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In-Plane Vibration of a Beam Picking and Placing a Mass
Along Arbitrary Curved Tracking

Shueei-Muh Lin1

Abstract: In this study, examine the in-plane vibration of a robot arm picking
and placing a mass along arbitrary curved tracking. This mathematical model is
established. It is a moving mass problem. Due to the effect of movement along
arbitrary curved tracking, the corresponding differential equation is nonlinear with
the time-dependent coefficients and non-homogenous boundary conditions. So far,
a few literatures devoted to investigate this system due to its complexity. The solu-
tion method procedure for this system is presented. It integrates several methods as
the transform of variable, the subsection method, the mode superposition method,
and the Green function method. Meanwhile, the shift function for the transform of
variable is derived. The orthogonality condition for the mode superposition method
is proved. For suppressing vibration and overshoot the boundary control method
is design. The method is verified to be very effective. The dynamic behavior of a
robot arm placing a mass is investigated. It is found that the effect of placing a mass
during the way of movement on the vibration is significant. Finally, the effects of
several parameters on the overshoot and residual vibration are investigated.

Keywords: moving mass problem; picking and placing a mass; arbitrary track;
vibration; semi-analytical solution; structure control

1 Introduction

In engineering, the moving mass problem is important. The conveyed mass may
be solid [Lin, 2009] or fluid [Lin et al., 2008a]. In general, there are four kinds of
moving solid mass problems. The first is the dynamic behavior of beam structures,
such as bridges on railways, subjected to moving loads or masses. Mostly, a uni-
form beam is simply supported and carried a moving load [Fryba 1996; Nikkhoo et
al., 2007]. The second is the vibration characteristics of a rotating shaft subjected
to a moving load or mass [Gu and Cheng, 2004]. This model can simulate dynamic
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behavior of a ball screw and a nut moving along it, which are the key components
of a feed drive system for a machine tool. The third is the axially moving string
and beam problem. Chao and Lai (2003) investigated the boundary control of an
axially moving string. Lee and Jang (2007) investigated the vibration of an axi-
ally moving and simply-support beam. Ghayesh and Balar (2008) and Chang et al.
(2010) investigated the vibration and instability of an axially moving viscoelastic
Rayleigh beam. The fourth is the transverse moving beam problem. It can be used
to simulate a manipulator arm, a moving scanning probe and a transversely moving
spindle [Gu and Piedboeuf, 2003; Brusa1 et al., 2009]. This mathematical model is
different to the previous ones. Park and Youm (2001) investigated the vibration of
a linear moving beam. The boundary conditions were homogeneous. Lin (2009a)
investigated the vibration control of the linear moving beam. The model of the lin-
ear transverse moving beam is composed of a governing differential equation and
a time-dependent boundary condition due to the tip mass inertia force. The end
static electric force is used to successfully suppress the overshoot. Moreover, the
dynamic positioning of a long-distance moving beam is investigated.

The special case of the curvedly moving beam problem is one with constant ro-
tation [Lin, 2008; Lin et al., 2008b]. The coefficients of a governing differential
equation and four boundary conditions of this system are independent to time vari-
able and these equations are homogeneous. Another special case is a rotating beam
with non-constant speed. Lin (2009b) investigated the vibrations of the inward and
outward reciprocating rotating beams. So far, no literature devoted to the vibration
of a beam picking and placing a mass along arbitrary curved tracking.

It is well known that moving mass in high speed induces the overshoot and residual
vibration. The structural control is helpful for suppressing these defaults [Sadek
et al., 2009]. In general, there are two control methods: (1) the passive one such
as the damping suppression of vibration and (2) the active one such as the exter-
nal force control suppression. The later is effective but complicated especially for
the distributed system. The relevant literatures are as follows: Meirovitch (1997),
Gawronski (1998) and Do and Pan (2009) presented the modal control approach.
Weaver and Silverberg (1992) investigated the node control theorem. Sadek et al.
(2009) investigated the boundary control method. In practice, the boundary control
method is simple and effective. This method is usually with the time-dependent
boundary condition. Some literatures [Lee and Lin, 1996 and 1998; Lin, 1998; Lin
and Lee, 2002] investigated the system with the time-dependent boundary condi-
tion. However, these studies are neither for a long-distance moving beam or the
dynamic positioning.

In this study, the mathematical in-plane vibration model of a beam picking and
placing a mass along arbitrary curved tracking is established. The semi-analytical
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solution for this system is derived. The overshoot and residual vibration problems
are investigated here.

2 Governing equations and associated conditions

The governing differential equation of a beam moving in arbitrary curved tracking,
as shown in Figure 1, is derived as follows:
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where p(x, t) =−ρA
[
−d2X

dt2 sinφ + d2Y
dt2 cosφ + x d2φ

dt2

]
. The root displacement ~R0 =

Xe1 +Ye2, as shown in Figure 1a. C is the damping coefficient. The mass per unit
length m = ρA where ρ and A are the density and cross-sectional area of the beam.
W (x, t) is the flexural displacement, E is the Young’s modulus. x is the coordinate
along the beam, t is time and L is the length of the beam. I denotes the area moment
of inertia. N is the centrifugal force. φ is the angle of rotation.

     
(a)                             (b) 

 

Figure 1: Geometry and coordinate system of a moving beam.

The associated boundary conditions are

At x = 0:

W = 0 (2)

∂W
∂x

= 0 (3)
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At x = L:

∂ 2W
∂x2 = 0 (4)
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)2
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)
+ Fcontrol (5)

in which Fcontrol is the external control force to be designed for suppressing the
overshoot and residual vibration. This force depends on the tip deflection W (L, t).
Moreover, the motion of picking and placing the tip mass can be simulated by
considering the tip mass Mtip time-dependent. The corresponding investigations
are made later. In addition, the centrifugal force is

N =−
∫ L

x
Ncdm−MtipNc (L) (6a)

where the overall axial acceleration is

Nc =

[
d2X
dt2 cosφ +

d2Y
dt2 sinφ −

(
dφ

dt

)2

x−2
dφ

dt
∂W (x, t)

∂ t
− d2φ

dt2 W (x, t)

]
. (6b)

Obviously, the last two accelerations of Eq. (6b) are greatly smaller than the first
three terms due to small displacement, (6b) becomes

Nc =
d2X
dt2 cosφ +

d2Y
dt2 sinφ −

(
dφ

dt

)2

x (7)

It should be noted that the coefficients are time-dependent and the system is non-
linear. So far, no literature is devoted to derive the solution and study its physical
phenomenon.

The corresponding initial conditions are expressed as

W (x,0) = W0 (x) ,
∂W (x,0)

∂ t
= Ẇ0 (x) (8)
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For clarity and without the loss of generality, a uniform beam with a tip mass is
considered here. In terms of the following dimensionless quantities
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EIρA
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the dimensionless governing differential equation is
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.

The associated dimensionless boundary conditions are

At ξ = 0:

w = 0 (11)

∂w
∂ξ

= 0 (12)

At ξ = 1:

∂ 2w
∂ξ 2 = 0 (13)

−∂ 3w
∂ξ 3 +mtip
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where

f = fa (τ)+ fw (τ,w(1,τ))+ fcontrol (τ,w(1,τ)) ,

fa (τ) =−mtip

(
−d2x̄

dτ2 sinφ +
d2ȳ
dτ2 cosφ +

d2φ

dτ2

)
,

fw (τ,w(1,τ)) = mtip

(
dφ

dτ

)2

w(1,τ).

The corresponding initial conditions are expressed as

w(ξ ,0) = w0 (ξ ) ,

∂w(ξ ,0)
∂τ

= ẇ0 (ξ ) . (15)

3 Solution method

3.1 Change of variable

By taking a change of dependent variable with a shifting function the original sys-
tem can be transformed to be one composed of one non-homogeneous govern-
ing differential equation and four homogeneous boundary conditions. The relation
among variables is assumed to be

w(ξ ,τ) = w̄(ξ ,τ)+g(ξ ) f (τ,w(1,τ)) (16)

where g(x) is the shifting function and chosen to satisfy the following conditions

g(0) = 0,
dg(0)

dξ
= 0, g(1) = 0,

d2g(1)
dξ 2 = 0,

d3g(1)
dξ 3 =−1,

d4g(1)
dξ 4 = 0

If the shifting function is

g(ξ ) = α0 +α1ξ +α2ξ
2 +α3ξ

3 +α4ξ
4 +α5ξ

5, (17)
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Based on the conditions (17), the shifting function is found

g(ξ ) =−1
3

ξ
2 +

2
3

ξ
3− 5

12
ξ

4 +
1
12

ξ
5. (18)

Substituting Eqs. (9) and (12) into Eqs. (2-8), the transformed differential equation
and corresponding boundary conditions are, respectively
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At ξ = 0:

w̄(0,τ) = 0, (20)

∂ w̄(0,τ)
∂ξ

= 0, (21)

At ξ = 1:

∂ 2w̄(1,τ)
∂ξ 2 = 0, (22)

−∂ 3w̄(1,τ)
∂ξ 3 +mtip

∂ 2w̄(1,τ)
∂τ2 = 0. (23)

The transformed initial condition (15) becomes

w̄(ξ ,0) = w0 (ξ )−g(ξ ) f (0, w̄(1,0)) ,

∂ w̄(ξ ,0)
∂τ

= ẇ0 (ξ )−g(ξ )
d f (0, w̄(1,0))

dτ
. (24)

3.2 Subsection method

Obviously, it is very difficult to solve these implicit differential equations. In this
study, the subsection method is presented as follows:

The displacement is divided into a lot of section and expressed as

w(ξ ,τ) =



w1 (ξ ,τ) , 0 < τ < τ1

w2 (ξ ,τ) , τ1 < τ < τ2
...
w j (ξ ,τ) , τ j−1 < τ < τ j
...
wn (ξ ,τ) , τn−1 < τ < τn

(25)
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w(ξ ,τ) =



w̄1 (ξ ,τ)+g(ξ ) f1 (τ,w(1,τ)) , 0 < τ < τ1
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(26)
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(
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)2
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Because it is implicit and very difficult to solve, the approximate solution is con-
sidered as follows:
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The corresponding approximated equation becomes
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0 < ξ < 1; τ j−1 < τ < τ j (30)

At ξ = 0:

w̄ j(0,τ) = 0, (31)
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∂ w̄ j(0,τ)
∂ξ

= 0, (32)

At ξ = 1:

∂ 2w̄ j(1,τ)
∂ξ 2 = 0, (33)

−
∂ 3w̄ j(1,τ)

∂ξ 3 +mtip
∂ 2w̄ j(1,τ)

∂τ2 = 0. (34)

The corresponding initial conditions are

w̄ j−1 (ξ ,τ j−1) = w j−1 (ξ ,τ j−1)−g(ξ ) f j−1 (τ j−1, w̄(1,τ j−1)) ,

∂ w̄ j−1 (ξ ,τ j−1)
∂τ

= ẇ j−1 (ξ ,τ j−1)−g(ξ )
d f j−1 (τ j−1, w̄(1,τ j−1))

dτ
. (35)

3.3 Mode superposition method

The solution for the equations (31-36) of the j-th section motion can be obtained
by using the mode superposition method. The free vibration mathematical model
of the j-th section motion is listed in Appendix A. One can derive the orthogonality
condition of the eigenfunctions of this model as follows:

∫ 1

0
WiWjdξ +mtipWi (1)Wj (1) =

{
0, i 6= j
εii, i = j

(36)

where Wi is the ith mode shape. The displacement solution of the j-th section
motion can be expressed in the following eigenfunction expansion form:

w̄ j =
∞

∑
i=0

Wi (ξ )Tji (τ) , (37)

Substituting it back the transformed governing equation (31) and the initial condi-
tions (36), multiplying by ‘Wk (ξ ) [1+mtipδ (ξ −1)]’ and integrating in accordance
with the orthogonalty condition (37), one obtains

d2Tjk(τ)
dτ2 + c

dTjk(τ)
dτ

+

[
ω

2
k −
(

dφ

dτ

)2
]

Tjk(τ) = F̄jk(τ), τ j−1 < τ < τ j (38)

where F̄jk (τ) = 1
εkk

∫ 1
0 Wk (ξ ) [1+mtipδ (ξ −1)]p̃(ξ ,τ)dξ .
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The solution of Eq. (39) is expressed as

Tjk (τ) =
2

∑
i=1

CiVji (τ)+Vp jk (τ) , (39)

where Vp jk is the particular solution and
{

Vj1,Vj2
}

are the fundamental solutions
of Eq. (39), which are assumed to satisfy the following normalized condition[

V1 jk (τ j−1) V2 jk (τ j−1)
dV1 jk(τ j−1)

dτ

dV2 jk(τ j−1)
dτ

]
=
[

1 0
0 1

]
(40)

Further, considering the continuity conditions, the solution (40) is expressed as

Tjk (τ) =
[
Tjk (τ j−1)−Vp jk (τ j−1)

]
V1 jk (τ)

+
[

dTjk (τ j−1)
dτ

−
dVp jk (τ j−1)

dτ

]
V2 jk (τ)+Vp jk (τ) , τ j−1 < τ < τ j

(41)

where the particular solution is derived and listed in Appendix B.

4 Numerical results and discussion

To demonstrate efficiency and convergence of the proposed numerical method, the
dynamic positioning of an outward rotating beam is determined, as shown in Figure
1b. The forced term of equation (10) reduces to

p(ξ ,τ) =−(ξ + r0)
d2φ

dτ2 (42)

Assume that the initial displacement and velocity of beam are zero. The beam is
rotated from the origin position to some specified one. The angular acceleration is
expressed as a unit function

d2φ

dτ2 =


0, τ < 0
α, 0 < τ < T/2
−α, T/2 < τ < T
0, τ > T

(43)

where α is the acceleration and T is the period of rotation. High-speed mass move-
ment results in the overshoot and the residual vibration phenomenon as shown in
Figure 2. Moreover, it is observed that the displacement solution determined by the
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Figure 2: Convergence pattern of the presented method. [outward rotating, s(τ) is
the distance of tip track; c=1, r0 = 1, T=1].

proposed method converge very rapidly. Even when the number of subsections is
only 100, the difference between the corresponding one and the converged one is
very small.

Figure 3 shows the influence of the radius of root on the overshoot and the residual
vibration. It is found that the larger the radius of root is, the smaller the overshoot.
In other words, for a fixed tip moving distance, the smaller the root radius is, the
larger the rotating angle and overshoot.

It is well known that the effect of overshoot and residual vibration on the posi-
tioning is significant. These will occur due to too short acceleration time. For
overcoming this fault an active control for suppressing vibration is studied. In
the closed-loop control for suppressing vibration, the control electrostatic force is
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Figure 3: Influence of the root radius r0 on the overshoot and the residual oscillation
of an outward rotating beam.

designed by the uniform control law and expressed as ‘Fcontrol = QEe’ where the
concentrate electric charge Q is constant and the electric intensity is

Ee (τ) =−sign(w(1,τ0))E0, τ0 < τ < τ0 +∆τ, (44)

in which the E0 is constant and the direction of the electric field is adjusted against
the direction of beam displacement. ∆τ is the sampling time of the piezoelectric
sensor measuring the tip displacement. Therefore, the dimensionless electric force
can be expressed as

fcontrol (τ) =−kesign(w(1,τ0)) , τ0 < τ < τ0 +∆τ. (45)

Fcontrol is the dimensionless electrostatic force, FeL2/EI [Lin, 2007]. Figure 4
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shows that the overshooting is greatly decreased by using this control law, espe-
cially for the case with the gain factor ke = 0.3.

 
Figure 4: Influence of the uniform electric control law on the vibration suppression
of a moving beam.

Figure 5a demonstrates the effect of placing mass at different time on the overshoot
and residual oscillation. It is observed from Figure 5a that placing the tip mass
immediately results in the oscillation of higher frequency. The reason is that the
natural frequency of a beam without a tip mass is higher than that of a beam with
one. Moreover, the effect of the placing mass on the overshoot is slight. Figure 5b
shows the influence of the placing mass on the residual oscillation. It is found that
the more the tip mass is placed, the higher the residual oscillation. It is because the
smaller the tip mass attached to the beam is, the higher the natural frequencies.

Figure 6 demonstrates influence of the root radius r0 of an inward rotating beam
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(a) 

 
(b) 

 

Figure 5: Influence of laying down mass at different time on the overshoot and
residual oscillation of an outward rotating beam.
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Figure 6: Influence of laying down mass at different time on the overshoot and
residual oscillation of an inward rotating beam. [c=1, T=2].

and the placing tip mass on the overshoot and the residual oscillation. It is found
that the overshoot of the beam with the root radius r0 = 1, is very small. Moreover,
the larger the root radius is, the greater the overshoot. The reason is that for the
case with the root radius r0 = 1, the effect of the moving acceleration on the tip
mass is almost negligible. It is also discovered that placing the tip mass decreases
significantly the overshoot. This phenomenon is greatly different to that of the
outward rotating.

5 Conclusion

In this study, the mathematical models of the beam moving in arbitrary curved track
are established. The coefficients of the equations are time- and position-dependent
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and nonlinear. The analytical solution for this system is presented. The active
control of electric field for suppressing overshoot and vibration of the moving beam
is verified to be very effective. Beside, the effects of several important parameters
on the vibration of a moving beam are concluded as follows:

• Placing the tip mass immediately results in the oscillation of higher fre-
quency. It is because the natural frequency of a beam without a tip mass
is higher than that of a beam with one.

• For inward rotating system placing the tip mass decreases significantly the
overshoot. But for outward rotating system this effect on the overshoot is
slight.

• The overshoot of the inward rotating beam with the root radius r0 = 1, is very
small. Moreover, the larger the root radius is, the greater the overshoot.
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Appendix A

The characteristic subsystem

∂ 4w̄ j

∂ξ 4 +
∂

∂ξ

(
n(ξ ,τ j−i)

∂ w̄ j

∂ξ

)
+

∂ 2w̄ j

∂τ2 = 0, (A1)

At ξ = 0:

w̄ j (0,τ) = 0 (A2)

∂ w̄ j (0,τ)
∂ξ

= 0 (A3)

At ξ = 1:

∂ 2w̄ j (1,τ)
∂ξ 2 = 0 (A4)

−
∂ 3w̄ j (1,τ)

∂ξ 3 +mtip
∂ 2w̄ j (1,τ)

∂τ2 = 0 (A5)

Appendix B

Derivation of the particular solution of Eq. (40)

In general, the second-order ordinary differential equation with variable coefficients
can be written as

q2(τ)
d2V
dτ2 +q1(τ)

dV
dτ

+q0(τ)V = p(τ) τ ∈ (τ j−1, τ j) (B1)
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where the leading coefficient q2(τ) does not vanish anywhere on the closure do-
main. The equation (B1) in terms of Green’s function is

q2(τ)
d2Eζ

dτ2 +q1(τ)
dEζ

dτ
+q0(τ)Eζ = δ (τ−ζ ) τ&ξ ∈ (τ j−1, τ j) (B2)

One assumes

Eζ (τ) = Gζ (τ)H(τ−ζ ) = [C1 (ζ )V1 (τ)+C2 (ζ )V2 (τ)]H(τ−ζ ) (B3)

and

[C1 (ζ )V1 (ζ )+C2 (ζ )V2 (ζ )] = 0 (B4)

Where the fundamental solutions satisfy the normalized condition (42) and H(τ−
ζ ) is the Heaviside function. Eq. (B2) becomes{

2

∑
i=1

Ci (ζ )
[

q2(τ)
d2Vi (τ)

dτ2 +q1(τ)
dVi (τ)

dτ
+q0(τ)Vi (τ)

]}
H(τ−ζ )

+q2(τ)
[
C1 (ζ )

dV1 (τ)
dτ

+C2 (ζ )
dV2 (τ)

dτ

]
δ (τ−ζ ) = δ (τ−ζ ) (B5)

Because
[
q2(τ)d2Vi(τ)

dτ2 +q1(τ)dVi(τ)
dτ

+q0(τ)Vi (τ)
]

= 0,

q2(ζ )
[
C1 (ζ )

dV1 (ζ )
dτ

+C2 (ζ )
dV2 (ζ )

dτ

]
= 1 (B6)

Based on Eqs. (B4) and (B6), the coefficients of the Green function (B3) is obtained[
C1 (ζ )
C2 (ζ )

]
=

[
V1 (ζ ) V2 (ζ )
dV1(ζ )

dτ

dV2(ζ )
dτ

]−1[
0

1/q2(ζ )

]
(B7)

Further, the particular solution is obtains

Vpk (τ) =
2

∑
i=1

Vi (τ)
∫

τ

τ j

εi (χ)F̄k (χ)dχ, (B8)

where[
ε1 (ζ )
ε2 (ζ )

]
=

1/q2(ζ )
V1 (ζ )V ′2 (ζ )−V2 (ζ )V ′1 (ζ )

[
−V ′1 (ζ )
V1 (ζ )

]
.




