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Abstract: This paper investigates the coupling method of the finite element and
the natural boundary element using an elliptic artificial boundary for solving ex-
terior anisotropic problems, and obtains a new error estimate that depends on the
mesh size, the location of the elliptic artificial boundary, the number of terms after
truncating from the infinite series in the integral. Numerical examples are presented
to demonstrate the effectiveness and the properties of this method.
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1 Introduction

In practical applications, many scientific and engineering computing problems,
such as the radiation and diffraction of electromagnetic waves, the fluid flow around
obstacles, etc., often come down to boundary value problems of partial differential
equations in unbounded domains. It has focused great attention for the numerical
solution of this kind of problems to overcome the infinity of domains efficiently
and obtain the appropriate error estimate. Therefore, a lot of methods were pro-
posed in recent decades [Enquist and Majda (1977); Johnson and Nedelec (1980);
Feng (1983); Givoli (1992); Yu (2002); Ying (2006); Delfim (2008); Yu and Huang
(2008); Koyama (2009)].

Based on the natural boundary reduction, the natural boundary integral method was
suggested by Feng and Yu. It can be coupled directly and naturally with the finite
element method by using the same variational principle, where the natural bound-
ary integral equation is the exact, non-reflective and nonlocal artificial boundary
condition. This coupling method leads to a symmetric and coercive bilinear form
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and is called the natural coupling method of FEM and BEM [see Feng (1983); Feng
and Yu (1983); Yu (2002)]. Since this exact artificial boundary condition is just the
Dirichlet to Neumann mapping on the artificial boundary, this method is also called
the DtN method [Keller and Givoli (1989)]. This coupling method not only enables
the natural boundary element method to overcome the limitation of domain shape,
but also enables the classical finite element method to be applied in unbounded
domains and cracked domains. The circular artificial boundary was used for solv-
ing the exterior elliptic PDEs in early years [Han and Wu (1985); Yu (1985); Han
and Bao (2000)] and was generalized later to other artificial boundaries, such as
the ellipse, the strip and the ellipsoid to reduce computational costs and enhance
numerical results [Ben-Porat and Givoli (1995); Han and Bao (2000); Yu and Jia
(2002); Huang, Liu and Yu (2009)].

Yu (1985) obtained the error estimate depended on the radius of the circular arti-
ficial boundary and the number of terms after truncating from the infinite series in
the integral for solving a harmonic equation. Han and Bao (2000) obtained error
estimates for linear elliptic problems outside circular obstacles and in semi-infinite
strips. Huang, Liu and Yu (2009) presented a general ellipsoidal artificial bound-
ary method for three dimensional exterior Poisson problems and obtained the error
estimate depended on the mesh parameter, the number of terms used in the exact
artificial boundary condition, and the location of the artificial boundary.

In this paper, we investigate the coupling method of the finite element and the nat-
ural boundary element using an elliptic artificial boundary for exterior anisotropic
problems in Section 2, deduce a new error estimate that depends on the mesh size,
the location of the elliptic artificial boundary, the number of terms after truncating
from the infinite series in the integral in Section 3, and present numerical exam-
ples to demonstrate its effectiveness and properties in Section 4, and finally make
conclusions in Section 5.

2 The coupling variational problem and its discretization

Consider to solve the following exterior boundary value problem of the anisotropic
elliptic partial differential equations with constant coefficients: a

∂ 2u
∂x2 +b

∂ 2u
∂y2 = f , in Ω,

u = u0, on Γ0,
(1)

where Γ0 is a simple, smooth closed curve surrounding the origin in ℜ2, Ω is the
unbounded domain outside Γ0, f has compact support in Ω, u0 ∈ H

1
2 (Γ0), and

u satisfies the appropriate boundary conditions at infinity. By making an ellip-
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tic artificial boundary curve Γ1 = {(x,y)|αx2 + βy2 = R2} (bβ > aα > 0) to en-
close Γ0 and the support of f , the area Ω is divided into two subdomains, namely
the bounded subdomain Ω1 surrounded by Γ0 and Γ1, and the unbounded subdo-
main Ω2 outside Γ1. By the variable transform, x =

√
aξ ,y =

√
bη , the equation

becomes a harmonic equation in Ω̃ and the elliptic artificial boundary becomes
Γ̃1 = {(ξ ,η)|aαξ 2 +bβη2 = R2}.
By introducing elliptic coordinates (µ,φ): ξ = f0 cosh µ cosφ , η = f0 sinh µ sinφ ,
which gives confocal ellipses for µ > µ1 with common focuses (± f0,0) and Γ̃1 =

{(µ,φ)|µ = µ1,φ ∈ [0,2π]}, where f0 =

√
bβ −aα

aαbβ
R and µ1 = ln

√
aα +

√
bβ√

bβ −aα
,

and by the natural boundary reduction on Γ̃1 [Yu and Jia (2002)], we have the
Poisson formula

u(µ,θ) = e2µ−e2µ1

2π

∫ 2π

0
u(µ1,θ

′)
e2µ+e2µ1−2eµ+µ1 cos(θ−θ ′)dθ ′,

and the natural boundary integral equation
∂u
∂n

=− 1√
J

∫ 2π

0
1

4π sin2 θ−θ ′
2

u(µ1,θ
′)dθ ′,

where −→n = (nξ ,nη) be the outward normal vector to Γ̃1, J = α cos2 θ+β sin2
θ

aαbβ
R2, and

− 1
4π sin2 θ

2
= 1

2π

+∞

∑
−∞

| n | einθ = 1
π

+∞

∑
n=1

ncosnθ .

It can be inferred from the Green formula that to find the solution of the problem
(1) is equivalent to solve the following variational problem:{

find u ∈ Ĥ1(Ω̃1), such that
D1(u,v)+ D̃2(u,v) = f (v),∀v ∈ H1

0 (Ω̃1),
(2)

where

Ĥ1(Ω̃1) = {v ∈ H1(Ω̃1)|v|Γ̃0
= u0},

H1
0 (Ω̃1) = {v ∈ H1(Ω̃1)|v|Γ̃0

= 0},

D1(u,v) =
∫∫

Ω1

(auxvx +buyvy)dxdy =
√

ab
∫∫

Ω̃1

(uξ vξ +uηvη)dξ dη ,

D̃2(u,v) =
√

ab
π

∫ 2π

0

∫ 2π

0

+∞

∑
n=1

ncosn(θ −θ
′)u(µ1,θ

′)v(µ1,θ)dθ
′dθ

for

ds =

√
α cos2 θ +β sin2

θ

αβ
Rdθ
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,

f (v) =
∫∫

Ω1

f vdxdy =
√

ab
∫∫

Ω̃1

f vdξ dη ,

The infinite series in the above integral need to be truncated by finite terms in prac-
tice. Thus, by using the approximate integral boundary condition, the variational
problem (2) is approximated by the approximate variational problem as follows:{

find uN ∈ Ĥ1(Ω̃1), such that
D1(uN ,v)+ D̃N

2 (uN ,v) = f (v),∀v ∈ H1
0 (Ω̃1),

(3)

where D̃N
2 (uN ,v) =

√
ab
π

∫ 2π

0
∫ 2π

0

N
∑

n=1
ncosn(θ −θ ′)uN(µ1,θ

′)v(µ1,θ)dθ ′dθ .

Moreover, by discretizing the approximate variational problem (3), we have dis-
crete approximate variational problem as follows:{

find uN
h ∈ Ŝh(Ω̃1), such that

D1(uN
h ,v)+ D̃N

2 (uN
h ,v) = f (v),∀v ∈ S0,h(Ω̃1),

(4)

where Ŝh(Ω̃1) = {v ∈ Sh(Ω̃1)|v|Γ̃0
= u0}, S0,h(Ω̃1) = {v ∈ Sh(Ω̃1)|v|Γ̃0

= 0}, piece-

wise linear functions on domain Ω̃1 are chosen as the basis functions such that
Sh(Ω̃1) ⊂ H1(Ω̃1) is the finite element solution space on Ω̃1. Let the nodes on the
elliptic artificial boundary Γ̃1 be equally distributed by φi = 2πi

N (i = 0,1, · · · ,N)
in the elliptic coordinates. Then linear algebraic equations QU = F can be ob-
tained by the discrete variational problem (4), where Q = Q1 + Q2, Q1 is from
bilinear form D1(·, ·) and Q2 is from D̃N

2 (·, ·). Specifically speaking, Q1 can be
derived by the finite element method, the non-zero sub-matrix Q2 =

√
ab[qi j]N×N ,

and qi j = 4N2

π3 ∑
∞
n=1

1
n sin4 nπ

N cos 2n(i− j)π
N is the natural boundary element stiffness

matrix on Γ̃1, and F can be derived by u0 and f .

3 The error analysis

Denoting u, uN and uN
h the solutions of variational problem (2), (3) and (4) respec-

tively, and u1 = u|
Γ̃1

and v1 = v|
Γ̃1

, we prove the existence and uniqueness of these
solutions and derive the error estimate between the discrete solution uN

h and the
exact solution u in this section.

Lemma 1. D̃2(u1,v1) and D̃N
2 (u1,v1) are both a semi-definite symmetric and con-

tinuous bilinear form on H
1
2 (Γ̃1).
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Proof. Let u1 =
+∞

∑
n=−∞

aneinθ , a−n = an, v1 =
+∞

∑
n=−∞

bneinθ , b−n = bn, n = 0,1,2, · · · ,

we have

D̃2(u1,v1) =
√

ab
∫ 2π

0

+∞

∑
n=−∞

| n | aneinθ
+∞

∑
m=−∞

bmeimθ dθ = 2π
√

ab
+∞

∑
n=−∞

| n | anbn,

|D̃2(u1,v1)| = 2π
√

ab(
+∞

∑
n=−∞

| n || an |2)
1
2 × (

+∞

∑
n=−∞

| n || bn |2)
1
2

≤ 2π
√

ab(
+∞

∑
n=−∞

(1+n2)
1
2 | an |2)

1
2 (

+∞

∑
n=−∞

(1+n2)
1
2 | bn |2)

1
2

= 2π
√

ab ‖ u1 ‖ 1
2 ,Γ̃1
‖ v1 ‖ 1

2 ,Γ̃1
.

In the same way, we can get

|D̃N
2 (u1,v1)|= |2π

√
ab

N
∑

n=−N
| n | anbn| ≤ 2π

√
ab ‖ u1 ‖ 1

2 ,Γ̃1
‖ v1 ‖ 1

2 ,Γ̃1
,

D̃2(u1,u1) = 2π
√

ab
+∞

∑
n=−∞

| n || an |2≥ 0 and D̃N
2 (u1,u1) = 2π

√
ab

N
∑

n=−N
| n || an |2≥

0. �

It is easy to see the continuity on H
1
2 (Γ̃1) can be further enhanced to H

1
2 (Γ̃1)/P0.

In addition,

D̃2(u1,u1) = 2π
√

ab
+∞

∑
n=−∞

| n || an |2≥ π
√

2ab
+∞

∑
−∞,n6=0

(1+n2)
1
2 | an |2

= π
√

2ab ‖ u1 ‖2
H

1
2 (Γ̃1)/P0

.

That is to say D̃2(u1,v1) is V − elliptic on H
1
2 (Γ̃1)/P0.

Theorem 1. The variational problem (2) and the approximate variational problem
(3) have a unique solution on H1(Ω̃1), respectively.

Proof. By the properties of D1(u,v) and Lemma 1, we know that both D1(u,v)+
D̃2(u1,v1) and D1(u,v) + D̃N

2 (u1,v1) are symmetric and continuous V − elliptic
bilinear forms on H1(Ω̃1). In addition, note that f (v) is a continuous linear function
on H1(Ω̃1). Then we can prove this theorem by the Lax−Milgram theorem. �

Similarly, we have

Theorem 2. The discrete approximate variational problem (4) has a unique solution
uN

h ∈ Sh(Ω̃1). �

Lemma 2. There exists a constant C independent of h and N for the solution uN
h ,

such that

‖ u−uN
h ‖1,Ω̃1

≤C{ inf
v∈Ŝh(Ω̃1)

‖ u− v ‖1,Ω̃1
+ sup

v1∈S0,h(Ω̃1)

| D̃N
2 (u1,v1)− D̃2(u1,v1) |

‖ v1 ‖1,Ω̃1

}.
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(5)

Proof. Equality D1(u,v)+D̃2(u,v) = f (v) of variational problem (2) can be written
as

D1(u,v)+ D̃N
2 (u,v) = D̃N

2 (u,v)− D̃2(u,v)+ f (v),∀v ∈ H1
0 (Ω̃1).

Subtracting the equality D1(uN
h ,v) + D̃N

2 (uN
h ,v) = f (v) of variational problem (4)

from the above, we obtain

D1(u−uN
h ,v)+ D̃N

2 (u−uN
h ,v) = D̃N

2 (u,v)− D̃2(u,v),∀v ∈ S0,h(Ω̃1).

For ∀v ∈ Ŝh(Ω̃1), since uN
h − v ∈ S0,h(Ω̃1), we have

‖ uN
h − v ‖2

1,Ω̃1
≤C[D1(uN

h − v,uN
h − v)+ D̃N

2 (uN
h − v,uN

h − v)]

= C[D1(u− v,uN
h − v)+ D̃N

2 (u− v,uN
h − v)+ D̃2(u,uN

h − v)− D̃N
2 (u,uN

h − v)]
≤ C[‖ u− v ‖1,Ω̃1

‖ uN
h − v ‖1,Ω̃1

+ | D̃2(u,uN
h − v)− D̃N

2 (u,uN
h − v) |].

Therefore,

‖ uN
h − v ‖1,Ω̃1

≤C{‖ u− v ‖1,Ω̃1
+ sup

v1∈S0,h(Ω̃1)

|D̃N
2 (u1,v1)−D̃2(u1,v1)|

‖v1‖1,Ω̃1
}.

The proof follows by the triangle inequality ‖ u−uN
h ‖1,Ω̃1

≤‖ u− v ‖1,Ω̃1
+ ‖ uN

h −
v ‖1,Ω̃1

. �

Theorem 3. For the problems (2) and (4), if u ∈ H2(Ω̃1)∩Hk− 1
2 (Γ̃1),k = 2,3, ...,

then

‖ u−uN
h ‖1,Ω̃1

≤C{h ‖ u ‖2,Ω̃1
+

1
Nk−1 ‖ u1 ‖k− 1

2 ,Γ̃1
}. (6)

Moreover, if Γ̄0 = {(µ̄0,φ)|µ̄0 < µ1,φ ∈ [0,2π]} be the smallest ellipse to enclose
the support of f , then

‖ u−uN
h ‖1,Ω̃1

≤C{h ‖ u ‖2,Ω̃1
+

1
Nk−1e(N+1)(µ1−µ̄0)

‖ u ‖k− 1
2 ,Γ̄0
}, (7)

where C is a constant independent of h and N.

Proof. By Lemma 2, for the first term, we have

inf
v∈Ŝh(Ω̃1)

‖ u− v ‖1,Ω̃1
≤Ch ‖ u ‖2,Ω̃1

.

For the second term, we have
| D̃N

2 (u1,v1)− D̃2(u1,v1) |

= | 2π
√

ab
+∞

∑
|n|≥N+1

| n | anbn |≤ 2π
√

ab
Nk−1 |

+∞

∑
|n|≥N+1

| n |k anbn |

≤ 2π
√

ab
Nk−1 [

+∞

∑
|n|≥N+1

(n2 +1)k− 1
2 | an |2]

1
2 [

+∞

∑
|n|≥N+1

(n2 +1)k− 1
2 | bn |2]

1
2

≤ 2π
√

ab
Nk−1 ‖ u1 ‖k− 1

2 ,Γ̃1
‖ v1 ‖ 1

2 ,Γ̃1
.
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So, the estimate (6) holds, since by the trace theorem we have

| D̃N
2 (u1,v1)− D̃2(u1,v1) |≤ 2π

√
ab

Nk−1 ‖ u1 ‖k− 1
2 ,Γ̃1
‖ v1 ‖1,Ω̃1

.

Moreover, we have

u(µ,φ) = e2µ−e2µ̄0

2π

∫ 2π

0
u(µ̄0,φ

′)
e2µ+e2µ̄0−2eµ+µ̄0 cos(φ−φ ′)dφ ′

= 1
2π

+∞

∑
n=−∞

∫ 2π

0 e−|n|(µ−µ̄0)ein(φ−φ ′)
+∞

∑
m=−∞

ameimφ ′dφ ′

=
+∞

∑
n=−∞

e−|n|(µ−µ̄0)einφ
+∞

∑
m=−∞

am
1

2π

∫ 2π

0 ei(m−n)φ ′dφ ′

=
+∞

∑
n=−∞

ane−|n|(µ−µ̄0)einφ , µ > µ̄0,

where u(µ̄0,φ
′) =

+∞

∑
m=−∞

ameimφ ′ , a−m = am, m = 0,1,2, · · · . Therefore,

u1 = u(µ1,φ) =
+∞

∑
n=−∞

ane−|n|(µ1−µ̄0)einφ .

Finally, we obtain

| D̃N
2 (u1,v1)− D̃2(u1,v1) | = | 2π

√
ab

+∞

∑
|n|≥N+1

|n|ane−|n|(µ1−µ̄0)bn |

≤ 2π
√

ab
Nk−1e(N+1)(µ1−µ̄0) |

+∞

∑
|n|≥N+1

| n |k anbn |

≤ 2π
√

ab
Nk−1e(N+1)(µ1−µ̄0) ‖ u ‖k− 1

2 ,Γ̄0
‖ v1 ‖1,Ω̃1

.

So, the estimate (7) follows. �

4 Numerical Examples

Numerical experiments of the coupling method and its error estimate with the nat-
ural boundary reduction on an ellipse for solving exterior anisotropic problems are
demonstrated as the following.

Example 1. We consider the exterior anisotropic problem: ε
∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, in Ω,

u = u0, on Γ0,

where Ω is an exterior domain with the elliptic inner boundary Γ0 = {(x,y) | x2

3 +
y2 = 1}. By using coordinate transformation x =

√
εξ and y = η , we turn the

original problem into the problem as the following:{
∆u = 0, in Ω̃,

u = u0, on Γ̃0,
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where Γ̃0 = {(µ0,φ)|µ0 = ln
1+

√
ε/3√

1− ε/3
,φ ∈ [0,2π]}. If ϕ(z) = 1

z , then u(x,y) =

Reϕ( x√
ε
+ iy) is the exact solution of original problem and u0 = u|

Γ̃0
. Take the con-

focal elliptic artificial boundary Γ̃1 = {(µ1,φ)|µ1 = 2.5µ0,φ ∈ [0,2π]}. Make the
partition Ω̃1,h with ε = 0.5 as shown in Figure 1. The numerical results for different
mesh sizes h and coefficients ε are shown in Table 1, for different truncation term
numbers N are shown in Figure 2.

Table 1: The maximum error on Γ1,h/m with N = 20 for m=1, 2, 4, 8, 16
mesh ε = 1 ratio ε = 0.5 ratio ε = 0.05 ratio

h 0.0544 0.0370 0.0041
h/2 0.0167 3.2574 0.0169 2.1893 0.0035 1.1714
h/4 0.0040 4.1750 0.0041 4.1219 0.0016 2.1875
h/8 0.0010 4.0000 0.0010 4.1000 5.1101e-04 3.1311
h/16 2.5503e-04 3.9211 2.5111e-04 3.9823 1.2758e-04 4.0054

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Figure 1: Ω̃1h with ε = 0.5 and
µ1 = 2.5µ0.
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Figure 2: |u−uN
h/m|∞,Γ1,h/m w. r. t. N and

m.

Example 2. Assume in Example 1 that ϕ(z) = 1
z3 , then the corresponding numeri-

cal results are shown in Table 2 and Figure 3.

Table 2: Maximum error on Γ1,h/m with N = 20 for m=1, 2, 4, 8, 16
mesh ε = 1 ratio ε = 0.5 ratio ε = 0.05 ratio

h 0.0608 0.0458 0.0024
h/2 0.0322 1.8882 0.0127 3.6063 0.0037 2.2703
h/4 0.0089 3.6180 0.0057 2.2281 0.0024 1.5417
h/8 0.0023 3.8696 0.0012 4.7500 2.1156e-04 11.3443

h/16 5.5542e-04 4.1410 3.1349e-04 3.8279 1.9761e-05 10.7059
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Figure 3: The error in Ex. 2 w.r.t. h and
N.
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Figure 4: The error on µ = 2.5µ0 w.r.t.
µ1.

The maximum errors on µ = 2.5µ0 for different location of the artificial boundary
in Example 1 and 2 are shown in and Figure 4.

Example 3. Assume in Example 1 that Γ̃0 is a rectangle with center at (0,0), then
we have the corresponding results in Table 3 and Figure 5.

Table 3: Maximum error on Γ1,h/m with N = 20
mesh ε = 1 ratio ε = 0.5 ratio ε = 0.05 ratio

h 0.1041 0.1303 0.1389
h/2 0.0234 4.4487 0.0361 3.6094 0.0740 1.8770
h/4 0.0061 3.8360 0.0082 4.4024 0.0423 1.7494
h/8 0.0015 4.0667 0.0020 4.1000 0.0171 2.4737

h/16 3.8447e-04 3.9014 4.9386e-04 4.0497 0.0096 1.7813

Example 4. Assume in Example 2 that Γ̃0 is a rectangle with center at (0,0), then
we have the corresponding results in Table 4 and Figure 6.

Table 4: Maximum error on Γ1,h/m with N = 20
mesh ε = 1 ratio ε = 0.5 ratio

h 0.0460 0.0335
h/2 0.0180 2.5556 0.0243 1.3786
h/4 0.0054 3.3333 0.0063 3.8571
h/8 0.0016 3.3750 0.0016 3.9375

h/16 4.1899e-04 3.8187 4.1505e-04 3.8549

5 Conclusions

We discuss the coupling method with the natural boundary reduction on an elliptic
artificial boundary for solving exterior anisotropic problems, obtain its appropri-
ate a priori estimate and demonstrate the numerical experiments in this paper. The
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Figure 5: The error in Ex. 3 w.r.t. h and
N.
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Figure 6: The error in Ex. 4 w.r.t. h and
N.

coupling method can be accomplished conveniently by coupling directly the stiff-
ness matrix of FEM and the stiffness matrix of natural BEM. This natural coupling
method is effective and its error estimate is verified, too. We can see that: 1) the
error decreases greatly while the truncation term number N increases in the be-
ginning and does not decrease too much later on; 2) the error also depends on the
location of the artificial boundary in a similar way; 3) the error mainly comes from
the mesh size h and is roughly of order O(h2) when N is already not too small and
the location of the artificial boundary is not too nearby, and even if the ratio of
coefficients is very small, only the constant in the error estimate increases. Thus,
it is inadvisable to increase the truncation term number N and the distant between
the artificial boundary and the inner boundary Γ0 too much in order to reduce the
error, because in that way the computational cost from the larger computational do-
main becomes much higher but the error decreases very less. The error is formed
by two items, one is polynomially from the approximation using FEM, the other
is geometrically from a multiplication of two factors about the truncation and the
location. Comparing the three factors, the main burden to reduce the error comes
from FEM for the small mesh size h. But fortunately, the bounded subdomain of
FEM is now confined small enough.
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