rotor due to the centrifugal force. The yarn-like fibers
are then peeled off from the rotor notch and come into the free space between
the rotor and the navel. Each revolution of the yarn at this point inserts a turn of
twist. Afterwards, the yarn passes through the navel surface and the doffing tube
successively. The yarn from the peeling off point of rotor notch to the leaving
point on the navel has constant delivery speed and rotates along with the rotor
simultaneously. The schematic view of the yarn in rotor spinning is demonstrated
in Figure 1. In the above mentioned process, the dynamic behaviors of the yarn on
the navel are most concerned. Suppose point P is an infinitesimal element of the
yarn on the navel, which at time t has a distance s from the entrance point Q0 ( s=
0 ). For the convenience of analysis, we choose a cylindrical reference frame with
base vectors er, eφ , ez, which rotates about the Z axis of the inertial frame O– XY Z
with a constant angular speed ωez, as shown in Figure 2.

The origin O coincides with the center of the smaller navel aperture, and the Z axis
of the frame is in line with the central axis of the navel with its positive direction
towards the rotor. Let r, φ , z be the cylindrical coordinates corresponding to the
rotating coordinate system and R(s, t) = rer + zez be the position vector of Prelative
to the origin O. The yarn is confined to the navel surface, thus r and z satisfy
the navel geometry equation. As shown in Figure 3, the profile of navel in rotor
spinning is usually formed by a rotational surface, and its parametric equation is
R= g(θ ) er+ f (θ ) ez. The functions g(θ ) and f (θ ) are given by

r = g(θ) = rm + r0(1− cosθ), (1)

and

f (θ) = r0 sinθ , (2)

where rm and r0 are constant parameters of navel profile,rm is the radius of the
smaller navel aperture, r0 is the hight of the navel, and the generate functions g(θ )
and f (θ ) are shown in Figure 3.

Thus, the coordinates of yarn element P in the inertial frame are

([rm + r0(1− cosθ)]cosφ , [rm + r0(1− cosθ)]sinφ ,r0 sinθ).

It can be observed that the position vector of the yarn can be determined by the
parameters θ and φ . Without loss of generality, ω is assumed to be constant, pro-
vided ω is chosen to be an appropriate mean angular speed of the leaving point of
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Figure 2: Inertial and rotating reference frames.

the yarn. The angular speed of the leaving point on the navel surface will vary as it
moves along its trajectory (Figure 4).

The yarn is assumed to be flexible and uniform. It is reasonable to make the as-
sumption that the yarn is inextensible, [Fraser, Ghosh and Batra, 1992] which re-
sults in

r2
0(

∂θ

∂ s
)2 +[rm + r0(1− cosθ)]2(

∂ϕ

∂ s
)2 = 1. (3)

In the following analysis, we will consider three kinds of force acting on the yarn
on the navel surface, namely internal tension force T (s, t), friction force F (s, t)
and normal reaction force N (s, t). The air drag and yarn weight are neglected since
they have a smaller effect compared with the three kinds of forces mentioned above
[Guo, Tao and Lo, 2000]. Thus, the time dependent equation for the motion of yarn
element P is

m
{

D2R+2ωez×DR+ω
2ez× (ez×R)

}
=

∂

∂ s

(
T

∂R
∂ s

)
+F +N, (4)
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Figure 3: Navel coordinate systems and generatrix

 
Figure 4: The navel surface and the trajectory of the leaving point of the yarn.
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where m is the constant linear density of the yarn, and the operator D is given by

D =
∂

∂ t
+υ0

∂

∂ s
,

where υ0 is the constant delivery speed of the yarn. The operator D is the total
time derivative following the motion of P relative to the rotating frame. Thus DR
is the velocity of the yarn element P and D2R is the acceleration relative to the
rotating frame. The friction force acting on the yarn as it slides over the navel
surface follows the Coulomb friction law:

F =−µ
v
‖v‖

, (5)

where v = DR + ωez× R. And the normal reaction force N = ||N||en, where en =
−cosθ er + sinθ ez , is the unit normal vector at the yarn element P on the navel.

Accordingly, we have

N = ‖N‖en = ‖N‖(−cosθ er + sinθ ez). (6)

Since the motion of the yarn on the navel is apparently periodic, it is more conve-
nient to impose periodic conditions on the solutions than initial conditions. Next,
we formulate the periodic and boundary conditions for the problem to complete the
model description. Let Γ be the period of the motion (i.e. the time for the leav-
ing point of the yarn to complete one cycle around its trajectory on the navel). A
periodic solution of the motion equation needs to satisfy the following conditions{

R(s, t +Γ) = R(s, t),
T (s, t +Γ) = T (s, t),

0≤ s≤ sl(t). (7)

where sl(t) is the total length of yarn on the navel and it is time varying. It also
satisfies the periodic condition that sl(t+ Γ) = sl(t). The first equation of (7) is
equivalent to{

θ(s, t +Γ) = θ(s, t),
ϕ(s, t +Γ) = ϕ(s, t),

0≤ s≤ sl(t). (8)

After leaving the navel surface, the yarn comes in contact with the fixed point A of
the doffing tube, as shown in Figure 5. The coordinates of the point A are (rm, 0,
–z1), z1> 0. The point Q0 (s= 0) is the entrance point of yarn on the navel at θ =
π /2 , while Q1 (s= sl(t) ) is the leaving point of yarn element on the navel. After
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Figure 5: yarn trajectory between the entrance point Q0 and the fixed point A

leaving the navel surface, the yarn finally moves out the navel through the doffing
tube at the fixed point A, as shown in Figure 5.

Since Q1A lies in the tangent plane of navel at the point Q1, the parameters of the
trajectory of Q1 satisfies [Yu, Cai, Wu and Chen, 2007]

tanθl =


−z1[r0+rm(1−cosϕl)]

r2
0−z2

1
+ r0
√

z2
1+2r0rm(1−cosϕl)+r2

m(1−cosϕl)2

r2
0−z2

1
, r0 6= z1.

2rm(1−cosϕl)r0+r2
m(1−cosϕl)2

2z1[r0+rm(1−cosϕl)]
, r0 = z1.

(9)

Thus, the curve of the trajectory of the leaving point is shown in Figure 4 (the bold
black line).

Boundary conditions should be formulated at the entrance point Q0 of the yarn on
the edge of the navel

R(0, t) = (rm + r0)er + r0ez, i.e. θ(0, t) =
π

2
. (10)

The radius vector form of the navel in the inertial frame is

~χ = ([rm + r0(1− cosθ)]cosϕ, [rm + r0(1− cosθ)]sinϕ, r0 sinθ),
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and the direction of the meridian line of the navel is defined by the unit vector of
~χθ , where ~χθ is the partial derivative of ~χ to θ . Define the deviate angle λ as the
angle between the tangent vector of the yarn eτ and the meridian line of the navel
at the yarn element P, as shown in Figure 3.

The parameters θ l = θ (sl(t), t) and φ l = φ ( sl(t), t) of yarn position vector at
the leaving point s = sl(t) must satisfy the trajectory Eq. (9). The corresponding
position vector is R(sl(t),t) = [rm+ r0(1– cosθ l)] er+ r0sinθ lez. Let λ l be the angle
between the tangent vector of the yarn and the meridian line at the leaving point,
it is a periodic function of position vector of the leaving point on the navel. The
tangent vector at this point is calculated as

∂R(sl, t)
∂ s

=
Rθ

‖Rθ‖
cosλl + sinλleϕ = (sinθler + cosθlez)cosλl + sinλleϕ

= sinθl cosλler + sinλleϕ + cosθl cosλlez

(11)

The velocity of the point relative to the rotating frame is

∂R(sl, t)
∂ s

+
∂R(sl, t)

∂ s
(sl, t)

dsl

dt
=

r0 sinθl
∂θl

∂ t
er +[rm + r0(1− cosθl)]

∂ϕl

∂ t
eϕ + r0 cosθl

∂θl

∂ t
ez (12)

Notice that the absolute velocity vectors of any yarn element on the navel is ∂R
∂ t +

υ0
∂R
∂ s +ωez×R. From the point of view of composition of velocities, this absolute

velocity can be resolved into a constant velocity along
−−→
Q1A and a rotation speed ∂ϕ

∂ t
about Z axis, thus we can obtain the absolute velocity of the element at s = sl(t)

∂R
∂ s

(sl, t)+υ0
∂R
∂ s

(sl, t)+ω[rm + r0(1− cosθl)]eϕ =

υ0

−−→
Q1A∥∥∥−−→Q1A

∥∥∥ +[rm + r0(1− cosθl)]
∂ϕl

∂ t
eϕ (13)

Notice that the right hand side of the above equation takes advantage of the conti-
nuity of tangent vector at the leaving point of the yarn. In the cylindrical coordinate
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system,

−−→
Q1A∥∥∥−−→Q1A

∥∥∥ =

√
[rm + r0(1− cosθl)]2 + r2

m−2rm[rm + r0(1− cosθl)]cosϕl√
[rm + r0(1− cosθl)]2 + r2

m−2rm[rm + r0(1− cosθl)]cosϕl +(r0 sinθl + z1)2
er

+
r0 sinθl + z1√

[rm + r0(1− cosθl)]2 + r2
m−2rm[rm + r0(1− cosθl)]cosϕl +(r0 sinθl + z1)2

ez

(14)

Subtracting Eq. (13) from Eq. (12), we then substitute Eq. (11) and Eq. (14) into
the resultant equation and can obtain the formulas that govern the change rate of the
yarn length of the yarn sl(t) between the entrance point of the yarn at the boundary
of the navel where θ = π/2 and the leaving point.(

dsl

dt
−υ0

)
sinλl = ω[rm + r0(1− cosθl)]. (15)

The formulation of the problem and its corresponding periodic and boundary con-
ditions are completed. These boundary conditions are critical for the construction
of perturbation analysis that reduces the dependent problem to solving a series of
stationary problems. The perturbation analysis will be carried out in the next sec-
tion to obtain an approximate solution for the dynamic problem.

3 Perturbation Analysis

First, the dimensionless equation for the problem can be derived by appropriately
scaling the governing Eq. (4) with length and time scales. We choose the period Γ

of the leaving point around its trajectory on the navel as time scale and the height
of the navel r0 as length scale. In the following, a bar over a variable represents a
dimensionless variable.

R̄ = R/r0 = (rm/r0 +1− cosθ)er + sinθ ez,

s̄ = s/r0, t̄ = t/Γ, v̄ = v/(ω0a), ῡ0 = υ0/(ω0a)
T̄ = T/(mω2

0 a2), F̄ = F r0/(mω2
0 a2), N̄ = N r0/(mω2

0 a2).

(16)

where ω0 is the angular speed of the rotor, a is the radius of the rotor.

Accordingly, Eq. (4) can be formulated in terms of dimensionless variables as

D̄2R̄+2Ωez× D̄ R̄+Ω
2ez× (ez× D̄ R̄) =

∂

∂ s̄

(
T̄

∂

∂ s̄
R
)

+ F̄ + N̄ (17)
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where

D̄ = ε∂/∂ t + ῡ0∂/∂ s̄, (18)

and

ε =
r0

ω0aΓ
, Ω =

ωr0

ω0a
. (19)

The dimensionless form of friction drag and the normal force are:

F̄ =−µ ‖N̄‖ v̄
‖v̄‖

, (20)

N̄ = ‖N̄‖(−cosθ er + sinθ ez). (21)

The periodic condition (7) and inextensible condition (3) become:{
R̄(s̄, t̄ +1) = R̄(s̄, t̄),
T̄ (s̄, t̄ +1) = T̄ (s̄, t̄),

0≤ s̄≤ s̄l(t) (22)

and(
∂θ

∂ s̄

)2

+
(

rm

r0
+1− cosθ

)2(
∂ϕ

∂ s̄

)2

= 1. (23)

The boundary condition at the entrance point and the leaving point become:

R̄(0, t̄) = (
rm

r0
+1)er + ez, i.e. θ(0, t̄) =

π

2
(24)

and(
ε

ds̄l

dt̄
− ῡ0

)
sinλl = Ω

(
rm

r0
+1− cosθl

)
(25)

Notice that the mean angular speed ω and ω0 have a slight difference, with ω rang-
ing 0.85ω0∼0.95ω0, thus ε ranges 0.0524∼0.05854. This is small when compared
with other parameters of the problem, such as tension of yarn, yarn position vector
coordinates. Thus, it is feasible to make use of perturbation method to expend the
position vectors, tension, and moving boundary quantities in powers of ε , and then
obtain an approximation solution of the problem. In the following, expressions for
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the desired solution in terms of a power series in “small” parameter ε are outlined.
The position vector R̄(s̄, t̄) and tension T̄ (s̄, t̄) are expended as follows:{

R̄(s̄, t̄) = R̄0(s̄, t̄)+ εR̄1(s̄, t̄)+ ε2R̄2(s̄, t̄)+ · · ·
T̄ (s̄, t̄) = T̄0(s̄, t̄)+ εT̄1(s̄, t̄)+ ε2T̄2(s̄, t̄)+ · · · .

(26)

The moving boundary needs to be imposed for this problem, thus the arc quantity
s̄l(t̄) must also be expended

s̄l(t̄) = s̄l0(t̄)+ ε s̄l1(t̄)+ ε
2s̄l2(t̄)+ · · · . (27)

From Eq. (25), the parameter Ω depends on the deviate angle and it needs to be
expended in powers of ε as well:

Ω = Ω0 + ε Ω1 + ε
2
Ω2 + · · · . (28)

The position vector parameters θ(s̄, t̄) and ϕ(s̄, t̄) must also be expended similarly
as follows{

θ(s̄, t̄) = θ0(s̄, t̄)+ εθ1(s̄, t̄)+ ε2θ2(s̄, t̄)+ · · ·
ϕ(s̄, t̄) = ϕ0(s̄, t̄)+ εϕ1(s̄, t̄)+ ε2ϕ2(s̄, t̄)+ · · · .

(29)

Under most settings in rotor spinning process, the deviate angle at the leaving point
λ l ranges between 0o and 13o, and the Taylor expansions of sin λ l and cos λ l are
convergent. It is convenient to define λl = εφl , thus we have:{

sinλl = εφl− ε3 1
3! φ

3
l + · · ·

cosλl = 1− ε2 1
2 φ 2

l + · · · .
(30)

Substituting Eq. (26) and Eq. (28) into Eq. (17), the zero order approximation
equations of Eq. (17) can be given as

ῡ
2
0

∂ 2R̄0

∂ 2s̄
+2ῡ0Ω0ez×

∂ R̄0

∂ s̄
+Ω

2
0ez× (ez×

∂ R̄0

∂ s̄
) =

∂

∂ s̄

(
T̄0

∂ R̄0

∂ s̄

)
+ F̄0 + N̄0. (31)

From the expansion (29), the zero order approximation for the inextensible condi-
tion yields:(

∂θ0

∂ s̄

)2

+
(

rm

r0
+1− cosθ0

)2(
∂ϕ0

∂ s̄

)2

= 1. (32)
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The terms F̄0 and N̄0 are accordingly given by:

F̄0 =−µ ‖N̄0‖
v̄0

‖v̄0‖
, (33)

and

N̄0 = ‖N̄0‖(−cosθ0er + sinθ0ez). (34)

respectively, where

v̄0 = ῡ0
∂R0

∂ s̄
+Ω0ez×R0, (35)

where the position vector R̄0 =
[

rm
r0

+1− cosθ0

]
er + sinθ0ez.

The expansion form of Eq. (25) is(
ε

ds̄l0

dt̄
+ ε

2 ds̄l1

dt̄
+ · · ·− ῡ0

)(
εφl− ε

3 1
3!

φ
3
l + · · ·

)
= Ω0

(
rm

r0
+

1
2

θ
2
0

)
+ ε

(
2Ω0θ0θ1 +Ω1

rm

r0
+

Ω1

2
θ

2
0

)
+ · · ·

(36)

We can get from Eq. (36) that Ω0

(
rm
r0

+ 1
2 θ 2

0

)
= 0, which results in Ω0=0. Eq. (31)

is then reduced to

ῡ
2
0

∂ 2R̄0

∂ 2s̄
=

∂

∂ s̄

(
T̄0

∂ R̄0

∂ s̄

)
+ F̄0 + N̄0 (37)

Leaving out the subscript 0 in Eq. (37) for simplicity, its components form with
the normal force and friction drag given by Eq. (34) and Eq. (33) together with the
inextensibility condition lead to the following system

(ῡ2
0 − T̄ )(cosθθ

′2 + sinθθ
′′) = T̄ ′ sinθθ

′−µ ‖N̄‖sinθθ
′−‖N̄‖cosθ (38)

(ῡ2
0−T̄ )

[
sinθθ

′
ϕ
′+
(

rm

r0
+1− cosθ

)
ϕ
′′
]

=
(
T̄ ′−µ ‖N̄‖

) (rm

r0
+1− cosθ

)
ϕ
′

(39)

(ῡ2
0 − T̄ )(cosθθ

′′− sinθθ
′2) = T̄ ′ cosθθ

′−µ ‖N̄‖cosθθ
′+‖N̄‖sinθ (40)

θ
′2 +

(
rm

r0
+1− cosθ

)2

ϕ
′2 = 1 (41)
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where ′ denotes d
ds̄ .

According to Eq. (11), the unit tangent vector at the leaving point can be given by

∂ R̄
∂ s̄

(sl) = sinθl
∂θl

∂ s̄
er +(

rm

r0
+1− cosθl)

∂ϕl

∂ s̄
eϕ + cosθl

∂θl

∂ s̄
ez

= sinθl cosλler + sinλleϕ + cosθl cosλlez.

(42)

From the equation above, we haveθ ′(sl) = cosλl

ϕ ′(sl) = sinλl
rm
r0

+1−cosθl

(43)

If Eq. (40) times sinθ and Eq. (38) times cosθ respectively, it will be observed
from the substraction of the resultant two equations that

‖N̄‖= (T̄ − ῡ
2
0 )θ ′2. (44)

Taking the derivative of the constraint Eq. (41), we have

θ
′′
θ
′+ sinθ

(
rm

r0
+1− cosθ

)
θ
′
ϕ
′2 +

(
rm

r0
+1− cosθ

)2

ϕ
′′
ϕ
′ = 0. (45)

If Eq. (38) times sinθθ ’, Eq. (40) times cosθθ ’, and Eq. (39) times ( rm
r0

+ 1−
cosθ)ϕ ′ , the resultant equations are added to give

T̄ ′ = (ῡ2
0 − T̄ )

[
θ
′′
θ
′+ sinθ

(
rm

r0
+1− cosθ

)
θ
′
ϕ
′2 +

(
rm

r0
+1− cosθ

)2

ϕ
′′
ϕ
′

]
− µ(ῡ2

0 − T̄ )θ ′2 (46)

Substituting Eq. (45) into Eq. (46), T ′ can be given by

T̄ ′ = µ(T̄ − ῡ
2
0 )θ ′2. (47)

For a given φ l , we can compute the θ l of the leaving point of the yarn by Eq. (9).
Thus, the angle between the tangent vector of the yarn and the meridian line at the
leaving point λ l can be obtained from the equation below

cosλl =
[rm + r0(1− cosθl)]sinθl− rm sinθl cosϕl +(r0 sinθl + z1)cosθl√

[rm + r0(1− cosθl)]2 + r2
m−2rm[rm + r0(1− cosθl)]cosϕl +(r0 sinθl + z1)2

(48)
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The variation of deviate angle λ l can be approximated by

λl(ϕl) = λl max sinϕl +0.0241sin(2ϕl). (49)

It is easy to get the corresponding variation equation of deviate angle λ l as a func-
tion of t̄ with one period:

λl(t̄) = λl max sin2π t̄ +0.0241sin4π t̄. (50)

Notice that according to (48), λ lmax changes as the geometry parameters of the
navel rm, r0 and z1 adjust.

If Eqs. (47) and (44) are substituted into Eq. (38), it will be found that

sinθθ
′′ = 0, ∀θ ∈ [0,π/2], (51)

which results that θ¡å= 0. It means that θ ’ = C, where C is a constant. Thus, we
have

θ
′(0) = θ

′(sl) = θ
′(s̄) = cosλ = cosλl, (52)

which leads to λ = λ l for any given time t. Similarly, we get

ϕ
′(0) = ϕ

′(sl) =
sinλl

rm
r0

+1− cosθl
. (53)

The tension of yarn at the entrance point can be obtained from that [Wang and
Huang, 2000]

T (0) = mυ
2
0 +

mω2
0
(
a2−R2

e
)(a

2 −
υ0
ω0

)
+ 1

4 Eω2
0
(
a4−R4

e
)

a−Re sinλe
, (54)

where Re is the radius of the entrance point of the yarn and is equal to rm+r0, and
λ e is the angle between the tangent vector of the yarn at the entrance point and the
meridian line of the navel.

The components of motion equations are finally reduced to

T̄ ′ = µ(ῡ2
0 − T̄ )θ ′2 (55)

sinθθ
′
ϕ
′+
(

rm

r0
+1− cosθ

)
ϕ
′′ = 0 (56)

θ
′2 +

(
rm

r0
+1− cosθ

)2

ϕ
′2 = 1 (57)
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with T (0) is given by Eq. (54), θ (0) = π

2 , θ ′(0) = θ ′(s̄l) = cosλl , ϕ ′(0) =
ϕ ′(s̄l) = sinλl

rm
r0

+1−cosθl
, ϕ(s̄l) = 2π t̄. And the normal force N̄ can be calculated by

Eq. (44). For a given time t̄0, we need only to solve this boundary value problem
to approximate the yarn motion.

4 Numerical simulation

For different time t, we use shooting method to solve a two point boundary-value
problems defined above. The numerical procedure is reduced to solve the initial-
value problem of Eqs. (55), (56) and (57). For a prescribed φ (0) together with
θ (0) = π

2 , T (0) is given through dimensionless the yarn tension at s= 0 calculated
by Eq. (54), and the derivatives information in Eqs. (52) and (53), the fourth order
Runge-Kutta method is used to solve the initial value problem. φ (0) should be
adjusted to satisfy the boundary condition ϕl = ϕl(t̄) and the Secant rule is adopted
to update the initial φ (0).

In Section 4.1, comparisons is made among yarn average tension, experimental
data and theoretical results by others showing the superiority of our model. Yarn
trajectories and the variations of yarn tension and yarn length on the navel are
presented in Section 4.2. We also studies the effects of the design parameters of
navel profile and position of the point A on the yarn motion and tension in this part.

4.1 Average tension compared with experimental and theoretical results by oth-
ers

To illustrate the validity of the model, we firstly compare the numerical simula-
tion results, the measurement data in [Lotka and Jackowski, 2003] and predicted
values obtained from empirical formula T = 0.72mω2

0a2 [Grosberg and Mansour,
1975] about the average yarn tension for different linear densities in Table 1. For
convenience of comparison, we use the same working parameters of spinning ma-
chine as adopted in [Lotka and Jackowski, 2003]. The rotor rotational velocity is
45000 r.p.m., and the spinning velocity is 50 m/min. We can find that our modeling
yarn tension values fit well the measurement data and are more accurate than the
values calculated by empirical formula in [Grosberg and Mansour, 1975]. The ro-
tation speed of rotor is another important influential factor on yarn tension. Similar
comparison among our simulation results, the measurement data in [Grosberg and
Mansour, 1975] and predicted values obtained from empirical formula is presented
in Table 2 to reveal the effect of rotor speed on yarn tension. It is easy to see that our
model performs better than empirical formula and accords with the measurement
data. Thus, it can be concluded that the proposed model is an excellent approach to
predict yarn tension in rotor spinning.
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Table 1: Yarn tension for different linear densities.
Yarn linear
density
(g/km)

Measured
tension
(N)

Predicted tension
by [Grosberg and
Mansour, 1975]
(N)

Predicted tension
by our model
(N)

25 0.3431 0.2914 0.3408
35 0.5000 0.4080 0.4772
45 0.6765 0.5245 0.6135
55 0.8137 0.6410 0.7498

Table 2: Yarn tension for different rotor rotation speed.

Rotor speed
(r.p.m.)

Measured
tension
(N)

Predicted tension
by [Grosberg and
Mansour, 1975]
(N)

Predicted tension
by our model
(N)

30,000 0.1176 0.1295 0.1088
40,000 0.1961 0.2302 0.1934
50,000 0.2745 0.3597 0.3022
60,000 0.4412 0.5180 0.4352
70,000 0.6078 0.7051 0.5924
80,000 0.8235 0.9210 0.7738
90,000 1.0196 1.1656 0.9793
100,000 1.2549 1.4390 1.2090

4.2 Periodical motion simulation

Firstly, we study the periodical motion of yarn, the variations of yarn length on
the navel and the tension at the leaving point when the navel geometry factor and
the location of point A are fixed. Afterwards, the effects of the location design
of point A are examined. Finally, we try to figured out the influences of the navel
profile design factor rm/r0 on yarn tension and yarn shape parameters along the yarn
length.

Some numerical results are given as shown in Figure 6 - Figure 13. Table 3 lists the
yarn and spinning parameters for simulations.

The parameters rm=1.25×10−3m, rm/r0=1/5, and ratio z1/rm=4 are used in calcula-
tions for Figure 6 - Figure 9. Figure 6 (a) gives the yarn configurations at different
time steps in half a period of the motion on the navel, where a period is discreted
into 20 time steps. To get a better view of the yarn paths on the navel, we put the
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Table 3: Yarn and simulation parameters.

Quantity Units(SI) Value
Yarn linear density m kg/m 1.83 × 10−5

Angular speed of rotor ω0 rad/s 3000π

Radius of rotor a m 2 × 10−2

Friction coefficient µ - 0.37
Time step ∆t s 5 × 10−2

navel upside down as shown in Figure 6 (b). Since the distance of the point Q0
between two adjacent time steps along the navel border θ=π/2 increases when the
time increases from 0 to 0.5, then we have that the angular velocity of the entrance
point Q0 becomes larger in the first half period. For clarity, we omit the next half a
period yarn paths in this figure. In fact, the motion of yarn in a period is symmetry
about time t̄=0.5, and the angular velocity of the entrance point Q0 decreases as the
time t̄ increases from 0.5 to 1. The variation of the total arc length of the yarn on
the navel sl and the tension at the leaving point of the yarn Tl through two complete
periods of motion are shown

by Figure 7. As we can see, the length of the yarn on the navel will decrease
in the first half a period, and then increase in the following half a period, which
is consistent with the simulation results in Figure 6. Yarn tension curves along
yarn length at different time steps in a period of motion are presented in Figure
8. The tension of the leaving point not only depends on the length of the yarn on
the navel but also depends on the tension at the entrance point which is dominated
by the deviate angle λ e, that is why the variations curves for sl and Tl have much
difference. Figure 9 shows the variations of θ and φ between the entrance point
s̄=0 and the leaving point s̄ = s̄l through two periods of motion. Larger ∆θ reflects
that the leaving point of yarn is much closer to the lower edge of the navel (θ =
0). And larger |∆φ | shows that the yarn shape deviates further from the longitude
of the navel. Thus, we can see from Figure 9 that the distance between the leaving
point and the lower edge of the navel increases firstly and then decreases in a period
of yarn motion, which is consistent with the trajectory of the leaving point on the
navel. The deviation between the yarn path and the longitude of the navel reflected
by Figure 9 is also in accord with the yarn shapes in Figure 6.

The effects of ratio z1/rm on the yarn tension and yarn shape parameters at a quarter
of a cycle time (at the sixth time step) are shown in Figure 10 and Figure 11,
respectively. As shown in Figure 10, larger z1/rm ratio decreases tension of yarn
and increase the yarn length on the navel, and the resultant tension of the leaving
point increases as the ratio increases. From Figure 11, it can be observed that
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(a) Yarn shapes on the navel.            (b) Yarn shapes on the upturned navel. 

 

Figure 6: yarn shapes at different time steps in half a period, the numbers i denotes
the yarn shape at the i-th time step.
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Figure 7: Variation of the total length of yarn sl and yarn tension at the leaving
point Tl through two periods of yarn motion on the navel.
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Figure 8: Tension along yarn length at different time steps during a period of motion
on the navel.
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Figure 9: The difference of θ and φ between the entrance points and the leaving
points at different time steps during two periods of motion on the navel.
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larger z1/rm ration decreases the variation of φ and increases that of θ between the
entrance point and the leaving point at a certain time.

0 0.5 1 1.5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Arc yarn length

Y
ar

n 
te

ns
io

n

 

 

z1/rm=4

z1/rm=6

z1/rm=8

 

Figure 10: Tension of yarn at a quarter of a cycle time (at the sixth time step) for
the ratios z1/rm= 4, z1/rm= 6, z1/rm= 8.

The effects of the design parameter rm/r0 of the navel profile are shown in Figure 12
and Figure 13. In Figure 12, it can be observed that as ratio rm/r0 grows, the tension
in yarn becomes larger. The following Figure 13 shows that larger ratio rm/r0 can
also cause smaller variations of φ between the entrance point and the leaving point.
The variation of θ does not change markedly.

5 Conclusion

In this paper, we have proposed a nonlinear dynamic model for periodic analy-
sis of slender threadline structures by perturbation analysis. The formulation of a
perturbation expansion has been used to solve the time dependent problem with a
sequence of quasi-steady state solutions. The moving boundary conditions are de-
rived and the zero order approximation solution of the problem is determined by the
moving boundary conditions. As an application of this proposed modeling method,
dynamics of slender yarns produced in rotor spinning has been analyzed. The aver-
age tension simulations are more reliable than the results obtained by earlier work
and show good agreements with measurement data. The model can show the mo-
tions of the yarn through a period of motion along its trajectory. The obtained nu-
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Figure 11: θ and φ relation at a quarter of a cycle time (at the sixth time step) for
the ratios z1/rm= 4, z1/rm= 6, z1/rm= 8.
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Figure 12: Tension of yarn at a quarter of a cycle time (at the sixth time step) for
ratios rm/r0= 0.2, rm/r0= 0.4,rm/r0= 0.6.
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Figure 13: θ and φ relation at a quarter of a cycle time (at the sixth time step) for
ratios rm/r0= 0.2, rm/r0= 0.4, rm/r0= 0.6.

merical results demonstrate that the arc length on the navel and the tension change
with time periodically as it is moving on the navel. We also numerically consider
the effects of navel geometry factors on the yarn tension and geometrical shapes.
Moreover, the model is believed to be applicable to more complicated geometries.
The proposed modeling and perturbation approximation procedure is a potential
and practical way to deal with periodical problems of a group of slender thread like
bodies.
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