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Abstract: For solving a system of nonlinear algebraic equations (NAEs) of the
type: F(x) = 0, or Fi(x j) = 0, i, j = 1, . . . ,n, a Newton-like algorithm has several
drawbacks such as local convergence, being sensitive to the initial guess of solu-
tion, and the time-penalty involved in finding the inversion of the Jacobian matrix
∂Fi/∂x j. Based-on an invariant manifold defined in the space of (x, t) in terms
of the residual-norm of the vector F(x), we can derive a gradient-flow system of
nonlinear ordinary differential equations (ODEs) governing the evolution of x with
a fictitious time-like variable t as an independent variable. We can prove that in
the present novel Residual-Norm Based Algorithms (RNBAs), the residual-error is
automatically decreased to zero along the path of x(t). More importantly, we have
derived three iterative algoritms which do not involve the fictitious time and its
stepsize ∆t. We apply the three RNBAs to several numerical examples, revealing
exponential convergences with different slopes and displaying the high efficiencies
and accuracies of the present iterative algorithms. All the three presently proposed
RNBAs: (i) are easy to implement numerically, (ii) converge much faster than the
Newton’s method, (iii) do not involve the inversion of the Jacobian ∂Fi/∂x j, (iv) are
suitable for solving a large system of NAEs, and (v) are purely iterative in nature.
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1 Introduction

In many practical nonlinear engineering problems, governed by ordinary or partial
differential equations, the methods such as the finite element, boundary element,
finite volume discretization, and the meshless method, etc., eventually lead to a
system of nonlinear algebraic equations (NAEs). Many numerical methods used
in computational mechanics, as demonstrated by Zhu, Zhang and Atluri (1998),
Atluri and Zhu (1998a), Atluri (2002), Atluri and Shen (2002), and Atluri, Liu and
Han (2006) lead to the solution of a system of linear algebraic equations for a linear
problem, and of a NAEs system for a nonlinear problem.

Over the past forty years, two important contributions have been made towards the
numerical solutions of NAEs. One of these methods has been called the “predictor-
corrector" or “pseudo-arclength continuation" method. This method has its histor-
ical roots in the embedding and incremental loading methods which have been
successfully used for several decades by engineers to improve the convergence
properties when an adequate starting value for an iterative method is not available.
Another is the so-called simplical or piecewise linear method. The monographs by
Allgower and Georg (1990) and Deuflhard (2004) are devoted to the continuation
methods for solving NAEs.

Liu and Atluri (2008) have pioneered a Fictitious Time Integration Method (FTIM)
to solve a large system of NAEs, and Liu and his coworkers showed that high per-
formance can be achieved by using the FTIM [Liu (2008, 2009a, 2009b, 2009c);
Liu and Chang (2009)]. The FTIM whilst robust, still suffers from the drawbacks:
(i) even though it does not involve the computations of ∂Fi(x j)/∂x j and the inver-
sion of the Jacobian matrix ∂Fi(x j)/∂x j of Fi(x j) = 0, i, j = 1, . . . ,n, FTIM is still
slow to converge; (ii) the convergence is only local; (iii) it still involves a time-step
∆t in integrating the ODEs which are used as surrogates in solving the NAEs; (iv)
it is not simply iterative in nature.

The aims of the present paper are to develop: (1) methods which converge faster
than the Newton’s method for solving a system of NAEs, simply based on the scalar
norm of the residual error in solving F(x) = 0; (2) a method which does not involve
the inversion of ∂Fi(x j)/∂x j; (3) a method which is globally convergent, and (4) a
method which is purely iterative in nature and does not involve actually integrating
a system of ODEs, with a time step ∆t in numerical schemes, such as GPS (group
preserving scheme) developed by Liu (2001).

The remainder of this paper is arranged as follows. Some evolution methods for
solving NAEs are briefly sketched in Section 2. In Section 3 we give a theoreti-
cal basis of the RNBA. We start from a continuous manifold defined in terms of
residual-norm, and arrive at a system of ODEs using a "normality condition". Sec-
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tion 4 is devoted to deriving a scalar equation to keep x on the manifold, and then
we propose three strategies to select the weighting factors for the regularized "gra-
dient vector", which automatically have a convergent behavior of the residual-error
curve. In Section 5 we give four numerical examples to test the RNBAs with differ-
ent weighting factors. Finally, the iterative algorithms are summarized in Section
6, and the advantages of the newly developed RNBAs are emphasized.

2 Different evolution methods

We consider a system of nonlinear algebraic equations (NAEs) in their vector form:

F(x) = 0. (1)

In order to eliminate the need for inverting a matrix in the iteration procedure,
Ramm (2007) has proposed a lazy-bone method based on the following evolution
equation:

ẋ =−F(x), (2)

which in general leads to a divergence of the solution.

Liu and Atluri (2008) have proposed another first-order system of nonlinear ODEs:

ẋ =− ν

q(t)
F(x), (3)

where ν is a nonzero constant and q(t) may in general be a monotonically increas-
ing function of t. In their approach, the term ν/q(t) plays a major role of a stabi-
lized controller to help one obtain a solution even for a bad initial guess of solution,
and speed up the convergence. Liu and Chang (2009) combined it with a nonstan-
dard group preserving scheme for solving a system of ill-posed linear equations.
Ku, Yeih, Liu and Chi (2009) employed a time-like function of q(t) = (1 + t)m,
0 < m≤ 1 in Eq. (3), and better performance was observed. In spite of its success,
the FTIM has only a local convergence and needs to determine the viscous damping
coefficients for different equations in the same problem.

To remedy the shortcoming of the vector homotopy method as initiated by Davi-
denko (1953), Liu, Yeih, Kuo and Atluri (2009) have proposed a scalar homotopy
method with the following evolution equation:

ẋ =−
∂h
∂ t

‖ ∂h
∂x‖2

∂h
∂x

, (4)
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where

h(x, t) =
1
2
[t‖F(x)‖2− (1− t)‖x‖2], (5)

∂h
∂ t

=
1
2
[‖F(x)‖2 +‖x‖2], (6)

∂h
∂x

= tBTF− (1− t)x, (7)

in which B is the Jacobian matrix with its i j-component being given by Bi j =
∂Fi/∂x j. This method has global convergence; however, the convergence speed
is quite slow. Ku, Yeih and Liu (2010) combined this idea with an exponentially
decaying scalar homotopy function, and developed a manifold-based exponentially
convergent algorithm (MBECA), based on integrating a system of nonlinear ODEs:

ẋ =− ν

(1+ t)m
‖F‖2

‖BTF‖2 BTF. (8)

Two major drawbacks appear in the MBECA: irregular bursts and flattened behav-
ior appear in the trajectory of the residual-error.

Before the derivation of our new algorithms, we also mention that Hirsch and Smale
(1979) have derived a continuous Newton method governed by the following dif-
ferential equation:

ẋ(t) =−B−1(x)F(x). (9)

It can be seen that the ODEs in Eq. (9) are difficult to calculate, because they involve
an inverse matrix B−1. Usually it is difficult to derive a closed-form solution of
Eq. (9); hence a numerical scheme, such as the Euler method, can be employed to
integrate Eq. (9). For the Newton algorithm we can derive

x(t +∆t) = x(t)−∆tB−1F, (10)

Ḟ = Bẋ =−F, (11)

F(t +∆t) = F(t)−∆tF(t), (12)
‖F(t +∆t)‖
‖F(t)‖

= 1−∆t, (13)

where ∆t is a time stepsize used in the Euler scheme. The last equation means
that the ratio of two consecutive residual errors as given in Eq. (13) is 1−∆t for
the Newton algorithm. All the above methods require to specify some parameters,
such as ν , m and the time stepsize ∆t used in the numerical integrations.
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In this paper we introduce novel and very simple iterative "Residual-Norm Based
Algorithms (RNBAs)", which can be easily implemented to solve NAEs, and thereby
a nonlinear system of partial differential equations when suitably discretized. The
present RNBA can overcome the two major drawbacks as observed in the MBECA:
no irregular bursts and no flattened behavior appear in the trajectory of the residual-
error.

3 Theoretical basis–invariant manifold

We define a scalar function h, depending on the "Residual-Norm" in the error of
F(x) = 0, and a monotonically increasing function Q(t), where t is a fictitious time-
like parameter:

h(x, t) :=
1
2

Q(t)‖F(x)‖2, (14)

and define a surface

h(x, t)−C = 0. (15)

This equation prescribes an invariant manifold in the space of (x, t). By the above
implicit function we in fact have required x to be a function of a fictitious time
variable t. We do not need to specify the function Q(t) a priori, but

√
2C/Q(t)

merely acts as a measure of the residual error in Eq. (1) in time. Hence, we impose
in our algorithm that Q(t) > 0 is a monotonically increasing function of t. We let
Q(0) = 1, and C to be determined by the initial condition x(0) = x0 with

C =
1
2
‖F(x0)‖2. (16)

Usually, C > 0, and C = 0 when the initial value x0 is just exactly the solution of
Eq. (1). However, it is rare if this lucky coincidence happens.

We expect h(x, t)−C = 0 to be an invariant manifold in the space of (x, t) for a
dynamical system h(x(t), t)−C = 0 to be specified further. When C > 0 and Q > 0,
the manifold defined by Eq. (15) is continuous, and thus the following differential
operation carried out on the manifold makes sense. As a "consistency condition",
by taking the time differential of Eq. (15) with respect to t and considering x = x(t),
we have

ḣ =
1
2

Q̇(t)‖F(x)‖2 +Q(t)(BTF) · ẋ = 0. (17)
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Eq. (17) cannot uniquely determine the evolution equation for x; however, we as-
sume a "normality condition" that

ẋ =−λ
∂h
∂x

=−λQ(t)BTF, (18)

where λ is to be determined. Inserting Eq. (18) into Eq. (17), we can solve for λ :

λ =
Q̇(t)‖F‖2

2Q2(t)‖BTF‖2 . (19)

Thus we obtain an evolution equation for x defined by a "gradient-flow" or "normality-
rule":

ẋ =−q(t)
‖F‖2

‖BTF‖2 BTF, (20)

where

q(t) :=
Q̇(t)
2Q(t)

. (21)

Hence, in our algorithm if Q(t) can be guaranteed to be an increasing function of t,
we may have an absolutely convergent property in solving the NAEs in Eq. (1):

‖F(x)‖2 =
2C

Q(t)
. (22)

When t is large, the above equation will force the residual error ‖F(x)‖ to tend to
zero, and meanwhile the solution of Eq. (1) is obtained approximately. Later in
this paper, we prove that the ratio of residual errors derived from Eq. (20) is much
better than that of the Newton algorithm in Eq. (13).

4 Dynamics of the present iterative algorithms

4.1 Discretizing, yet keeping x on the manifold [h(x, t)−C = 0]

Now we discretize the foregoing continuous time dynamics into discrete time dy-
namics:

x(t +∆t) = x(t)−∆tq(t)
‖F‖2

‖BTF‖2 BTF, (23)

which is obtained from the ODEs in Eq. (20) by applying the Euler scheme.
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In order to keep x on the manifold defined by Eq. (22), we can consider the evolu-
tion of F along the path x(t) by:

Ḟ = Bẋ =−q(t)
‖F‖2

‖BTF‖2 AF, (24)

where

A := BBT. (25)

Suppose that we simply use the Euler scheme to integrate Eq. (24):

F(t +∆t) = F(t)−∆tq(t)
‖F‖2

‖BTF‖2 AF. (26)

Taking the square-norms of both the sides of Eq. (26) and using Eq. (22), we can
obtain

2C
Q(t +∆t)

=
2C

Q(t)
−2∆t

2Cq(t)
Q(t)

F · (AF)
‖BTF‖2 +(∆t)2 2Cq2(t)

Q(t)
‖F‖2

‖BTF‖4 ‖AF‖2. (27)

Thus we have the following scalar equation:

a(∆t)2−b∆t +1− Q(t)
Q(t +∆t)

= 0, (28)

where

a := q2(t)
‖F‖2‖AF‖2

‖BTF‖4 , (29)

b := 2q(t). (30)

As a result h(x, t)−C = 0, t ∈ {0,1,2, . . .} remains to be an invariant manifold in
the space of (x, t) for discrete time dynamical systems h(x(t), t)−C = 0, which
will be explored further in the next section.

4.2 Three simple and novel algorithms

Now we specify the discrete time dynamics h(x(t), t) =C, t ∈ {0,1,2, . . .}, through
specifying the discrete time dynamics of Q(t), t ∈ {0,1,2, . . .}. Note that discrete
time dynamics is an iterative dynamics, which in turn amounts to an iterative algo-
rithm.
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Inserting Eqs. (29) and (30) into Eq. (28) we can derive

a0(q∆t)2−2(q∆t)+1− Q(t)
Q(t +∆t)

= 0, (31)

where

a0 :=
‖F‖2‖AF‖2

‖BTF‖4 ≥ 1, (32)

because of the condition

‖BTF‖2 = F · (AF)≤ ‖F‖‖AF‖

by using the Cauchy-Schwarz inequality.

In our previous experience when Q(t) is fixed to be a given function, such as an
exponential function of t, the resultant algorithm has some drawbacks as observed
by Ku, Yeih and Liu (2010). Thus, we let Q(t) to be unspecified here. Instead, we
let Q(t) to be a quantity automatically derived from the new algorithms.

From Eq. (31) we let

s = a0(q∆t)2−2(q∆t)+1 =
Q(t)

Q(t +∆t)
; (33)

thus s signifies the ratio of Q(t)/Q(t +∆t).
We search for a minimum of s with respect to ∆t by setting to zero of the differential
of Eq. (33) with respect to ∆t:

∆t =
1

qa0
. (34)

Inserting it into Eq. (33) we can derive the minimum of s:

s = 1− 1
a0

< 1 (35)

due to the fact that a0 ≥ 1 as shown in Eq. (32). The above property is very impor-
tant. From Eqs. (22) and (33) it follows that

‖F(t +∆t)‖
‖F(t)‖

=
√

s. (36)

Thus, Eq. (35) means that the ratio of two consecutive residual errors is smaller
than one:

‖F(t +∆t)‖
‖F(t)‖

=
√

1−a−1
0 < 1. (37)
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Inserting the value of ∆t from Eq. (34) into Eq. (23) we obtain the first algorithm:

x(t +∆t) = x(t)− 1
a0

‖F‖2

‖BTF‖2 BTF = x(t)− ‖B
TF‖2

‖AF‖2 BTF. (38)

It is interesting that in the above algorithm no parameters and no ∆t are required.
Furthermore, the property in Eq. (37) is very important, since it guarantees the new
algorithm to be absolutely convergent to the true solution. Corresponding to the
gradient vector BTF, we can understand that ‖BTF‖2BTF/‖AF‖2 is a regularized
gradient vector. In front of it, some weighting factor η may be placed to speed-up
the convergence speed.

The above ∆t in Eq. (34) may be too conservative. Thus we specify a certain
constant s = s0 < 1, and from Eq. (33) we have

a0(q∆t)2−2(q∆t)+1− s0 = 0. (39)

We can take the solution of ∆t to be

∆t =
1+
√

1− (1− s0)a0

qa0
, if 1− (1− s0)a0 ≥ 0, (40)

∆t =
1

qa0
, if 1− (1− s0)a0 < 0. (41)

Inserting the above two ∆t’s into Eq. (23) we can derive the second algorithm:

x(t +∆t) = x(t)−η
‖BTF‖2

‖AF‖2 BTF, (42)

where

η = 1+
√

1− (1− s0)a0, if 1− (1− s0)a0 ≥ 0, (43)

η = 1, if 1− (1− s0)a0 < 0. (44)

This algorithm includes a given parameter s0 < 1, but does not need ∆t, whose ratio
of residual errors is given by

‖F(t +∆t)‖
‖F(t)‖

=
√

s0, if 1− (1− s0)a0 ≥ 0, (45)

‖F(t +∆t)‖
‖F(t)‖

=
√

1−a−1
0 , if 1− (1− s0)a0 < 0. (46)

In Eq. (38) the weighting factor η is η = 1. In contrast, the weighting factor η in
Eq. (42) is larger or equal to 1.
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Instead of the constant s0, we may allow s to be a function of a0. We observe that
the following

s = 1− 1
a2

0
(47)

automatically satisfies 1− (1− s)a0 ≥ 0. Hence by solving Eq. (33) for ∆t with the
above s we can derive

∆t =
1+
√

1−a−1
0

qa0
, (48)

and inserting it into Eq. (23) we can obtain the third algorithm:

x(t +∆t) = x(t)−η
‖BTF‖2

‖AF‖2 BTF, (49)

where the weighting factor η is given by

η = 1+
√

1−a−1
0 > 1. (50)

This algorithm also does not involve specifying any parameter and time stepsize.
The ratio of residual errors of this algorithm is

‖F(t +∆t)‖
‖F(t)‖

=
√

1−a−2
0 < 1. (51)

Below we give some numerical tests of the newly proposed Residual-Norm Based
Algorithms (RNBAs), which are respectively labelled in this paper as Algorithm
1, Algorithm 2 and Algorithm 3.

5 Numerical comparisons of three RNBAs

Before the comparisons of presently developed three algorithms, we must stress
that these algorithms do not need the stepsize. However, in order to compare them
with the Newton method we require ∆t to be inserted into Eq. (13) to obtain the
ratio of residual errors belong to the Newton scheme. Thus we use Eq. (34) to
calculate ∆t for Algorithm 1, Eqs. (40) and (41) to calculate ∆t for Algorithm 2,
and Eq. (48) to calculate ∆t for Algorithm 3. Here we fix q(t) = 100/(1 + t) for
a reasonable stepsize of ∆t. Now we apply the new methods of RNBAs to some
nonlinear algebraic equations derived from PDE, ODE, Brown’s problem, and a
nonlinear problem with B singular.
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5.1 Example 1

We consider a nonlinear heat conduction equation:

ut = α(x)uxx +α
′(x)ux +u2 +h(x, t), (52)

α(x) = (x−3)2, h(x, t) =−7(x−3)2e−t − (x−3)4e−2t , (53)

with a closed-form solution being u(x, t) = (x−3)2e−t .

By applying the new algorithms to solve the above equation in the domain of
0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 we fix n1 = n2 = 15, which are numbers of nodal points
in a standard finite difference approximation of Eq. (52). Because a0 defined in
Eq. (32) is a very important factor of our new algorithms we show it in Fig. 1(a) for
Algorithm 1, while the ratio of residual errors is shown in Fig. 1(b), the stepsize is
shown in Fig. 1(c), and the residual errors with respect to the number of steps up
to 200 are shown in Fig. 1(d). From Fig. 1(b) we can see that the numerical perfor-
mance of Algorithm 1 is better than the Newton method, because we have a much
smaller ratio of residual errors than that of the Newton method, which is calculated
from Eq. (13) by inserting the stepsize as shown in Fig. 1(c). The results obtained
from Algorithms 2 and 3 are, respectively, shown in Figs. 2 and 3. In Algorithm
2 we set s0 = 0.9. No matter which algorithm is used the performances are better
than the Newton method as shown in Figs. 1(b), 2(b) and 3(b). It is interesting to
note that the three algorithms lead to three quite different a0 as shown in Figs. 1(a),
2(a) and 3(a). The residual errors for the three new algorithms were compared in
Fig. 3(d). Up to 200 steps they give almost the same residual error; however, their
convergence behaviors are slightly different.

5.2 Example 2

In this example we apply the new algorithms to solve the following boundary value
problem:

u′′ =
3
2

u2, (54)

u(0) = 4, u(1) = 1. (55)

The exact solution is

u(x) =
4

(1+ x)2 . (56)
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Figure 1: For example 1 by the first algorithm showing (a) a0, (b) the comparison of 
the ratio of residual errors of Algorithm1, and of the Newton method, (c) stepsize, 
and (d) residual error. 
 

Figure 1: For example 1 by the first algorithm showing (a) a0, (b) the comparison
of the ratios of residual errors of Algorithm 1, and of the Newton method, (c)
stepsize, and (d) residual error.
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Figure 2: For example 1 by the second algorithm showing (a) a0, (b) the comparison 
of the ratio of residual errors of Algorithm 2, and of the Newton method, (c) stepsize, 
and (d) residual error. 
 

Figure 2: For example 1 by the second algorithm showing (a) a0, (b) the comparison
of the ratios of residual errors of Algorithm 2, and of the Newton method, (c)
stepsize, and (d) residual error.
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Figure 3: For example 1 by the third algorithm showing (a) a0, (b) the comparison of 

the ratio of residual errors of Algorithm 3, and of the Newton method, (c) stepsize, 
and (d) residual errors by three algorithms. 

 
 

Figure 3: For example 1 by the third algorithm showing (a) a0, (b) the comparison
of the ratios of residual errors of Algorithm 3, and of the Newton method, (c)
stepsize, and (d) residual error.
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By introducing a finite difference discretization of u at the grid points we can obtain

Fi =
1

(∆x)2 (ui+1−2ui +ui−1)−
3
2

u2
i , (57)

u0 = 4, un+1 = 1, (58)

where ∆x = 1/(n+1) is the grid length.

We fix n = 9. In Fig. 4 we compare a0, ratios of residual errors, and residual errors
up to 2000 steps. From Fig. 4(c) the three new algorithms were convergent very fast
with exponential decaying by different slopes. Algorithm 1 and Algorithm 2 with
s0 = 0.9 almost have the same convergence speed, and are better than Algorithm 3.
As shown in Fig. 5 the three new algorithms can give accurate numerical solutions
with maximum error smaller than 0.005. It is interesting that a0 defined in Eq. (32)
are all tending to some constants as shown in Fig. 4(a), which indicates that there
exist "attracting sets" in the state space x for the above three algorithms. A further
study will be the behavior of these "attracting sets".

Under the above same conditions we also apply the FTIM and scalar homotopy
method to this problem, where ν and time stepsize used for FTIM are respectively
0.2 and 0.01, and the time stepsize used for scalar homotopy method is 0.0001.
From Fig. 6 we can observe that Algorithm 1 is faster than the FTIM, and much
more faster than the scalar homotopy method.

5.3 Example 3

We consider an almost linear Brown’s problem [Brown (1973)]:

Fi = xi +
j=n

∑
j=1

x j− (n+1), i = 1, . . . ,n−1, (59)

Fn =
j=n

∏
j=1

x j−1, (60)

with a closed-form solution xi = 1, i = 1, . . . ,n.

For n = 5, in Fig. 7 we show a0, the ratios of residual errors, and the residual errors
up to 308 steps, which with an initial guess xi = 0.5, i = 1, . . . ,5 is convergent under
the convergence criterion ε = 10−5 by applying Algorithm 1 to solve the above
nonlinear algebraic equations. The accuracy is very good with a maximum error of
xi, i = 1, . . . ,5 with 5.38×10−5. From Fig. 7(c) it can be seen that Algorithm 1 is
exponentially convergent, with three different slopes.
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Figure 4: For example 2 solved by new algorithms showing (a) a0, (b) the ratio of 
residual errors, and (c) the residual errors of three algorithms. 
 
 
 
 
 
 

Figure 4: For example 2 solved by new algorithms showing (a) a0, (b) the ratio of
residual errors, and (c) the residual errors of three algorithms.

As demonstarted by Han and Han (2010), Brown (1973) solved this problem by the
Newton method, and gave an incorrectly converged solution

(−0.579,−0.579,−0.579,−0.579, 8.90).

For n = 10,30, Brown (1973) found that the Newton method diverged quite rapidly.
Now, we apply our algorithms to this tough problem with n = 30. Under the con-
vergence criterion ε = 10−5 by applying Algorithm 1 to solve the above nonlinear



Simple "Residual-Norm" Based Algorithms 295

 
 
 
 
 

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.001

0.002

0.003

0.004

0.005
N

u
m

er
ic

al
 E

rr
or

Algorithm 3

Algorithm 2

Algorithm 1

 
Figure 5: For example 2 solved by three new algorithms: a comparison of the 
numerical errors. 
 
 
 
 
 
 
 
 
 

Figure 5: For example 2 solved by three new algorithms: a comparison of the
numerical errors.

algebraic equations, the accuracy is very good with a maximum error of x30 with
2.09×10−4, and other errors of xi, i = 1, . . . ,29 are the same 6.987×10−6. From
Fig. 8(a) it can be seen that Algorithm 1 is exponential convergent with several
different slopes.

By applying Algorithm 2 with a given s0 = 0.5, the accuracy is very good with a
maximum error of x30 with 9.79×10−5, and other errors of xi, i = 1, . . . ,29 are the
same 3.21×10−6. Algorithm 2 is accurate than Algorithm 1, even from Fig. 8(b)
it can be seen that Algorithm 2 is exponentially convergent up to 50 steps. We also
applied Algorithm 3 to this case with an initial guess xi = 2, i = 1, . . . ,30. This
algorithm converges much slower than Algorithms 1 and 2 as shown in Fig. 8(c),
and as shown in Fig. 9 the accuracy is also much worse than in Algorithms 1 and
2.
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Figure 6: For example 2 solved by three different algorithms: a comparison of the 
residual errors. 
 
 
 
 
 
 
 

Figure 6: For example 2 solved by three different algorithms: a comparison of the
residual errors.

When n is quite large, the last row of the matrix B at the initial point is almost zero.
So the resulting nonlinear equations are very stiff and ill-conditioned. In Fig. 10 we
show the residual error and numerical error for an extremely ill-posed case of the
Brown’s problem with n = 100. By applying Algorithm 2 with a given s0 = 0.5,
the accuracy is very good with a maximum error of x100 with 3.02×10−4, and other
errors of xi, i = 1, . . . ,99 are the same as 3×10−6. Under a convergence criterion
ε = 10−5, Algorithm 2 converges within 223 iterations.
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Figure 7: For example 3 with n=5 solved by Algorithm 1 showing (a) a0, (b) the ratio 
of residual errors, and (c) residual error. 
 
 
 
 
 
 
 

Figure 7: For example 3 with n = 5 solved by Algorithm 1 showing (a) a0, (b) the
ratio of residual errors, and (c) residual error.

5.4 Example 4

We consider a singular case of B obtained from the following two nonlinear alge-
braic equations [Boggs (1971)]:

F1 = x2
1− x2 +1, (61)

F2 = x1− cos
(

π

2
x2

)
, (62)

B =

[
2x1 −1

1 π

2 sin
(

π

2 x2
) ] . (63)
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Figure 8: For example 3 with n=30 showing the residual errors for (a) Algorithm 1, 
(b) Algorithm 2, and (c) Algorithm 3. 
 
 
 
 
 
 
 

Figure 8: For example 3 with n = 30 showing the residual errors for (a) Algorithm
1, (b) Algorithm 2, and (3) Algorithm 3.

Obviously, on the curve of πx1 sin(πx2/2)+ 1 = 0, B is singular, i.e., det(B) = 0.
They have a closed-form solution (0,1).
As demonstrated by Boggs (1971), the Newton method does not converge to (0,1),
but rather it crosses the singular curve and converges to (−

√
2/2,3/2). We apply

Algorithm 1 to solve this problem within 126 iterations, and the results are shown
in Fig. 11 for a0, the ratio of residual errors, and the residual error by the solid
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Figure 9: For example 3 with n=30 solved by three new algorithms: a comparison of 
the numerical errors. 
 
 
 
 
 
 
 
 
 
 

Figure 9: For example 3 with n = 30 solved by three new algorithms: a comparison
of the numerical errors.

lines. In the termination of iterative process we found that the accuracy of x1 is
1.77× 10−8, and of x2 is 9.50× 10−9. When we apply Algorithm 3 to solve this
problem with 144 iterations, satisfying the convergence criterion ε = 10−8, the re-
sults are shown in Fig. 11 for a0, the ratio of residual errors, and the residual error
by the dashed lines. The accuracy of x1 is 1.3× 10−8, and of x2 is 9.54× 10−9.
Algorithm 3 is slightly more accurate than Algorithm 1. From Fig. 11(b) it can
be seen that even in the terminated step the ratios are still within 0.9, which show
that the two Algorithms 1 and 3 can further get even more accurate solutions, if
we let them run more steps. The accuracy and efficiency obtained in the present
algorithms are much better than those obtained by Boggs (1971), and Han and Han
(2010).
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Figure 10: For example 3 with n=100 solved by Algorithm 2 showing (a) residual 

error, and (b) numerical error. 
 
 
 
 
 
 
 
 
 

Figure 10: For example 3 with n = 100 solved by Algorithm 2 showing (a) residual
error, and (b) numerical error.

6 Conclusions

Three "Residual-Norm Based Algorithms" (RNBAs) were established in this paper.
Although we were starting from a continuous invariant manifold based on the sim-
ple residual-norm and specifying a "gradient-flow" ODEs to govern the evolution
of unknown variables, we were able to derive the final novel algorithms of itera-
tive type without resorting on the fictitious time steps. In summary, the three novel
algorithms could be written concisely as:

xk+1 = xk−η
‖BT

k Fk‖2

‖AkFk‖2 BT
k Fk, (64)
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Figure 11: For example 4 solved by Algorithms 1 and 3 showing (a) a0, (b) ratios of 
residual errors, and (c) residual errors. 
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of residual errors, and (c) residual errors.

in which

Algorithm 1: η = 1, (65)

Algorithm 2: η =
{

1+
√

1− (1− s0)ak if 1− (1− s0)ak ≥ 0,
1 if 1− (1− s0)ak < 0,

(66)

Algorithm 3: η = 1+
√

1−a−1
k , (67)
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where

ak =
‖Fk‖2‖AkFk‖2

‖BT
k Fk‖2 . (68)

Algorithms 1 and 3 possess a major advantage that they do not need any param-
eter in the formulations; however, a suitable choice of s0 < 1 in Algorithm 2 can
sometimes speed-up the convergence of iterations. We have proved that all the
three novel algorithms are convergent automatically, and all are much better than
that of the Newton method. Several numerical examples of nonlinear PDE, nonlin-
ear ODE, nonlinear Brown problem with large dimension, and a singular nonlin-
ear equations system, were tested to show the efficiency and accuracy of RNBAs.
Indeed, in most situations we observed exponential convergences with different
slopes in the iteration process. The RNBAs are easy to implement numerically,
do not involve the inversions of the Jacobian matrices, and they can solve a large
system of nonlinear algebraic equations very rapidly.
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