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A Simple Formula for Complementing FE Analyses in the
Estimation of the Effects of Local Conditions in Circular

Cylindrical Shells

F. Guarracino1

Abstract: The design of many engineering problems requires accurate test results
and interpretation in order to evaluate the carrying capacity of circular cylindrical
shells subjected to various loads including bending. Apparently anomalous values
of axial tensile and compressive strains from recent test results have been lately
investigated and explained using Finite Element modeling. As a complement to
numerical analyses, in the present paper a simple analytical formula for the estima-
tion of the effects of local conditions in tubes testing and design is provided on the
basis of an extended Ritz’s approach and of the general linear theory of shells. The
findings are discussed and validated.
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1 Introduction

Several engineering applications require cylindrical shells subjected to various loads
including bending and in particular an increasing need for offshore pipelines has
been experienced in recent years. In this field the use of the limit state approach
provides a comprehensive basis for the calculation of the ultimate conditions for
pipes subjected simultaneously to pressure and bending loads. The ultimate state
of the pipeline deformation or loading is calculated using a model that describes the
characteristic ultimate moment or strain related to the geometry and material prop-
erties of the pipe. The design factors are calculated using statistical descriptions
of the scatter of test results compared to the mean values together with the statis-
tical descriptions of the variables composing the particular model, e.g. material
strength, modulus etc. In the process described above, it is generally assumed that
the scatter of tests results from minor and usually random variations in the variables
is included in the model. In the case of a pipe, these variations would generally re-
late to the differences in the geometries of the test pipes from their corresponding
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nominal values, say for pipe wall thickness or out-of-roundness.

The purpose of the present paper is to provide a simple formula for the evalua-
tion of apparently anomalous results from tests on pipes under bending that have
been observed in the past and successively explained by means of Finite Elements
analyses (Guarracino (2003); Guarracino, Fraldi and Giordano (2008); Guarracino,
Walker and Giordano (2009)).

In order to do so, recourse has been made to the trial function method (Ritz (1909)),
which represents one class of techniques which possesses the characteristics for
providing synthetic solutions to structural mechanics problems. As known, in the
trial function method the unknown solution is approximated by a set of base func-
tions containing constants or functions. The key point has consisted in choosing a
trial function family which could provide a satisfactory approximation to the prob-
lem at hand and, at the same time, allow the treatment of the problem by means of
a computer algebra systems (CAS), that is a software package which allow manip-
ulation of mathematical expressions in symbolic form.

The proposed formula can complement numerical analyses and be useful to high-
light the potential influence that these anomalies might have on the process of pro-
viding design calculation guidance using the limit state method. Last but not least,
the proposed formula also sheds light in a direct and physically intelligible man-
ner on the effects of preventing the natural ovalisation of the cross-section under
bending, which takes place on account of the well-known von Kármán effect (von
Kármán (1911)).

2 Résumé of some test results

Normally, testing a section of a circular cylindrical shell in purely bending loading
is carried out on the basis that the test specimen deforms according to simple bend-
ing beam theory. Primarily this implies that while the material remains elastic the
application of purely bending moment will induce maximum tensile and compres-
sive strains that are identical in magnitude. A typical test rig for a medium diameter
pipe, of about 700mm diameter, is shown in Fig.1. The test rig applies a four-point
bending condition with the central section of the test pipe assumed to be subjected
to bending action only, with no, or at most very little, shear or axial forces.

The actual implementation of the loading points and supports is shown Fig.2, which
also displays the deformed shape of the pipe.

From the limit state point of view, for load-controlled conditions of design the most
relevant condition is the maximum bearable moment. Conversely, for displacement-
controlled design the most relevant condition is the strain at which the reduction of
load-bearing capacity first occurs.
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Figure 1: Typical four-point bending test arrangement.

 

Figure 2: Actual loading points and supports.

Since the pipe is assumed to be an extremely simple structural element, and the
simple beam theory is supposed to hold true, it has been common practice to assume
that the axial strains have identical values in tension and compression and that the
strains can be calculated directly from the curvature or the vertical displacements
of the central section of the pipe. The ultimate strain values from tests in which the
pipe has been loaded to the point of local buckling have usually been inferred from
measurements of the deformations. Only fairly recently it has become a common
testing procedure in the industry to attach strain gauges to the specimen to measure
axial strains directly.

Some time ago tests were carried out on 152mm diameter pipe to determine the
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minimum curvature to which the tube could be deformed prior to the occurrence of
a reduction of the load-bearing capacity (see Ellinas, Walker, Langfield and Vines
(1985)). An arrangement similar to that in Fig.1 was used, and strain gauges to
measure axial and circumferential strains were attached at intervals of 100mm apart
along the central test section. In the design of the test rig it was assumed that a
central test section of about 5D would suffice to ensure that the end effects due to
the loading conditions would diminish to a negligible level along the major part
of that section. Fig.3 shows results of the axial strain values along the top and
bottom of the pipe section for two levels of the applied loading. It is evident that
the axial strains are fairly uniform along the length of the test section but there are
significant differences in the averaged values of the compressive strains compared
to the tensile strains.
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Figure 3: Results from a 152mm diameter pipe bend test (Ellinas, Walker, Langfield
and Vines (1985))

At that time the evident anomaly between the measured strains and the expected
values vis-à-vis the simple bending theory was not followed up, and even after
checking that the strain gauges were correctly positioned and the instrumentation
was functioning properly the cause of the anomaly was not further investigated.

Some time later, proving tests were carried out on sections of 609mm diameter
pipes containing a thin liner made from a corrosion resistant material (Walker, Holt
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and Wilmot (2003)). The purpose of the tests was to determine accurately the level
of strain to which the pipe could be bent before the liner buckled locally. The
test arrangement of Fig.1 had a loading arm 2m long to create the moment in the
central section of the test pipe. The test section was arranged to be 3.5D. The load
was applied to the test pipe using straight bars and loose yokes around part of the
pipe circumference. A number of axial strain gauges were attached along the top
and bottom centre lines of the pipe at intervals from the support points. The values
of strain were monitored as the load values were progressively increased. Fig.4
shows the values for the top and bottom gauges averaged along the test sections
and plotted against the corresponding value of applied load.

It is evident from Fig.4 that there is a systematic difference between the averaged
strains along the top and the bottom of the pipe. At the maximum load level, the
averaged axial tensile strains were 1.28 times the corresponding averaged compres-
sive strains.

 

Figure 4: Averaged strain values plotted against corresponding values of applied
loading (Walker, Holt and Wilmot (2003): Maximum Ratio of Tensile to Compres-
sive averaged strains = 1.28 (D=609.6mm, t=18.9mm, (D/t=32), X65 material)).
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In view of the importance of the results of the tests in providing the allowable levels
of strain for the lined pipe an investigation was made with regard to the underly-
ing cause of the anomaly. This is described extensively in Guarracino, Fraldi and
Giordano (2008) and in Guarracino, Walker and Giordano (2009) with the aid of
several Finite Element models intended to replicate the conditions in bending tests
or in pipelines that have changes in cross-section and are subjected to bending, with
special attention paid to the constraint arrangements.

The investigation determined that the cause lay in the effect of the imposed oval-
isation applied by the saddles at the load points. This result pointed to a proposal
for the modification of the loading application in which the loads were applied, not
through local stiffening of the pipe wall or saddles, but through the neutral axis of
the pipe, as shown in Fig.5.

The test pipe was fitted with strain gauges, as before, and also with gauges to mea-
sure the ovality of the pipe. The values of the axial strains measured by the gauges
along the test section of the pipe were very uniform. As expected, with the mod-
ified loading and support arrangement, the averaged measured values of compres-
sive strains agreed very closely with the corresponding values of the tensile strains.support arrangement, the averaged measured values of compressive strains agreed very 

closely with the corresponding values of the tensile strains. 

 

 
 

Figure 5: Test arrangement with modified support and load application points. 
 

3 Finite Elements analysis of the effects of testing arrangement 

As anticipated in the previous Section, following the observation of the apparent anomaly 
in the variation of the tensile and compressive strains compared with the values expected 
on the basis of the simple theory of bending, numerical modeling has been carried out to 
investigate the root cause of the anomaly. 

Essentially, it was found that during the test of a short section of pipe, the practical 
loading and support arrangements can result in boundary conditions that may impose 
some degree of ovalisation at the point of load application or, alternatively, decrease the 
development of the natural ovalisation (von Kármán (1911)). It has generally been 
assumed that such boundary effects would have a minor consequence on the 
deformations of the test pipe and would persist for only a short distance along the test 
length.  However, the investigation has shown a hitherto unsuspected mechanism in 
which the imposition or the prevention of the ovalisation at the loading point of the test 
pipe will set up an axial strain system that is additional to the usual axial strain caused by 
simple bending. The conjunction of the two strain systems thus causes a difference 
between the axial compressive and tensile values.   

Fig. 6 shows the finite element simulation of a test arranged as in Figs. 1 and 3 on a 
609.6mm diameter pipe (t=18.9mm). 

Figure 5: Test arrangement with modified support and load application points.
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3 Finite Elements analysis of the effects of testing arrangement

As anticipated in the previous Section, following the observation of the apparent
anomaly in the variation of the tensile and compressive strains compared with the
values expected on the basis of the simple theory of bending, numerical modeling
has been carried out to investigate the root cause of the anomaly.

Essentially, it was found that during the test of a short section of pipe, the practi-
cal loading and support arrangements can result in boundary conditions that may
impose some degree of ovalisation at the point of load application or, alternatively,
decrease the development of the natural ovalisation (von Kármán (1911)). It has
generally been assumed that such boundary effects would have a minor conse-
quence on the deformations of the test pipe and would persist for only a short
distance along the test length. However, the investigation has shown a hitherto
unsuspected mechanism in which the imposition or the prevention of the ovalisa-
tion at the loading point of the test pipe will set up an axial strain system that is
additional to the usual axial strain caused by simple bending. The conjunction of
the two strain systems thus causes a difference between the axial compressive and
tensile values.

Fig. 6 shows the Finite Element simulation of a test arranged as in Figs. 1 and 3 on
a 609.6mm diameter pipe (t=18.9mm).

 

Figure 6: Outline of the Finite Element modelling of a test arranged as in Figs. 1
and 2.

To this purpose the commercially available non-linear Finite Element code, ANSYS®

v.11.0 (2007) was employed. The case under consideration was modeled by means
of 9000 four-nodes SHELL63 elements for an overall length of 8 m. Both the load-
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ing and the support zones were supposed to span over a length of one fourth of the
mean radius of the pipe. In this respect a preliminary mesh refinement sensitivity
analysis was carried out. The material properties of a generic isotropic high-grade
steel, i.e. E =2.07×105 N/mm2 and ν= 0.3, were assumed.

As a matter of fact, the Finite Element analysis confirmed that the rigid loading
yokes at the supports and at the loading points induce some degree of ovalisation
on the pipe and this results in an increased value of the tensile strains at the top of
the pipe. This outcome makes it clear that in test design and result analysis special
attention must be paid to the effects of loading and constraint arrangement of the
pipe being tested.

Fig. 7 shows the values along the pipe axis of the longitudinal strains at the top, at
the bottom and at the side of the pipe, as yielded by the Finite Element analysis.

It may be seen that the effects of the loading and of the constraints propagate in a
quite complex manner along the full length. It is also evident in the figure that at the
mid-span of the model, where the bending moment can be considered constant, the
ratio of the tensile axial strain to the corresponding compressive strain is about 1.25
times. Since generally this is the section of pipe that is assumed to be free from
the boundary support effects and to have strain levels pertaining to simple bending
theory, it can be seen that the analysis confirms the anomaly observed in the tests,
see Fig. 4, and also confirms that the presence of the test loading conditions will
affect the axial strain levels at which local axial buckling will be initiated in a test
pipe.

4 Analytical treatment of the problem by means of an extended Ritz’s method

Given the findings from the experimental tests and the Finite Element analyses, it
was felt that it would have been useful to have an elementary formula which could
be employed to evaluate analytically the propagation of the effect on the mem-
brane strains in the tube wall of the local loading or, alternatively, of the prevented
ovalisation at some section.

Evidently, in order to constitute an effective guidance for test design and results
interpretation and to complement usefully the Finite Element analyses, such a for-
mula has to be as simple as possible. Conversely, the analysis of circular cylin-
drical shells under non axis-symmetric loading conditions poses several problems
and, notwithstanding the fact that for this reason several simplified shell theories
have been proposes in the past (see Calladine (1983)), as a matter of fact very few
analytical solutions are available.

With the aim of keeping the model at a level which could be successfully analysed
to the purpose, the case of the application of two opposite forces, F, acting at some
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Figure 7: Finite Element simulation of a test arranged as in Figs. 1 and 2: strain
values along the pipe axis – Applied Load 1MN.

diameter of an infinitely long tube has been considered. Even if this is not strictly
the case of the loading condition of Figs.1 and 6, for which the Finite Element
results are shown in Fig.7, nevertheless it can be employed to estimate the effects of
the loading transmitted by the yokes and by the supports through the consequential
mean amount of the ovalisation imposed on the cross section. The result can be
added to the solution from pure bending and a first assessment of overall strains
and stresses is thus made possible by hand calculation.

For the solution of the problem, reference is made to an extended Ritz’s approach
(see, for example, Courant and Hilbert (1953), Guarracino and Walker (1999)).

As a matter of fact, the Ritz’s method has been extensively used by structural en-
gineers well through the middle of the twentieth century until it has progressively
lost ground to its more versatile localised form, i.e. the Finite Element Method.
Nevertheless, many formulae of primary practical importance have been found by
this mean, which still form the basis of the understanding of a large number of
mechanical problems.

Basically, the Ritz method leads to a solution which satisfies approximately the con-
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ditions of equilibrium and the static boundary conditions. With a known material
law, the chosen approximate displacements must satisfy the kinematic conditions
and displacement boundary conditions, that is they must be kinematically admissi-
ble. Here reference is made to the extended version of this method, in which the
boundary conditions to be satisfied by the trial functions are only partially fulfilled.

A difficulty of the Ritz’s method certainly consists in the extensive calculations
required, but the appearance of computer algebra systems (CAS), that are software
programs which allow manipulation of mathematical expressions in symbolic form,
has now made possible the treatment of many problems abandoned in the past.

It is also well known that the complexity of the governing equations of the general
linear theory of thin shells motivated the development of a wide range of approx-
imate theories associated with simplifications of these relationships and several
viable shell theories are available for circular cylindrical shells. However, versions
of these theories that correspond to the same level of approximation generally dif-
fer from each other in small ways. Therefore the strain-displacement relationships
adopted in the present work are those from the general linear theory of shells and
simplifications are made a posteriori by neglecting some higher order terms in the
Ritz’s expression of the total potential energy.

The advantage of the proposed procedure lies in the extreme simplicity of its final
expression, which can give a meaningful physical insight into the parameters which
govern the problem at hand and can complement three-dimensional and computa-
tionally expensive Finite Elements analyses. In fact the solution, even if approxi-
mate, provides the possibility of carrying out a synthetic and comprehensive anal-
ysis of the tube state of strain.

Essentially, the development follows steps similar to Timoshenko’s method (see
Timoshenko and Woinowsky-Kreiger (1959)) in deriving the solution to the same
problem in the case of inextensional deformation, with the difference that in the
current treatment the extensional deformation of the mid-surface of the shell is
allowed. Therefore, since the technique is a classical one, only the particular as-
sumptions at the basis of the present formulation are highlighted in what follows.

A circular cylindrical shell is taken into consideration. The cylindrical coordinate
system has the x-axis coincident with the axis of the cylinder . The azimuth, θ ,
and the radial distance,r, are measured in the plane normal to the x-axis. In such a
reference system u, v, and w are the corresponding displacements of a generic point.
As said before, the membrane and bending components of strain are assumed to be
those in the general linear theory of shells (see Calladine (1983)), i.e.

ε̄xx = u,x ε̄θθ = (v,θ −w)/R ε̄xθ = u,θ /R+ v,x

χxx =−w,xx χθθ =−(v,θ +w,θθ )/R2
χxθ =−(v,x +w,xθ )/R

(1)
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where R is the radius of the middle surface of the shell and comma "," indicates
partial differentiation.

It is worth pointing out explicitly that recourse to the Vlasov’s semi-membrane
theory of cylindrical shells (see Vlasov (1964)), very often employed in the analysis
of thin-walled cylindrical tubes, would not capture the essential features of the
problem since imposing

ε̄θθ = 0, ε̄xθ = 0, χxx = 0, χxθ = 0 (2)

leads to a model consisting of innumerable sets of transverse elementary curvilinear
strips connected by hinged bonds. Each such strip works in bending in the plane
of the shell cross section and internal forces are transmitted from strip to strip by
means of rods. The latter can transmit only in-plane normal and shear forces, thus
neglecting the flexural stiffness along the longitudinal fibers of the cylinder.

In order to evaluate the deformation induced by two opposite forces, F , acting
along a vertical diameter at the section of symmetry x = 0, the components of
displacement varying along the length of the cylinder for x ∈ [0,+∞[ are taken in
the form

u = C1 Rα e−α1x
N

∑
n=1

1
n

[An sin(nφ)+Bn cos(nφ)] [M1 sin(α2x)+N1 cos(α2x)]

v = C2 e−α1x
N

∑
n=1

[An cos(nφ)−Bn sin(nφ)] [M2 sin(α2x)+N2 cos(α2x)]

w = C3 e−α1x
N

∑
n=1

n [An sin(nφ)+Bn cos(nφ)] [M3 sin(α2x)+N3 cos(α2x)]

(3)

where α1, ...,N3 are constants that must be calculated for the case of loading at
hand.

This is a noticeable differentiation of the present approach from the classical Timo-
shenko formulation, which assumes the change of curvature in the direction of the
generatrix to be equal to zero.

It must also be pointed out that the derivatives of the displacement field (3) result
discontinuous with respect to the section of symmetry x = 0 and, therefore, the
displacement field cannot be considered kinematically admissible over the whole
length of the tube, that is for x ∈ ]−∞,+∞[. However, the extended Ritz’s method
provides a solution that fulfills the displacement conditions approximately, as well
as the conditions of equilibrium and the static boundary conditions. Actually, the
resulting total potential energy of the system, Π, can be interpreted in a somewhat
weak form with the consequence that in the present case the Ritz’s approximation
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does not necessarily predicts the stiffness of the system to be higher than the actual
one.

As anticipated, the assumption (3) implies a considerable computational effort at a
symbolic level to define the functional Π. In fact, the integration over the whole
cylinder of the strain energy density, i.e.

ϕ =E/
[
2
(
1−ν

2)]{[ε̄xx + ε̄θθ + z(χxx + χθθ )]2

+2(1−ν)
[
(ε̄xθ +2χxθ z)2 /4− (ε̄xx + χxxz)(ε̄θθ + χθθ z)

]} (4)

is required. E and ν stand for the Young’s modulus and the Poisson’s ratio, respec-
tively, and z is the distance from the middle surface. In Eq.(4) the strain components
variation across the shell thickness is approximated to the first order according to
the Kirchhoff’s assumptions, which stipulate the error of the linear theory of the
order of t/R, t being the thickness of the shell.

On account of what has been said above, the whole operation has been performed
with the aid of the symbolic system MATHEMATICA® (Wolfram (1999)).

Following Ritz’s approach, equations for calculating the constants α1, ...,N3 have
been then obtained by imposing the total potential energy to be a stationary value
for a value of the upper bound of summation, N, equal to 4. The latter has been
found adequate to a physically satisfactory representation of the solution. The equa-
tions have been successively solved and the results have been expanded in series,
trigonometrically fit and simplified in order to obtain a practical expression.

The end result of this lengthy procedure can be summarised in the following for-
mula, which provides the top and bottom membrane strain along the cylinder axis
on account of the deformation induced by two opposite forces, F , acting along the
vertical diameter at the mid-span

ε̄xx =−
2
(
1−ν2

)
F

E Rt
e−

βx
2 cosβx (5)

β is given by

β =
π2 4
√

(1−ν2)
4
√

R3/t
(6)

An important finding is that the expression of what can be considered the natural
half-wavelength of the problem, i.e. λ = π/β , results proportional to the term√

R3/t, whereas in the case of circular shells subject to axial symmetric loading, it
is proportional to

√
Rt (see Timoshenko and Woinowsky- Kreiger (1959)).
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Therefore it is confirmed that the effect of the loading represented by two opposite
forces, F , acting along a vertical diameter, cannot be seen as a rapidly decaying
classic local perturbation. This is visualised in Fig.8, where the function cosβx,
which governs Eq.(5) when β is given by Eq.(6), and characterises a solution for
an axisymmetric loading when β is given by

β =
4
√

3(1−ν2)√
Rt

(7)

is shown.

 

Figure 8: Plot along the tube axis of the periodic function governing the present
solution (red) and that for an axisymmetric loading (blue) for values pertaining to
the specimen tested in Fig.4.

Finally, it is worth noticing that the top and bottom mid-surface strain is inversely
proportional to both the radius of the tube, R, and to its thickness, t.

5 Validation of the proposed formula

In order to validate the proposed formula, Eq.(5), Finite Element modeling has
been applied to determine the intensity and the length over which the effects of the
loading propagate and hence influence the membrane axial strains. In order to do
so, a very simple modeling was applied to pipes with different diameters and wall
thicknesses. The modeling consisted in applying a vertical load of 1MN exactly on
a vertical support. In this manner no bending moment was expected along the axis
of the pipe and all the strains were due to the imposed ovalisation of the loaded
section. As seen before, these strains are essentially similar to those which, in
the case of bending tests, add to the bending strains and can cause a significant
alteration in the symmetry with respect to the neutral axis of the section. Again,
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it is shown that this effect cannot be seen as a classic local perturbation, since it
persists for a greater length along the test pipe than has hitherto been assumed.

 
 

 

Figure 9: FEM vs. proposed formula results for a pipe with D/t=16 (diameter
609.6mm, wall thickness 37.8mm) and applied load of 1MN: mid-surface top and
bottom strain values along the pipe axis
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Figure 10: FEM vs. proposed formula results for a pipe with D/t=32 (diameter
609.6mm, wall thickness 18.9mm) and applied load of 1MN: mid-surface top and
bottom strain values along the pipe axis

Figs. 9-11 show a very good agreement between the results from FE analyses and
those from the proposed formula for three different cases, corresponding to D/t
ratios of 16, 32 and 64. In fact, both the value of the strain and the propagation of
the effect are fundamentally captured by the presented formula.



182 Copyright © 2011 Tech Science Press CMES, vol.72, no.3, pp.167-184, 2011

 
 

 

 
 

Figure 11: FEM vs. proposed formula results for a pipe with D/t=64 (diameter
609.6mm, wall thickness 9.45mm) and applied load of 1MN: mid-surface top and
bottom strain values along the pipe axis
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Finally, it is worth reaffirming that the proposed formula can also be applied to
estimate the effects of preventing the natural ovalisation of the cross-section under
bending, which takes place on account of the well-known von Kármán effect (von
Kármán (1911)). In fact, if the ovalisation is restricted by any form of constraints, a
marked asymmetry between the compressive and tensile strains occurs with a turn
round with respect to what has been shown in the previous figures. This is the case
of the results from a 152mm diameter pipe bend test test (Ellinas, Walker, Langfield
and Vines (1985)), shown in Fig.3, where the averaged compressive axial strains
are seen to be about 1.36 times the corresponding values of the tensile strains. The
explanation of this phenomenon is quite simple: preventing the natural ovalisation
under bending can be seen as applying a loading similar to those in Figs. 9-11,
but reversed in sign. The resulting strains will be reversed in sign, too, and, in the
case of Fig. 3, add to the bending strains causing an increase in the value of the
compressive strains and a reduction in the value of the tensile strains.

6 Conclusions

In the present work a simple analytical formulation to evaluate the effects of test
arrangement and boundary conditions on the level of apparent strain has been pro-
vided. Essentially, the formula is an extension of a classical work on circular cylin-
drical shells in the case of inextensional deformation (Timoshenko and Woinowsky-
Kreiger (1959)). By means of the obtained result, the seemingly anomalous values
of measured axial strain in tests can be explained and evaluated very straightfor-
wardly. The proposed formulation also offers a physical insight into the mechanics
of the problem in the fashion of many classical results still widely used in the engi-
neering practice and can constitute a basis for accounting for these effects in design
codes.

Acknowledgement: The author is grateful to the anonymous reviewers for the
suggestions received to improve the paper and convey the results by refraining from
excessively lengthy mathematical developments.
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