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Probabilistic Dynamic Analysis of Vehicle-Bridge
Interaction System with Uncertain Parameters

N. Liu,1 W. Gao1 C.M. Song1 and N. Zhang 2

Abstract: This paper presents the probabilistic dynamic analysis of vehicle-bridge
interaction systems. The bridge’s and vehicle’s parameters are considered as ran-
dom variables as well as the road surface roughness is modeled as random process.
A two-degree-of-freedom spring-mass system is used to represent a moving vehi-
cle and the bridge is modeled as an Euler-Bernoulli beam. From the equation of
motion for the vehicle-bridge coupling system, the expressions for mean value and
standard deviation of bridge response are developed by using the random variable’s
functional moment method. The effects of the individual system parameters and
the road surface roughness on the bridge response are investigated. Monte-Carlo
simulation method is used to verify the approach presented in this paper. The ef-
fectiveness of the proposed method is also demonstrated by numerical examples.

Keywords: Vehicle-bridge interaction system, probabilistic dynamic analysis, ran-
dom parameters, road surface roughness, numerical characteristics.

1 Introduction

The dynamic response analysis of vehicle-bridge system is one of the most cru-
cial steps in bridge design as moving vehicles induced vibrations make significant
contribution to the fatigue of bridges. Over the past few decades, the interactive
problem between vehicles and bridge structures has attracted much more atten-
tion due to the rapid increase in the proportion of vehicles and high-speed vehicles
in highway and railway traffic [Dey and Balasubramanian (1984); Rassem, Gho-
barah, and Heidebrecht (1996); Yang and Wu (2001); Kwasniewski, Li, Wekezer,
and Malachowski (2006); Yin, Fang, Cai, and Deng (2010)]. Fryba [Fryba (1999)]
presented the analytical solutions for simply supported and continuous beams with
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uniform cross-section under moving loads. Green and Cebon [Green and Cebon
(1994)] gave the solution on the dynamic response of an Euler-Bernoulli beam
under a ”quarter-car” vehicle model in the frequency domain using an iterative
procedure with experimental verification. Yang and Lin [Yang and Lin (2005)] in-
vestigated the dynamic interaction between a moving vehicle and the supporting
bridge by means of the modal superposition technique with closed-form solution.
The beam bridge model was extended by Law and Zhu [Law and Zhu (2005)] to an
orthotropic rectangular plate simply supported on a pair of parallel edges under a
stream of moving loads based on the Lagrange equation and modal superposition.
Yang and Chang[Yang and Chang (2009a,b)] studied the extraction of the bridge
frequencies from the dynamic response of a passing vehicle using the beam and
moving spring-mass model.

In the conventional dynamic analysis of a vehicle-bridge interaction system, the ve-
hicle’s and bridge’s parameters are treated as deterministic [Sridharan and Mallik
(1979); Wu and Dai (1987); Muscolino, Ricciardi, and Impollonia (2000); Yang
and Chang (2009a,b)]. The conventional deterministic analysis represents only an
”approximation” of the results due to uncertainties in the structural properties as
well as in the loading processes. Generally speaking, vehicles moving on a bridge
have nondeterministic characteristics because the parameters of different types of
vehicles are different. Parameters of a bridge, i.e. mass, Young’s modulus, and
moment of inertial and so on, are usually having uncertainty resulting from con-
struction and manufacturing tolerances or caused by corrosion of steel and dete-
rioration of concrete during its lifetime. The road pavement roughness also has
significantly random characteristics in vehicle-bridge interaction system. Some re-
search have been carried out on the dynamic response of a bridge deck with the road
surface roughness. Gupta [Gupta, Hughes, and Sellars (1980)] used a sine function
to simulate the road surface roughness. In order to take into account its random
characteristic, a stationary Gaussian random process with certain power spectral
density function is used to describe the road roughness profile [Hwang and Nowak
(1991); Kim, Kawatani, and Kim (2005); Law and Zhu (2005); Ding, Hao, and
Zhu (2009)]. Recently, some pioneering research on stochastic dynamic analysis
of vehicle-bridge interaction systems have been conducted considering uncertain-
ties in bridge parameters or in moving loadings [Ding, Hao, and Zhu (2009); Wu
and Law (2010a) ]. The uncertainty of the moving loadings are caused by the road
surface roughness or vehicle’s speed. However, for real engineering applications
and the quantitative dynamic analysis response of bridges, the uncertainty of ve-
hicle’s parameters should be also included in the analytical model. In addition, it
is very important to investigate the effect of an individual system parameter on the
bridge’s response.
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The most common approach to problems of uncertainty is to model the system
parameters as random variables. Over the past twenty years, probabilistic meth-
ods such as Monte-Carlo simulation method (MCSM) [Marek, Brozzetti, Gustar,
and Elishakoff (2002); Radhika, Panda, and Manohar (2008)], perturbation method
(PM) [Xia, Hao, Brownjohn, and Xia (2002)], stochastic finite element method
[Baroth, Bressolette, Chauvière, and Fogli (2007); Manjuprasad and Manohar (2007)]
and spectral stochastic finite element method (SSFEM) [Ghanem and Spanos (2003);
Gaignaire, Clénet, Sudret, and Moreau (2007); Wu and Law (2010b)] have been
widely used in the static and dynamic analysis of structures with random parame-
ters. To reduce the computational effort and simultaneously investigate the effect of
the individual system parameters on the structural responses, the random variable’s
functional moment Method (RVFMM) has also been developed to analyze struc-
tures with uncertain parameters [Gao (2007); Gao, Zhang, and Dai (2008); Gao,
Song, and Tin-Loi (2009, 2010)].

In this paper, the random variable’s functional moment method is employed to
study the dynamic response of vehicle-bridge interaction system by considering the
effect of the road surface roughness and the uncertainties in bridge’s and vehicle’s
parameters. The moving vehicle is represented by a two-degree-of-freedom vehicle
model and the bridge is treated as an Euler-Bernoulli beam. The expressions for the
mean value and standard deviation of bridge response are developed. The effects
produced by the road surface roughness, bridge’s and vehicle’ parameters on bridge
response are also investigated.

2 Formulation of the vehicle and the bridge model

2.1 Road surface roughness

In this study, the road surface roughness is regarded as a periodic modulated ran-
dom process. In ISO-8608(20) specifications, the road roughness is related to the
vehicle velocity by a formula between the velocity power spectral density (PSD)
and the displacement PSD. The common formulation of displacement PSD of the
roughness is [Honda, Kajikawa, and Kobori (1982); Au, Cheng, and Cheung (2001)]:

Sr(ws) = Ar · (
ws

wso
)−a (1)

where Sr(ws) is the displacement PSD of the road surface roughness, Ar is the
roughness coefficient in m2 /cycle/m, wso is the reference spatial frequency, a is an
exponent of the PSD and ws is the spatial frequency in cycle/m,respectively. In the
time domain, the road surface roughness function r(x) is given by:

r(x) =
N

∑
k=1

([4Ar(
(2πk)
Lcwso

)−2]1/2 · cos(wskx−ϕk)) (2)
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where

wsk = k ·∆ws,k = 1,2, · · ·N,∆ws = 2π/Lc (3)

wso =
1

2π
(4)

Lc is twice the length of the bridge, ϕk is generated between 0 and 2π by using the
Monte Carlo simulation.

2.2 Bridge and vehicle models

In the vehicle-bridge interaction system demonstrated in Fig. 1, the bridge is mod-
eled as an Euler-Bernoulli beam and the vehicle is represented by a quarter-car
model. Over the years various types of bridge models have been used in studies on
bride-vehicle dynamics. Continuum models of simply-supported Euler-Bernoulli
beams are the most popular ones, mainly due to its simplicity and ability to obtain
closed-form solution. The two-degree-of-freedom quarter-car model is generally
reputed to be sufficiently accurate for capturing the essential features of dynamic
performance of a moving vehicle [Gao, Zhang, and Dai (2008)].

Figure 1: Model of a coupled vehicle-bridge system.

The equation of motion for the bridge can be expressed as follows:

ρA
∂ 2W (x, t)

∂ t2 +C
∂W (x, t)

∂ t
+EI

∂ 4W (x, t)
∂x4 = f (x, t)δ (x− vt), (5)

where ρ is the mass density, A is the cross-sectional area, C is viscous proportional
damping, E is the elastic modulus (Young’s modulus) and I is the moment of in-
ertia, respectively. W (x, t) is the displacement function which varies with the time
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t and the location x. f (x, t) is the interactive force, v is the velocity of the vehicle
and δ (x− vt) is the Dirac delta function evaluated at the contact point x = vt.

For a smooth road surface, f (x, t) can be expressed as:

f (x, t) = kt [xu−w]+Ct [ẋu− ẇ]− (mu +ms)g (6)

where kt , Ct , mu and ms are the tire stiffness, tire damping, unsprung mass and
sprung mass of the vehicle, respectively.

Considering the roughness of the road surface, f (x, t) is rewritten as:

f (x, t) = kt [xu−w− r(x)]+Ct [ẋu− ẇ− ṙ(x)]− (mu +ms)g (7)

where r(x) is the road surface roughness of the bridge.

Using the model superposition method, the bridge response can be calculated with
the following equation:

W (x, t) =
∞

∑
j=1

sin
jπx
L

xb j(t) (8)

where xb j(t) is the jth modal displacement and L is the length of the bridge.

3 Analysis of the dynamic response of vehicle-bridge interaction system

3.1 Dynamic response analysis of bridge with smooth road surface

Substituting Eqs. (6) and (8) into Eq. (5) yields:∫ L

0
ρφ

T
j (x)

∞

∑
j=1

φ j(x)ẍb j(t)dx+
∫ L

0
Cφ

T
j (x)

∞

∑
j=1

φ(x)ẋb j(t)dx

+
∫ L

0
EIφ

T
j (x) ·

∞

∑
j=1

∂ 4φ j(x)
∂x4 xb j(t)dx

=
∫ L

0
ρφ

T
j (x)[Kt [xu−W |x=vt ]+Ct [ẋu−Ẇ |x=vt − (ms +mu)g]δ (x− vt)dx

(9)

where φ j(x) = sin jπx
L .

Eq. (9)can be rewritten as:

ρ ẍb j(t) ·
L
2

+Cẋb j(t) ·
L
2

+EI · ( jπ
L

)4 · L
2
· xb j(t) =−(ms +mu)g · sin

jπvt
L

+Kt(xu−W |x=vt) · sin
jπvt
L

+Ct(ẋu−Ẇ |x=vt) · sin
jπvt
L

(10)



84 Copyright © 2011 Tech Science Press CMES, vol.72, no.2, pp.79-102, 2011

Dividing the two sides of Eq. (10) by ρ · L
2 , we have:

ẍb j(t)+
C
ρ

ẋb j(t)+
EI
ρ
· ( jπ

L
)4 · xb j(t) =−2(ms +mu)g

ρL
· sin

jπvt
L

+
2Kt(xu−W |x=vt)

ρL
· sin

jπvt
L

+
2Ct(ẋu−Ẇ |x=vt)

ρL
· sin

jπvt
L

(11)

Assuming that the vehicle mass is much less than the bridge mass [Yang and Lin
(2005)], Eq. (16) can be approximated as:

ẍb j(t)+2ζb jωb j · ẋb j(t)+ω
2
b j · ẋb j(t) =−2(ms +mu)g

ρL
· sin

jπvt
L

(12)

where ωb j = j2π2

L2 ·
√

EI
ρ

, and ζb j = C
2ρωb j

is the jth modal damping ratio of the
bridge.

The solution of Eq. (12) can be obtained by using the Convolution Integral (Duhamel
Integral):

xb j =
1

ωb j

∫ t

0
e−ζb jωb j(t−τ) sinωdb j(t− τ) · (−2(ms +mu)g

ρL
· sin

jπvτ

L
)dτ (13)

Eq. (13) can be rewritten as:

xb j =−2(ms +mu)g
ρLωdb j

∫ t

0
e−ζb jωb j(t−τ) sinωdb j(t− τ) · sin

jπvτ

L
dτ (14)

From Eq. (8) and Eq. (14), the bridge response can be calculated by:

W (x, t) =−2(ms +mu)g
ρLωdb j

∞

∑
j=1

sin
nπx

L

∫ t

0
e−ζb jωb j(t−τ) sinωdb j(t− τ) · sin

jπvτ

L
dτ

(15)

where ωdb j =
√

1−ζ 2
b jωb j
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3.2 Dynamic response of bridge considering road surface roughness

Similarly, substituting Eqs. (7) and (8) into Eq. (5) yields

∫ L

0
ρφ

T
j (x)

∞

∑
j=1

φ(x)ẍb j(t)dx+
∫ L

0
Cφ

T
j (x)

∞

∑
j=1

φ(x)ẋb j(t)dx

+
∫ L

0
EIφ

T
j (x) ·

∞

∑
j=1

∂ 4φ j(x)
∂x4 xb j(t)dx

=
∫ L

0
ρφ

T
j (x)[kt [xu−W |x=vt − r(x)]

+Ct [ẋu−Ẇ |x=vt − ṙ(x)− (ms +mu)g]δ (x− vt)dx

(16)

Eq. (16) can be rewritten as :

ρ ẍb j(t)
∫ L

0
sin2 jπx

L
dx+Cẋb j(t)

∫ L

0
sin2 jπx

L
dx+EI(

nπ

L
)4xb j(t)

∫ L

0
sin2 jπx

L
dx

=−(ms +mu)g
∫ L

0
sin

jπx
L

δ (x− vt)dx+ kt(xu−W |x=vt)
∫ L

0
sin

jπx
L

δ (x− vt)dx

+Ct(ẋu−Ẇ |x=vt)
∫ L

0
sin

jπx
L

δ (x− vt)dx

−
∫ L

0
[ktr(x)+Ct ṙ(x)]sin

jπx
L

δ (x− vt)dx

(17)

Eq. (17) can be further developed as:

ẍb j(t)+2ζb jωb j · ẋb j(t)+ω
2
b j · ẋb j(t) =−2(ms +mu)g

ρL
· sin

jπvt
L

− 2[ktr(x)+Ct ṙ(x)]
ρL

· sin
jπvt
L

(18)

Then, the jth modal displacement can be obtained as:

xb j =− 2
ρLωdb j

∫ t

0
((ms +mu)g− [ktr(x)+Ct ṙ(x)])e−ζb jωb j(t−τ) sinωdb j(t− τ)

· sin
jπvτ

L
dτ

(19)
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Therefore, the bridge response can be expressed as:

W (x, t) =− 2
ρLωdb j

∞

∑
j=1

sin
jπx
L

∫ t

0
((ms +mu)g− [ktr(x)+Ct ṙ(x)])

· e−ζb jωb j(t−τ) sinωdb j(t− τ) · sin
jπvτ

L
dτ

(20)

4 Mean value and variance of bridge response

In this study, the vehicle’s and bridge’s parameters, such as ms, mu, ρ , E and I,
are considered as random variables. The mean value (u) and standard deviation
(σ ) of the each random variable are given respectively. The coefficient of variation
ν = σ/µ is also used to describe the dispersal degree of a random variable. In
the following, the expressions for the mean value and variance of bridge displace-
ment response are developed by means of the random variable functional moment
method (RVFMM) [Gao, Zhang, and Dai (2008)]. The uncertainty of bridge’s pa-
rameters will lead to the randomness of its natural frequencies. Consequently, the
combination of uncertainties in bridge’s dynamic characteristics, system parame-
ters and road surface will result in the randomness of bridge response.

4.1 Numerical characteristics of bridge response with smooth road surface

From Eq. (15) and by using the RVFMM, the mean value of the bridge displace-
ment can be expressed as :

µW (x,t) =−2(µms + µmu)g
S1
√

µρ µE µI

∞

∑
j=1

sin
jπx
µL

∫ t

0
S2 sin(S3) · sin

jπvτ

µL
dτ (21)

where

µI =
1
12

µbµ
3
h

µωb j =
j2π2

µ2
L

√
µE µ2

h
12µρ

S1 = µL

√
1−ζ 2

b j
j2π2

µ2
L

S2 = e−µζb j
µωb j (t−τ) sin µωdb j(t− τ)

S3 =
√

1−ζ 2
b j

j2π2

µ2
L

√
µE µI

µρ

(t− τ)
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The variance of bridge displacement response can be calculated by:

σ
2
W (x,t) = [

∂W(x,t)

∂ms
]2 ·σ2

ms
+[

∂W (x, t)
∂mu

]2 ·σ2
mu

+[
∂W(x,t)

∂ρ
]2 ·σ2

ρ

+[
∂W(x,t)

∂L
]2 ·σ2

L +[
∂W(x,t)

∂ I
]2 ·σ2

I +[
∂W(x,t)

∂E
]2 ·σ2

E

(22)

where

∂W (x, t)
∂ms

=− 2(1+ µmu)g
S1
√

µρ µE µI

∞

∑
j=1

sin
jπ · x
µL

∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ (23)

∂W (x, t)
∂mu

=− 2(1+ µms)g
µAµρ µLµωdb j

∞

∑
j=1

sin
jπ · x
µL∫ t

0
e−µζb j

µωb j(t−τ) sin µωdb j(t− τ)sin
jπvτ

µL
dτ

(24)

∂W (x, t)
∂E

=
4(µmu + µms)g
µAµρ µLµωdb j

∞

∑
j=1

sin
jπ · x
µL∫ t

0
e−µζb j

µωb j(t−τ) sin µωdb j(t− τ)sin
jπvτ

µL
dτ

(25)

∂W (x, t)
∂ I

=
(µmu + µms)g

S1

√
µρ µE µ3

I

∞

∑
j=1

sin
jπ · x
µL

∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

+
(µmu + µms)g
S1
√

µρ µE µI

∫ t

0
S2ζb j

j2π2

µ2
L
·
√

µE

µIµρ

(t− τ)sin(S3)sin
jπvτ

µL
dτ

(26)

∂W (x, t)
∂ρ

=
(µmu + µms)g

S1

√
µ3

ρ µE µI

∞

∑
j=1

sin
jπ · x
µL

∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

+
(µmu + µms)g
S1
√

µρ µE µI

∫ t

0
S2ζb j

j2π2

µ2
L
·
√

µE µI

µ3
ρ

(t− τ)sin(S3)sin
jπvτ

µL
dτ

(27)

∂W (x, t)
∂L

=
(µmu + µms)g

S1

√
µ3

ρ µE µI

∞

∑
j=1

sin
jπ · x
µL

∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

+
(µmu + µms)g
S1
√

µρ µE µI

∫ t

0
S2ζb j

j2π2

µ2
L
·
√

µE µI

µ3
ρ

(t− τ)sin(S3)sin
jπvτ

µL
dτ

(28)
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4.2 Numerical characteristics of bridge response with road surface roughness

Similarly, from Eq. (20) and by using the RVFMM, the mean value of the bridge
displacement considering the road surface roughnee can be expressed as :

µW (x,t) =− 2
S1
√

µρ µE µI

∞

∑
j=1

sin
jπx
µL

∫ t

0
((µms + µmu)g− [µkt µr(x) + µCt µṙ(x)])

·S2 sin(S3) · sin
jπvτ

µL
dτ

(29)

The variance of bridge displacement can be computed by :

σ
2
W (x,t) = [

∂W(x,t)

∂ms
]2 ·σ2

ms
+[

∂W (x, t)
∂mu

]2 ·σ2
mu

+[
∂W(x,t)

∂ρ
]2 ·σ2

ρ

+[
∂W(x,t)

∂L
]2 ·σ2

L +[
∂W(x,t)

∂ I
]2 ·σ2

I +[
∂W(x,t)

∂E
]2 ·σ2

E +[
∂W(x,t)

∂kt
]2 ·σ2

kt

+[
∂W(x,t)

∂Ct
]2 ·σ2

Ct
+[

∂W(x,t)

∂ϕ
]2 ·σ2

ϕ

(30)

where

∂W (x, t)
∂ms

=−
2((1+ µmu)g− [µkt µr(x) + µCt µṙ(x)])

S1
√

µρ µE µI

∞

∑
j=1

sin
jπ · x
µL

·
∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

(31)

∂W (x, t)
∂mu

=−
2((1+ µms)g− [µkt µr(x) + µCt µṙ(x)])

S1
√

µρ µE µI

∞

∑
j=1

sin
jπ · x
µL

·
∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

(32)

∂W (x, t)
∂E

=
4(µmu + µms)g
µAµρ µLµωdb j

∞

∑
j=1

sin
jπ · x
µL∫ t

0
e−µζb j

µωb j(t−τ) sin µωdb j(t− τ)sin
jπvτ

µL
dτ +

2
µAµρ µLµωdb j

·∫ t

0
e−µζb j

µωb j(t−τ) sin µωdb j(t− τ) · [µkt µr(x) + µCt µṙ(x)]dτ

(33)
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∂W (x, t)
∂ I

=
(µmu + µms)g

S1

√
µρ µE µ3

I

∞

∑
j=1

sin
jπ · x
µL

∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

+
2

S1

√
µρ µE µ3

I

·
∫ t

0
S2 sin(S3) · [µkt µr(x) + µCt µṙ(x)]dτ

+
(µmu + µms)g
S1
√

µρ µE µI

∫ t

0
S2ζb j

j2π2

µ2
L
·
√

µE

µIµρ

(t− τ)sin(S3)sin
jπvτ

µL
dτ

+
2

S1
√

µρ µE µI
·
∫ t

0

1
2

ζb j
j2π2

µ2
L
·
√

µE

µIµρ

(t− τ)sin(S3) · [µkt µr(x) + µCt µṙ(x)]dτ

+
(µmu + µms)g
S1
√

µρ µE µI

∫ t

0
S2ζb j

j2π2

µ2
L
·
√

µE

µIµρ

(t− τ)cos(S3)sin
jπvτ

µL
dτ

+
2

S1
√

µρ µE µI
·
∫ t

0

1
2

ζb j
j2π2

µ2
L
·
√

µE

µIµρ

(t− τ)cos(S3) · [µkt µr(x) + µCt µṙ(x)]dτ

(34)

∂W (x, t)
∂ρ

=
(µmu + µms)g

S1

√
µ3

ρ µE µI

∞

∑
j=1

sin
jπ · x
µL

∫ t

0
S2 sin(S3)sin

jπvτ

µL
dτ

+
2

S1

√
µ3

ρ µE µI

·
∫ t

0
S2 sin(S3) · [µkt µr(x) + µCt µṙ(x)]dτ

+
(µmu + µms)g
S1
√

µρ µE µI

∫ t

0
S2ζb j

j2π2

µ2
L
·
√

µE µI

µ3
ρ

(t− τ)sin(S3)sin
jπvτ

µL
dτ

+
2

S1
√

µρ µE µI
·
∫ t

0

1
2

ζb j
j2π2

µ2
L
·
√

µE µI

µ3
ρ

(t− τ)sin(S3) · [µkt µr(x) + µCt µṙ(x)]dτ

+
(µmu + µms)g
S1
√
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(36)

∂W (x, t)
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5 Numerical Simulations

Vehicle’s and bridge’s parameters are considered as random variables in the fol-
lowing examples. The mean value of system parameters used in the numerical
simulations are given in Tables 1 and 2. The vehicle is typical for a lightly damped
passenger car [Türkay and Akçay (2005)].

Table 1: Parameters of the bridge model

Description Notation Value
Length of the bridge L 40m
Moment of inertia I 0.15m4

Damping ratio ζ 0.05
Young’s modulus E 3.2×1010N/m2

Mass density ρ 5200kg/m3

Table 2: Parameters of the vehicle model

Description Notation Value
Sprung mass ms 1600kg
Unsprung mass mu 160kg
Suspension damping Cs 960Ns/m
Tire damping Ct 960Ns/m
Suspension stiffness Ks 1.8×107N/m
Vehicle stiffness Kt 7.2×107N/m

5.1 Random response analysis of vehicle-bridge system with smooth road sur-
face

Two different vehicle’s speed, v = 5m/s and v = 20m/s, are used to investigate the
influence caused by vehicle’s speed on bridge response. The corresponding bridge
displacement responses at mid-span are shown in Figures 2 and 3, respectively.
The amplitude of the bridge mid-span displacement in Figure 3 is bigger than that
in Figure 2, which means the bridge displacement response increases along with
the increase of the vehicle speed. Meanwhile, the period of periodic displacement
response of the bridge is longer for lower moving speed of the vehicle. It can also
be observed from Figures 2 and 3 that the maximum amplitudes of bridge response
at its mid-span do not occur at the time when the vehicle pass this position. The
similar phenomenon can also be found in research literature [Yang and Lin (2005)].
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The bridge’s Young’s modulus, mass density and moment of inertia as well as vehi-
cle’s sprung and unsprung masses are considered as random variables. Their mean
values are shown in Tables 1 and 2. To investigate the effects of system param-
eters on the bridge response, the randomness of each of parameters is considered
separately first and then simultaneously. The coefficient of variation (COV, that is
the ratio of the standard deviation to mean value of a random variable)is assumed
as 0.05 for random variables ms, mu, ρ , E, I. The velocity of vehicle is constant
(v = 5m/s). The standard deviations (SD) of the bridge mid-span displacement re-
sponse are given in Figures 4(a)-(f)to demonstrate the changes of bridge responses
produced by the uncertainty of system parameters. From Figures 4(a)and 4(b), it
can be seen that the vehicle’s sprung and unsprung masses produce the similar ef-
fects on the bridge response. The elastic modulus and inertia moment of area of
the bridge have quite similar influences on the bridge response, and the changes of
the bridge response caused by their uncertainties are bigger than that caused by the
mass per unit, which can be found from Figures 4(c)-(e). Comparing Figures 4(a)-
(b) with 4(c)-(e), it can be observed that the standard deviations of bridge response
caused by the randomness of its own parameters are greater than those caused by
vehicle’ parameters. In other words, vehicle response is more sensitive to the uncer-
tainty of bridge parameters. Figure 4(f) shows that the standard deviation of bridge
response becomes significant big if the randomness of all parameters is considered
simultaneously.

In order to validate the method presented in this paper, Monte Carlo simulation
method is used as a reference approach. The standard deviations obtained by
10000 Monte Carlo simulations are also shown in Figures 4(a)-(f). In addition,
the mean value and standard deviation of bridge mid-span response calculated by
the proposed method and Monte Carlo simulations are given in Figures 5 and 6,
respectively, when the coefficient of variation of all random parameters is taken as
0.1. The relative errors between the results obtained by the two methods and the
consumed time are listed in Tables 3-9.

In general, computational results obtained by the proposed method (RVFMM) are
in good agreement with those computed by the Monte-Carlo simulation method.
The results obtained by the two methods agree with very well when the coefficient
of variation of random system parameters is small as shown in Figure 4 and Tables
3-8. The relative error is increased when the variations of random parameters be-
come bigger as shown in Figure 5 and Table 9. In Table 9, the relative error is still
acceptable when the vehicle’s and bridge’s parameters are considered as random
variables simultaneously and their coefficients of variation are equals to 0.1. The
accuracy of the RVFMM can be improved if the second-order Taylor expansion is
used. It can be expected that the relative errors will be smaller if more simulations
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are also used in the Monte Carlo method. From Tables 3-9, it can be also found that
the time consumed by the Monte Carlo simulation is much greater than that used
by the proposed method.
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Figure 2: Displacement response of bridge mid-span (v = 5m/s,x = 20m).

Table 3: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (m1) = 0.05
RVFMM 1.12E-05 1.71E-05 1.86E-05 1.79E-05 6.25s
MCSM 1.13E-05 1.71E-05 1.86E-05 1.79E-05 7.53hrs
Relative error 0.17% 0.18% 0.22% 0.15%

Table 4: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (m2) = 0.05
RVFMM 1.72e-04 1.07e-04 2.54e-04 2.81e-04 6.38s
MCSM 1.72e-05 1.07e-05 2.55e-05 2.82e-05 7.86hrs
Relative error 0.09% 0.08% 0.39% 0.35%
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Figure 3: Displacement response of bridge mid-span (v = 20m/s,x = 20m).

Table 5: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (E) = 0.05
RVFMM 4.96e-05 1.12e-03 1.15e-03 6.62e-04 5.486s
MCSM 4.95e-04 1.11e-03 1.15e-03 6.64e-04 6.29hrs
Relative error 0.20% 0.90% 0.09% 0.30%

Table 6: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (ρ) = 0.05
RVFMM 3.33e-04 9.15e-04 9.98e-04 7.33e-04 4.256s
MCSM 3.33e-04 9.12e-04 9.98e-04 7.35e-04 5.29hrs
Relative error 0.06% 0.33% 0.07% 0.27%

Table 7: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (I) = 0.05
RVFMM 4.96e-05 1.11e-03 1.16e-03 6.62e-04 4.569s
MCSM 4.96e-04 1.11e-03 1.15e-03 6.63e-04 5.97hrs
Relative error 0.09% 0.13% 0.86% 0.15%
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Figure 4: Standard deviation of bridge mid-span displacement.
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Figure 5: Standard deviation of bridge mid-span displacement (COV of all param-
eters is 0.1).

Table 8: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (all) = 0.05
RVFMM 7.70e-04 1.81e-03 2.15e-03 1.32e-03 12.138s
MCSM 7.66e-04 1.81e-03 2.16e-03 1.32e-03 10.58hrs
Relative error 0.52% 0.08% 0.46% 0.12%

Table 9: Comparison of results obtained from two different methods
Time(s) 1.6 2.8 3.6 4.4 time

COV (all) = 0.1
RVFMM 1.35e-03 3.96e-03 3.33e-03 1.79e-03 13.486s
MCSM 1.33e-03 3.94e-03 3.30e-03 1.77e-03 11.29hrs
Relative error 1.35% 0.53% 1.06% 1.18%

5.2 Random response analysis of vehicle-bridge system with road surface rough-
ness

The road surface roughness of bridge can significantly change the force exerted on
the bridge by the moving vehicle. According to ISO8068 and Honda et al [Honda,
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Figure 6: Mean value of bridge mid-span displacement (COV of all parameters is
0.1).

Kajikawa, and Kobori (1982)], the road surface is considered as a random process
with a Gaussian probability distribution and the road roughness coefficient is as-
suming as 2×10−6m2/rad/m. The interactive force caused by the road roughness
and the moving vehicle is shown in Figure 7 when the velocity of vehicle is 5m/s. It
should be noted that this force is a random process but the effects of the randomness
of vehicle’s and bridge’s parameters are not included.

The bridge’s Young’s modulus, mass density and moment of inertia as well as ve-
hicle’s sprung mass, unsprung masses, tire stiffness and damping are considered
as random variables in this part.The mean value and standard deviation of the dis-
placement response of the bridge mid-span for smooth and rough road conditions
are shown in Figures 8 and 9, respectively. It can be easily observed that the bridge
response is greatly increased when the road surface roughness is considered as
shown in Figure 8. The standard deviation of the rough road condition is also big-
ger than that of the smooth road condition in Figure 9 as expected.
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Figure 7: Interactive force with road surface roughness.

6 Conclusions

The dynamic response of bridge under moving vehicle is investigated in this paper.
The uncertainties in the vehicle-bridge interaction system are considered and vehi-
cle’s and bridge’s parameters are modeled as random variables. Two different road
conditions, smooth road surface and rough road surface, are also included in the
model for the dynamic analysis of the vehicle-bridge coupled system. The modal
superposition method and random variable’s functional moment method (RVFMM)
are employed to predict the first and second moments of the bridge response. The
effects produced by the individual system parameters and road roughness on the
bridge response are demonstrated by numerical examples. The effectiveness of the
presented method are validated by the Monte Carlo simulation method.

The accuracy of the presented method can be improved if the second-order Taylor
expansion is adopted in the RVFMM but it requires more computational effort. The
method can be further developed for dynamic analysis of vehicle-bridge interaction
system using complex models such as bridge and full car,bridge and multi vehicle
as well as vehicle and multi-span bridge models. The RVFMM could be combined
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Figure 8: Mean value of bridge mid-span displacement with different road condi-
tions.
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Figure 9: Standard deviation of bridge mid-span displacement with different road
conditions.
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with other methods rather than superposition method for the dynamic analysis of
train-bridge system if it is modeled as a time-dependent system.
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