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A High-Fidelity Cable-Analogy Continuum Triangular
Element for the Large Strain, Large Deformation,

Analysis of Membrane Structures

P.D.Gosling1,2 and L. Zhang2

Abstract: The analysis of a continuum membrane by means of a discrete net-
work of cables or bars is an efficient and readily tractable approach to the solution
of a complex mechanics problem. However, is so doing, compromises are made in
the quality of the approximation of the strain field. It is shown in this paper that the
original form of the cable-analogy continuum triangle formulation is degraded by
an inherent assumption of small strains in the underlying equations, in which the
term "small" is shown to be "negligibly small". A revised version of this formula-
tion is proposed in which a modification to the basic formulation may be made to
reduce the error. However, this approach is shown to have convergence challenges,
but provides a "patch" to "fix" existing codes presently used in fabric architecture
engineering practice. Based on Green’s strain, a new three node triangular element
is presented in this paper and provides a rigorous solution to the problem of as-
sumed small strains. The formulation has been developed within the cable-analogy
framework, and makes use of the dynamic relaxation solver. It is shown to be
accurate, efficient, and capable of dealing with issues such as wrinkling.

Keywords: Membrane structure analysis; small strains; large deformations; con-
stant strain triangle; architectural engineering.

Notation

A Element surface area

ax,ay,az The sub-terms in the function of the transformation between the
global nodal coordinate system

αc An iteration coefficient for deriving B matrix of meso CST ele-
ment.
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αw The angle of wrinkling direction and local X axis

bx,by,bz The sub-terms in the function of the transformation between the
global nodal coordinate system

B,BL,BNL Strain-displacement matrix, linear and non-linear components

cx,cy,cz The sub-terms in the function of the transformation between the
global nodal coordinate system

δi Displacement vector of presedo cable

δ1,δ2,δ3 Extension of triangular element sides

∆ A function of all the higher order terms in the small strain CST
element.

δpq The nodal displacement of pth node in the qth direction.

EX ,EY Young’s Modulus along orthogonal axes

[Emod ] A modified elastic stiffness matrix for wrinkling

F Applied load vectors

Fpre Pre-defined designed prestress

GXY The shear modulus across X and Y

γXY The local shear stress across local axis X and Y Displacement
along X axis

J Jacobian

[Ktr
E ] The elastic stiffness matrix of the triangular element

[K pc
δ

] The geometric stiffness matrix

Kpq The pth nodal stiffness selected from the terms of the element stiff-
ness matrix of node q

l A cable element of current length

Mpq The fictitious nodal mass of pth node in the qth direction

[N] Element shape functions
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νY X Possion’s ratio in Y direction etc.

ω Modification coefficient on the stiffness matrix due to wrinkling

P The penalization parameter applied the modification of element
stiffness in case of wrinkling

PN Axial force in linear element

PA,PB Force vectors at the geometry configuration A and B

Ppq The external load vector of pth node in the qth direction.

[R] The transformation matrix applied in the wrinkling procedure

Rm Membrane element reaction force vectors

Rc Cable element reaction force vectors

Rpq The out-of-balance nodal force (or residual) of pth node in the qth

direction

σ A surface element of isotropic stress

σI Maximum element principal stress

σII Minimum element principal stress

σX Element Stress along X axis

σY Element Stress along Y axis

σi Element strains in presedo cable

σn The normal stress

σI,σ11 The maximum element principal stress

σII,σ22 The minimum element principal stress

σ0 Stress vectors from the pretension

σE Stress vectors from the elastic deformation

σ
p
min Minimum principal membrane stress

σ
p
per A predefined lower limit of membrane stresses
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T Cable element tension

[T ] Transformation Matrix

T1, T2, T3 The element side force

Tc1, Tc2, Tc3 The pseudo cable element forces

{Tc} The linear element force vector

T c Transformation vector for cable elements

τXY Element Shear Stress between X and Y axis

θp The angle between wrinkle direction and local X axis

Ud The nodal displacements in local coordinate system

ud The nodal displacements in global coordinate system

uA,uB Displacements at the geometry configuration A and B

xi,yi,zi The global nodal coordinates of ith node.

xp,yp,zp The global coordinates of a single point p along the local Y axis

1 Introduction - membrane structure analysis and design: principles and
practice

The analysis and design of membrane structures is clearly not in its infancy. The
initial use of physical models Otto (1971) (Figure 1) has long been replaced by
numerical simulation. Arguably these methods are generally based on the princi-
ples of the finite element method in which, in the present context, an arbitrarily
shaped continua for which an exact closed-form solution is not normally available,
is replaced by combining smaller "elements" whose behaviour is prescribed within
a possible set. An approximate solution is obtained to the original problem by
solving a set of equations developed from these combined "elements".

The analysis of membrane-type structures was not a priority during the initial de-
velopment of the finite element method. Challenges in the field of numerical sim-
ulation were more associated with plates and shells, material non-linearity, and
dynamics. Geometric non-linearity was also not a major focus of research in a de-
velopment context as it was less significant than plasticity for many engineering
applications. This is with the exception of aeronautical engineering, for example,
but where geometric non-linearity is associated with plates and shells as opposed
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Figure 1: Exploring potential membrane geometries with different boundaries us-
ing soap film

to purely membrane-type structural responses.

Concurrent with the development of simulation methodologies, analysis methods
and associated computer technologies aimed to achieve analyses of sufficient de-
tail and complexity but within acceptable timescales. Day Day (1965) proposed
the use of the dynamic relaxation method as a means of solving non-linear static
problems in structural mechanics. The primary advantage of the approach arose
from the need to store only the diagonal terms of the structure stiffness matrix and
the decoupling, or linearisation, of the equilibrium equations, negating the need
for matrix inversion. From a computational perspective, the numerical model was
much more compact and tractable than an equivalent matrix-based formulation.
The issue of selecting appropriate damping coefficients to damp the (non-physical)
oscillations of the simulated structure was circumvented by the introduction of the
concept of kinetic damping, resulting in a highly efficient & generally robust solu-
tion algorithm for non-linear problems.

In the present context, dynamic relaxation was initially used for the analysis of ca-
ble and cable net structures, with geometric non-linearity introduced through the
ratio of the axial load in the cable and the cable length. This approach proved to
be computationally highly efficient and accurate. Barnes Barnes (1980) using the
same basic principles to analyse membrane structures as cable nets. The key to
the approach was to define a cable-analogy in which the cable stiffnesses and axial
loads represented an acceptable approximation to a continuum. A suitable choice
was the constant strain triangle, in which the element sides exhibit constant forces
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and stiffnesses along their lengths. As such, the continuum constant strain trian-
gle, may be replaced by a set of three cables (or bars in the case of a compressive
side force). This is different to assuming cables orientated in the direction of the
fabric warp and fill, such as in the case of the force density method, for example,
where the shear of the fabric, and perhaps Poisson’s effects cannot be represented.
Whilst it is generally accepted that the constant strain triangle may not be the best
element for stress analysis, using the cable-analogy it does provide the basis for the
development of a very efficient computational methodology for the geometrically
non-linear analysis of membrane structures. Consistent with the principle of all
finite element-based approaches, accuracy increases as the mesh is refined.

Barnes Barnes (1976) showed that it is possible to represent the continuum constant
strain triangle using a triplet of cables by the repeated application of the expression
describing strains at an inclined plane. In so doing, the continuum strain field may
then be represented by the extensions of the element sides which can then be used
as the degrees-of-freedom in a finite element strain-displacement type matrix to de-
fine the elastic stiffness matrix. The element geometric stiffness matrix is derived
from the element side forces and lengths, with the former being functions of the
continuum prestress and strains.

Therefore, the basis of converting a continuum membrane analysis into an equiva-
lent discrete cable net analysis is the adoption of a constant strain triangle, where
the continuum strains may be represented by the element side extensions. As such,
at the element level, and as is shown in this paper, the quality of the numerical
model relies initially on the the expression describing strains at an inclined plane.

The principle of the transformation between a continuum to a discrete network has
been shown to be computationally effective and efficient in the analysis of mem-
brane structures. Subsequent developments extending the basic capability to in-
clude boundary cables in the analysis automatically and the formulation of beam
elements to enable the coupled analysis of the supporting structure with the mem-
brane, led to its early adoption in engineering practice and its continued extensive
use Barnes (1999). However, analysis and solution anomalies have been observed
during this period, some of which are described in this paper. It is demonstrated in
the initial section of this paper that these solution anomalies are related to the ex-
pression describing strains at an inclined plane and forming the basis of the element
formulation. This expression assumes small strains. It is shown that for even very
small deformations, strain errors are introduced into the element stiffness matrices
that then result in significantly inaccurately predicted stresses.
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In practice, the solution anomalies have been interpreted as part of the simulation
and design process, leading to the final design. As will all design, this involves
varying degrees of engineering judgment. The process is also supported by the
adoption a safety factors, which naturally may be increased as the level of uncer-
tainty is increased. In addition to uncertainties in loading and material properties,
this uncertainty will also include modelling uncertainty, ranging from the nature of
the constitutive model used to describe the fabric in the present context, through to
the quality of the mesh discretisation and assumptions made about support struc-
tures and details. Clearly, in reducing any uncertainty a more efficient design would
normally be expected to result. However, the quality of a simulation tool will be
expected to have far greater significance in the near future.

CEN250 working group 5 has been convened to develop a Eurocode for the anal-
ysis and design of membrane structures. Eurocode 0 regulates the basic reliability
requirement for different types of structures, defined according to the importance
of the structure. Whilst a membrane structure is generally considered to be a new
structure type, it must also be compliant with safety requirements in the building
and construction system. Of course, Eurocode 0 only provides a statement of a gen-
eral reliability requirement. The exact safety index specific for a given membrane
structure may be calculated on a case-by-case basis, and will generally vary from
one to another. It is the limiting value, and its calculation, that is of importance. As
such, it is essential that the analysis tool is accurate.

In this paper we concentrate on analysis formulations in the context of the Eurocode
framework requirements for accuracy of the simulation. We present the principles
of the 3-node constant strain triangular element based on a geometrically nonlinear
cable analogy approach with a linear strain function and an assumption of small
strains. The anomalies exhibited by the element formulation in simulating the be-
havior of a continuum in the presence of shear strains in particular is demonstrated
and discussed. A modified version of this basic element is proposed based on in-
cluding higher-order strain terms. The revised element is shown to perform better
than the original version, but as not all higher-order terms can be included, large
strains fail to be represented accurately. Convergence is not always assured. This
element is denoted here as a meso-strain formulation.

It should be noted that strictly, neither of the aforementioned formulations pass the
patch test. To achieve this most fundamental of requirements, the cable-analogy
principle is retained, but the relationship between the element strains and side
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lengths is completely revised. In defining the strain-displacement relations, the
original expression describing strains at an inclined plane has been replaced by a
classical finite element approach based on Green’s strain for large deformations.
Therefore, from a practical perspective, the implementation of the new element
formulation can be achieved by modifying existing analysis codes. Dynamic relax-
ation is used to solve the resulting state equations.

In addition to summarising the principles of the existing constant strain triangule
(CST) element, the two new CST formulations (termed meso and large strain) are
presented in this paper. The original small strain formulation has been enhanced
by the inclusion of some higher-order terms to create the meso-strain version of the
CST. A large deformation CST element formulation is detailed that abandons the
original strain-displacement approach and is based on a typical finite element phi-
losophy, with all higher-order terms included in a non-linear continuum framework.
The capabilities of the elements are demonstrated through a number of benchmark
problems, including wrinkling.

2 CST small strains formulation

The original form of the constant strain triangle element was, arguably, motivated
by a requirement for computational efficiency and also by a desire to analyse
a membrane as a cable net, for which the computational mechanics was more
straightforward. Consequently, the CST became a good candidate element because
of the characteristic of having constant values of strain along each of its three sides,
meaning that the membrane could be analysed as a geometrically non-linear cable
net or truss. We summarise the development of the element in its original form to
demonstrate the principle of the formulation.

Referring to Figure 2, (A′C′-AC)/AC describes the strain normal to the plane FB
arising from the normal stress σn. Considering the triangles ACD and A′C′D′, and
defining du as the increase in length from AD to A′D′, and dv the increase in length
from CD to C′D′, then,

A′D′ = AD+dU = AD
(

1+
dU
AD

)
= AD(1+ εX)

C′D′ = CD+dV = CD
(

1+
dV
CD

)
= CD(1+ εY ) (1)

in which, εX = ∂U
∂X and εY = ∂V

dY . Similarly,
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A′C′ = AC(1+ εn) (2)

7

C ′D′ = CD + dV = CD

(
1 +

dV

CD

)
= CD(1 + εY ) (1)

in which, εX = ∂U
∂X

and εY = ∂V
dY

. Similarly,

A′C ′ = AC(1 + εn) (2)

-

3

6

X,U

Y, V

σn

A F D

B
C

E
θ

(a) Unstrained

A′
D′

B′ C ′

E ′

γ

γXY
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Figure 2: Deformed plane element.

In the triangle A′C′D′ we have:

A′C ′2 = A′D′2 + C ′D′2 − 2A′D′ · C ′D′cos(
π

2
+ γXY ), (3)

or,

AC2(1 + εn)2 = AD2(1 + εX)2 + CD2(1 + εY )2 + 2AD(1 + εX)CD(1 + εY )sin(γXY ) (4)

If it is assumed that strains are very small, sin(γXY ) ≈ γXY and second order powers may be
neglected, we obtain:

AC2(1 + 2εn) = AD2(1 + 2εX) + CD2(1 + 2εY ) + 2AD · CDγXY (5)

which, with AC2 = AD2 + CD2, reduces to,

AC2(2εn) = AD2(2εX) + CD2(2εY ) + 2AD · CDγXY (6)

Dividing through by 2AC2 and introducing cos2θ = AD2

AC2 and sin2θ = CD2

AC2 ,

εn = εXcos2θ + εY cos2θ + γXY cosθsinθ (7)

If the direct strain in the element side i (Figure 3) is denoted as εi , and local orthogonal
strains defined as {ε}T = {εX εY γXY },then,

εi = εXcos2θi + εY sin2θi + γXY sinθicosθi (8)

where, θi is the anti-clockwise angle between the element side i and the local X axis, and
i = 1 → 3, and εX and εY are the direct strains in the local X and Y directions, respectively,
with the local shear stress γXY . The extensions of the side lengths can thus be expressed as,

Figure 2: Deformed plane element.

In the triangle A′C′D′ we have:

A′C′2 = A′D′2 +C′D′2−2A′D′ ·C′D′cos(
π

2
+ γXY ), (3)

or,

AC2(1+ εn)2 = AD2(1+ εX)2 +CD2(1+ εY )2 +2AD(1+ εX)CD(1+ εY )sin(γXY )
(4)

If it is assumed that strains are very small, sin(γXY )≈ γXY and second order powers
may be neglected, we obtain:

AC2(1+2εn) = AD2(1+2εX)+CD2(1+2εY )+2AD ·CDγXY (5)

which, with AC2 = AD2 +CD2, reduces to,

AC2(2εn) = AD2(2εX)+CD2(2εY )+2AD ·CDγXY (6)
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Dividing through by 2AC2 and introducing cos2θ = AD2

AC2 and sin2
θ = CD2

AC2 ,

εn = εX cos2
θ + εY cos2

θ + γXY cosθsinθ (7)

If the direct strain in the element side i (Figure 3) is denoted as εi , and local
orthogonal strains defined as {ε}T = {εX εY γXY},then,

εi = εX cos2
θi + εY sin2

θi + γXY sinθicosθi (8)

where, θi is the anti-clockwise angle between the element side i and the local X
axis, and i = 1→ 3, and εX and εY are the direct strains in the local X and Y
directions, respectively, with the local shear stress γXY . The extensions of the side
lengths can thus be expressed as,

{δ tr}=





δ1
δ2
δ3



=





L1ε1
L2ε2
L3ε3



 (9)

Writing Eqn. 8 for each side of the triangular element leads to:

ε1 = εX cos2
θ1 + εY sin2

θ1 + γXY sinθ1cosθ1 =
δ1

L1
= εX a1 + εY b1 + γXY c1

ε2 = εX a2 + εY b2 + γXY c2 =
δ2

L2

ε3 = εX a3 + εY b3 + γXY c3 =
δ3

L3
(10)

or,





ε1
ε2
ε3



=





δ1
L1
δ2
L2
δ3
L3





=




a1 b1 c1
a2 b2 c2
a3 b3 c3







εX

εY

γXY



 (11)

Solving for the continuum strains, then,
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ε =





εX

εY

γXY





=
1

det [A]




(b2c3−b3c2)L−1
1 (b3c1−b1c3)L−1

2 (b1c2−b2c1)L−1
3

(a3c2−a2c3)L−1
1 (a1c3−a3c1)L−1

2 (a2c1−a1c2)L−1
3

(a2b3−a3b2)L−1
1 (a3b1−a1b3)L−1

2 (a1b2−a2b1)L−1
3







δ1
δ2
δ3





(12)

or,

{ε}= [Btr]{δ}tr (13)

where det[A] =

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
.

[Btr] can be recognised as the classically expressed strain-displacement relationship
which may be used to define the element elastic stiffness matrix [Ktr

E ], the geometric
stiffness matrix [K pc

δ
], and the element force vector {Tc} as follows.

The element local stresses are defined as:

{σ}=





σX

σY

τXY



=




d11 d12 0
d21 d22 0
0 0 d33


 ·





εX

εY

γXY



= [E][Btr]





δ1
δ2
δ3



 (14)

where, for an isotropic material,

d11 = d22 =
E

(1−ν2)
,d12 = d21 = ν ·d11,d33 =

E
2(1+ν)

in which, E is Young’s Modulus and ν Possion’s ratio, and for an orthotropic ma-
terial,

d11 =
EX ·EY

EY −EX ·ν2
Y X

, d12 = d21 =
EX ·EY ·νXY

EY −ν2
XY ·EX

, d22 =
E2

Y

EY −EX ·ν2
Y X

, d33 = GXY

with EX ,EY are Young’s Modulus along orthogonal axes X and Y . GXY is the shear
modulus across X and Y , and νY X is the Possion’s ratio in Y direction etc.

For a 3 node CST element, the elastic stiffness matrix is easily shown to be,
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[Ktr] = [Btr]T [E][Btr]×V (15)

where V is the volume of the element. [Ktr
E ] is a 3×3 matrix acting on the D.O.F

δ1,δ2 and δ3 (e.g the side extensions of the element). Knowing [Btr] (e.g. Eqn. 13)
the element elastic stiffness matrix can be readily obtained. Acting on the 3 D.O.F
δ1,δ2 and δ3, means that the triangular element has effectively been replaced by a
set of three cables or bars with the diagonal terms of [Ktr

E ] effectively terms of the
type EA/L , with A the cross-section area of the fictitious pseudo cable/bar line
elements.

It is convenient to develop this analogy further in the derivation of the geomet-
ric stiffness matrix. The geometric stiffness is derived from a combination of the
pseudo-cable natural (axial) force and a change in orientation in the form of rigid-
body rotation. Without the need to provide a full derivation in this paper, it suffices
to state the geometric stiffness of the bar/cable element shown in Fig.4 as,

[K pc
σ ] =

PN

L

[
[I3]− [C][C]T −[I3]+ [C][C]T

−[I3]+ [C][C]T [I3]− [C][C]T

]
(16)

where PN is the axial force in the bar/cable of length L, [I3] is a 3×3 identity matrix,
and

[C] =




cx

cy

cz


=

1
L




x2− x1
y2− y1
z2− z1


 (17)

Clearly, the relationship between the natural force PN of the three pseudo cables/bars
describing the triangular element and the continuum stresses σx,σy and τxy is re-
quired.

Combing the elastic stiffness matrix [Ktr
E ] (Eqn. 15) with the element side exten-

sions δ1,δ2 and δ3 leads to the element side force T1, T2 and T3 (Fig. 5). as in,

{T}=





Tc1
Tc2
Tc3



= [Btr][E][Btr]V





δ1
δ2
δ3



 (18)
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Noting Eqn. 14 and pre-multiplying it by [Btr]T and V , then,

V × [Btr]T{δ}= V × [Btr]T [E][Btr]





δ1
δ2
δ3



 (19)

The right-hand-side of Eqn. 19 is then identical to the right-hand-side of the Eqn.
18, such that we have the definition:

{T}=





Tc1
Tc2
Tc3



= V × [Btr]T





σX

σY

τXY



 (20)

Eqn. 20 provides the link between the pseudo cable element forces Tc1, Tc2 and Tc3(
viz. PN in Eqn. 16) and the triangular element continuum stresses σX , σY and τXY .

Both the elastic stiffness and geometric stiffness matrices are functions of the strain-
displacement matrix [Btr]. The limitations of the original CST formulation [Btr]
(Eqn. 13 with Eqn. 12) are demonstrated in section 7. To improve the CST-pseudo
cable element formulation it remains to establish "better" forms of [Btr]. Two alter-
natives are described in sections 3 and 4, and assessed in section 7.

3 Enhanced CST meso strains formulation

As identified in the section 2, in deriving the formulation εi = εX · cos2θi + εY ·
sin2

θi + γXY sinθi · cosθi, high order terms are neglected. A revised formulation is
presented in this section that endeavours to include these missing terms with the
aim of enhancing the resulting CST. Basing the formulation on the pseudo-cable
approach, only the derivation of [Btr] is required to use in Eqns. 15 and 20.

The length of side [1] in the deformed triangular element in figure 6 (depicted with
a dotted line) is,

OA2[1+ ε1]2 =

OB2[1+ εX ]2 +AB2[1+ εY ]2−2OB ·AB[1+ εX ][1+ εY ] · cos(90◦+ γXY ) (21)

while the original length is OA2 = OB2 + AB2. With the definitions: cosθ =
OB
OA ,sinθ = AB

OA , and using the necessary simplifying assumption as in section 2:
(sin(γXY )≈ γXY ), then:
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2ε1 + ε
2
1 =

cos2
θ1(2εX + ε

2
X)+ sin2

θ1(2εY + ε
2
Y )+2cosθ1 · sinθ1 · (1+ εX + εY + εX · εY )γXY

(22)

If we assume that the formulation follows the same form as Eqn. 8, then:

ε1 = εX cos2
θ1 + εY cos2

θ1 + γXY sinθ1cosθ1 +∆ (23)

where ∆ represents all the higher order terms. The role of ∆ can be examined as
follows. Equation 23 can be used in the first term on the left side of Eqn. 22. In sub-
stituting Eqn. 23 into the second term of left side of Eqn. 22, it is mathematically
necessary to omit the higher order terms. Consequently,

ε
2
1 = (εX · cos2

θ1 + εY · sin2
θ1 + γXY · sinθ1 · cosθ1 +∆)2

≈ (εX · cos2
θ1 + εY · sin2

θ1 + γXY · sinθ1 · cosθ1)2 (24)

or,

ε
2
1 ≈ cos4

θ1 · ε2
X + sin4

θ1 · ε2
Y + sin2

θ1 · cos2
θ1 · γ2

XY +2εX · εY · sin2
θ1 · cos2

θ1

+2εY · γXY · sin3
θ1 · cosθ1 +2γXY · εX · cos3

θ1 · sinθ1 (25)

We substitute Eqn. 25 into the second term on the left side of Eqn. 22. Therefore,
using equation 23 and 25 as described above, then:

2∆≈ cos2θ1 · ε2
X + sin2

θ1 · ε2
Y +2(εX + εY + εX · εY ) · γXY · sinθ1 · cosθ1− ε2

1

≈ (cos2θ1−cos4θ1) ·ε2
X +(sin2

θ1− sin4
θ1) ·ε2

Y +2(1− sin2
θ1) · sinθ1 ·cosθ1 ·γXY ·

εX

+2(1−cos2θ1) ·sinθ1 ·cosθ1 ·γXY ·εY +2(γXY −sinθ1 ·cosθ1) ·εX ·εY ·sinθ1 ·cosθ1

−γ2
XY · cos2θ1 · sin2

θ1

≈ sin2
θ1 ·cos2θ1 ·ε2

X +sin2
θ1 ·cos2θ1 ·ε2

Y +2cos3θ1 ·sinθ1 ·γXY ·εX +2sin3
θ1 ·cosθ1 ·

εY

+2(γXY − sinθ1 · cosθ1) · εX · εY · sinθ1 · cosθ1− γ2
XY · cos2θ1 · sin2

θ

≈ 1
4(ε2

X + ε2
Y )sin22θ1 + γXY · (εy · cos2θ1 + εX · sin2

θ1)sin2θ1

+εX · εY (γXY − 1
2 sin2θ1)sin2θ1− 1

4 γ2
XY · sin22θ1
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≈ [1
4(εX − εY )2− 1

4 γ2
XY ] · sin22θ1 + γXY · (εY · cos2θ1 + εX · sin2θ1 + εX · εY )sin2θ1

such that,

∆≈ [
1
8
(εX−εY )2− 1

8
γ

2
XY ]·sin22θ1 +

1
2

γXY ·(εY ·cos2
θ1 +εX ·sin2

θ1 +εX ·εY )·sin2θ1

= ∆(o2)

and, therefore,

εi ≈ εX cos2
θi + εY cos2

θi + εXY sinθicosθi +[
1
8
(εX − εY )2− 1

8
γ

2
XY ]·

sin22θi +
1
2

γXY · (εY · cos2
θi + εX · sin2

θi + εX · εY ) · sin2θi (26)

Eqn. 8 describes a linear relationship between cartesian strains εX , εY , and γXY

and a strain orientated in a direction θ from the local X axis. Eqn. 26 attempts to
capture second order components of strains, whilst the omission of o3 strains and
above is a necessary simplification. Subtracting Eqn. 8 from Eqn. 26 and repre-
senting the result graphically for a range of strains (see fig. 7), the simplification
of the o2 strain terms can be visualized. Quantitatively, the error is significant. For
example, with direct strains εX and εY up to 25% and a shear strain of 0.25 or 14o,
the maximum difference between Eqn. 8 and 26 is of the order of 500%. Whilst
the nonlinear formulation Eqn. 26 clearly improves the prediction of the values of
strains at arbitrary values of θ , its use in generating the [Btr] matrix is not appropri-
ate, because of its complicated nonlinear form. Instead it is necessary to return to
the fundamental definitions.

Assuming εX = ε3 (figure 6), then with Eqn. 21, we have:

OA2(1+ ε1)2 =

OB2(1+ ε3)2 +AB2(1+ εY )2−2OB ·AB(1+ ε3) · (1+ εY )cos(γXY +90◦) (27)

If OA2 = OB2 +AB2, and OC = OA · cosθ1,AC = OA · sinθ1, then,

(1+ ε1)2 =

cos2
θ1 · (1+ ε3)2 + sin2

θ1 · (1+ εy)2 +2(1+ ε3)(1+ εy)sinγxysinθ1cosθ1 (28)

Similarly,

(1+ ε2)2 =

cos2
θ2 · (1+ ε3)2 + sin2

θ2 · (1+ εy)2 +2(1+ ε3)(1+ εy)sinγxysinθ2cosθ2 (29)
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To obtain a strain-displacement relationship that is linear in εX , εY , γXY , then it is
necessary to assume that sinγXY ≈ γXY and

(1+ εY )2 = 1+2εY +α
c · εY

= 1+(2+α
c)εY (30)

Using the notation in Eqn. 30, then, Eqns. 28 and 29 become,

2ε1 + ε
2
1 =

cos2
θ1 · (2ε3 + ε

2
3 )+ sin2

θ1 · (2+α
c) · εY +2γXY (1+ ε3)(1+ εY )sinθ1cosθ1 (31)

2ε2 + ε
2
2 =

cos2
θ2 · (2ε3 + ε

2
3 )+ sin2

θ2 · (2+α
c) · εY +2γxy(1+ ε3)(1+ εY )sinθ2cosθ2 (32)

Solving Eqns. 31 and 32 simultaneously for εY , then,

εY =

(2ε1 + ε2
1 )sinθ2cosθ2− (2ε2 + ε2

2 )sinθ1cosθ1
−(2ε3 + ε2

3 ) · (cos2θ1sinθ2cosθ2− cos2θ2sinθ1cosθ1)

(sin2
θ1sinθ2cosθ2− sin2

θ2sinθ1cosθ1)(2+αc)
.

Defining

a2 = sinθ2cosθ2,b2 =−sinθ1cosθ1,c2 = cos2θ2sinθ1cosθ1− cos2θ1sinθ2cosθ2

Ac = sin2
θ1sinθ2cosθ2− sin2

θ2sinθ1cosθ1, then,

εY =
a2(2ε1 + ε2

1 )+b2(2ε2 + ε2
2 )+ c2(2ε3 + ε2

3 )
Ac(2+αc)

Similarly, solving Eqns (31) and (32) for γXY , then

γXY =
a3(2ε1 + ε2

1 )+b3(2ε2 + ε2
2 )+ c3(2ε3 + ε2

3 )
2(1+ ε3)[a2(2ε1 + ε2

1 )+b2(2ε2 + ε2
2 )+ c2(2ε3 + ε2

3 )+(2+αc)Ac]

with, a3 = sinθ
2 ,b3 =−sin2

θ1,c3 =−[cos2θ1sin2
θ2− cos2θ2sin2

θ1].
Finally,
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



εx

εy

γxy



=




0 0 1
a2(2+ε1)
Ac(2+αc)

b2(2+ε2)
Ac(2+αc)

c3(2+ε3)
Ac(2+αc)

a3(2+ε1)
2(1+ε3)B

b3(2+ε2)
2(1+ε3)B

c3(2+ε3)
2(1+ε3)B








ε1
ε2
ε3



 (33)

or {ε}= [Btr]{δ}tr, where,

[Btr] =




0 0 L−1
3

a2(2+ε1)·L−1
1

Ac(2+αc)
b2(2+ε2)·L−1

2
Ac(2+αc)

c3(2+ε3)·L−1
3

Ac(2+αc)
a3(2+ε1)·L−1

1
2(1+ε3)Bc

b3(2+ε2)·L−1
2

2(1+ε3)Bc
c3(2+ε3)·L−1

3
2(1+ε3)Bc


 (34)

in which, collecting all definitions together,

a2 = sinθ2cosθ2, b2 = −sinθ1cosθ1, c2 = cos2θ2sinθ1cosθ1 − cos2θ1sinθ2cosθ2
a3 = sin2

θ2, b3 = −sin2
θ1, c3 = −[cos2θ1sin2

θ2 − cos2θ2 − cos2θ2sin2
θ1], A =

sin2
θ1sinθ2cosθ2− sin2

θ2sinθ1cosθ1, and,

Bc =
a2(2ε1 + ε2

1 )+b2(2ε2 + ε2
2 )+ c3(ε3 + ε2

3 )+(2+αc
i )A

c

Ac(2+αc
i )

.

αc is an iteration coefficient, which has an initial value of zero and is subsequently
updated according to,

α
c
i =

a2(2ε
i−1
1 + ε

i−1
1

2
)+b2(2ε

i−1
2 + ε

i−1
2

2
)+ c3(2ε

i−1
3 + ε

i−1
3

2
)

A(2+αc
i−1)

Eqn. 31 is in a suitable form to be used in Eqns. 15 and 16 to define the element
stiffness matrices and associated Eqn. 18. It should be noted that this formulation
relies upon the assumption in Eqn. 1 that εX = ∂U

∂X and εY = ∂V
∂Y . No assumption is

made about the form of γXY , but it is necessarily assumed that sin(γXY )∼= γXY .

4 CST with large strain formulation

The preceding CST formulations are characterized by the element strains εX and
εY defined as a linear deformation gradient (e.g. ∂U

∂X ) as in Eqn. 1, and the shear
strain γXY approximated by sinγXY = γXY . These assumptions are invalid for large
deformations and large strains where the following Green’s definitions may be more
appropriate:
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εX =
dU
dX

+
1
2

((
dU
dX

)2

+
(

dV
dX

)2

+
(

dW
dX

)2
)

εY =
dV
dY

+
1
2

((
dU
dY

)2

+
(

dV
dY

)2

+
(

dW
dY

)2
)

γXY =
dU
dY

+
dV
dX

+
1
2

(
dU
dX

dU
dY

+
dV
dX

dV
dY

+
dW
dX

dW
dY

)
(35)

in which, εX , εY and γXY are element strains, and U , V , W are displacements of the
element in the local coordinate system XY .Deriving the element equations using
a "standard" finite element philosophy, displacements are interpolated from nodal
values using shape functions [N] as in;

U(X ,Y ) =
3

∑
i=1

NiUi, V (X ,Y ) =
3

∑
i=1

NiVi, W (X ,Y ) =
3

∑
i=1

NiWi (36)

where N1 = ξ1, N2 = ξ2, N3 = ξ3 , and ξ1, ξ2, ξ3 are area co-ordinates as defined in
figure 8:

Given that,

dξ1

dX
=

Y23

2A
dξ2

dX
=

Y31

2A
dξ3

dX
=

Y12

2A

dξ1

dY
=

X32

2A
dξ2

dY
=

X13

2A
dξ3

dY
=

X21

2A

where A is the area of the element triangle, and for example Y23 = Y2−Y3, then
displacement derivatives are:

dU
dX

=
Y32

2A
U1 +

Y13

2A
U2 +

Y21

2A
U3

dU
dY

=
X23

2A
U1 +

X31

2A
U2 +

X12

2A
U3

dV
dX

=
Y32

2A
V1 +

Y13

2A
V2 +

Y21

2A
V3

dV
dY

=
X23

2A
V1 +

X31

2A
V2 +

X12

2A
V3

dW
dX

=
Y32

2A
W1 +

Y13

2A
W2 +

Y21

2A
W3

dW
dY

=
X23

2A
W1 +

X31

2A
W2 +

X12

2A
W3 (37)

If node 1 is set at the origin of the local XY coordinate system in which the element
is co-planar, and the local X axis is aligned with the base of the triangular element
(see fig. 9), then U1 = V1 = W1 = 0 and U3 = δ3,W2 = 0,V3 = W3 = 0, such that
Eqns. 37 simplify to:
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dU
dX

=
Y13

2A
U2 +

Y21

2A
δ3

dU
dY

=
X31

2A
U2 +

X12

2A
δ3 (38)

dV
dX

=
Y13

2A
V2

dV
dY

=
X31

2A
V2 (39)

To ensure consistency with Eqns. 15 and 18 (and to achieve the associated compu-
tational efficiency), nodal displacements Ui and Vi are rewritten as functions of the
element side extensions δ1,δ2, and δ3 as in:

U2 =L′1 · cosθ
′
1−L1 · cosθ1

=L′1
L′21 +L′23 −L′22

2L′1 ·L′3
−L1

L2
1 +L2

3−L2
2

2L1 ·L3

=
(L1 +δ1)2 +(L3 +δ3)2− (L2 +δ2)2

2(L3 +δ3)
− L2

1 +L2
3−L2

2
2L3

=
δ1 +2L1

2(L3 +δ3)
δ1−

δ2 +2L2

2(L3 +δ3)
δ2 +

L2
3−L2

1 +L2
2 +δ3 ·L3

2(L3 +δ3)L3
δ3

=a1 ·δ1 +a2 ·δ2 +a3 ·δ3

(40)
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V2 =h′−h

=
2Area12′3′

L′3
− 2Area123

L3

=

√
L′22 L′23 − (L′22 +L′23 −L′21

2 )2

L′3
−

√
L2

2L2
3− (L2

2+L2
3−L2

1
2 )2

L3

=
L3

√
L′22 L′23 − (L′22 +L′23 −L′21

2 )2−L′3

√
L2

2L2
3− (L2

2+L2
3−L2

1
2 )2

L3L′3

=
L2

3[L
′2
2 L′23 − (L′22 +L′23 −L′21

2 )2]−L′23 [L2
2L2

3− (L2
2+L2

3−L2
1

2 )2]

L3L′3[L3

√
L′22 L′23 − (L′22 +L′23 −L′21

2 )2 +L′3

√
L2

2L2
3− (L2

2+L2
3−L2

1
2 )2]

=

(
L2

3L′23 (L′2−L2)(L′2 +L2)

−[L3
L′22 +L′23 −L′21

2 −L′3
L2

2+L2
3−L2

1
2 ] · [L3

L′22 +L′23 −L′21
2 +L′3

L2
2+L2

3−L2
1

2 ]

)

L′3L3(L3 ·2A′+L′3 ·2A)

=
L2

3L′23 (L′2 +L2)δ2− [L3
L′22 +L′23 −L′21

2 −L′3
L2

2+L2
3−L2

1
2 ] ·BB

L′3L3(L3 ·2A′+L′3 ·2A)

=
L2

3L′23 (L′2 +L2)δ2−δ3
L2

2+L2
3−L2

1
2 ·BB

L′3L3(L3 ·2A′+L′3 ·2A)

− [L3
2 ((L′2−L2)(L′2 +L2)+(L′3−L3)(L′3 +L3)− (L′1−L1)(L′1 +L1))] ·BB

L′3L3(L3 ·2A′+L′3 ·2A)

=

(
L2

3L′23 (L′2 +L2)δ2

−[L3
2 ((L′2 +L2)δ2 +(L′3 +L3)δ3− (L′1 +L1)δ1)−δ3

L2
2+L2

3−L2
1

2 ] ·BB

)

L′3L3(L3 ·2A′+L′3 ·2A)

=

(
L3
2 (L′1 +L1)BBδ1

+(L′23 L2
3− L3

2 ·BB)(L2 +L′2)δ2 +(L2
2+L2

3−L2
1

2 − L3(L′3+L3)
2 )BB ·δ3

)

L′3L3(L3 ·2A′+L′3 ·2A)

=
L3
2 (L′1 +L1)BBδ1 +(L′23 L2

3− L3
2 ·BB)(L2 +L′2)δ2 +(L2

2−L2
1−L′3L3)BB

2 ·δ3

AA

=
BB(2L1L3 +L3δ1)

2AA
·δ1 +[

L′23 ·L2
3(L
′
2 +L2)

AA
− BB(2L2L3 +δ2 ·L3)

2AA
] ·δ2

+
BB(L2

2−L2
1−L2

3−L3 ·δ3)
2AA

·δ3

=b1 ·δ1 +b2 ·δ2 +b3 ·δ3

(41)
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Substituting eqns. 38-41 into 35, we get:

{ε}=





εx

εy

γxy



= [B] · {δ}=




B11 B12 B13
B21 B22 B23
B31 B32 B33


 ·





δ1
δ2
δ3



 (42)

in which,

B11 = B12 = 0 B13 = 1
L3

+ δ3
2L2

3

B21 = E1 ·b1 +E2 ·a1 B22 = E1 ·b2 +E2 ·a2 B23 = E1 ·b3 +E2 ·a3 +E3

B31 = F1 ·a1 B32 = F1 ·a2 B33 = F1 ·a3 +F2

The coefficients are defined as:

L′1 = L1 +δ1 L′2 = L2 +δ2 L′3 = L3 +δ3

AA = L′3 ·L3(L3

√
L′23 ·L′22 −0.25(L′22 +L′23 −L′21 )2

+L′3 ·
√

L2
2 ·L2

3−0.25(L2
2 +L2

3−L2
1)2

BB = 0.5L3(L′22 +L′23 −L′21 )+0.5L′3(L
2
2 +L2

3−L2
1)

a1 = δ1+2L1
2L′3

b1 = BB(2L1L3+L3δ1)
2AA

a2 =− δ2+2L2
2L′3

b2 = L′23 ·L2
3(L
′
2+L2)

AA − BB(2L2L3+δ2·L3)
2AA

a3 = L2
3−L2

1+L2
2+δ3·L3

2L′3·L3
b3 = BB(L2

2−L2
1−L2

3−L3·δ3)
2AA

U2 = a1δ1 +a2δ2 +a3δ3 V2 = b1δ1 +b2δ2 +b3δ3 U3 = δ3

E1 = X31
2A + X2

31
8A2 V2 E2 = X31X12

4A2 U3 + X2
31

8A2 U2 E3 = X2
12

8A2 δ3

F1 = X31
2A F2 = X12

2A + Y21
2A (X31

2A U2 + X12
2A δ3) F = L′23 ·L2

3 ·L′1
with A and A′ the areas of the undeformed and deformed triangles respectively.
Eqn. 42 may be substituted into Eqn. 15 and 18 to define the element characteristic
matrices.

5 Generic Stiffness Matrix Definitions

Only the diagonal terms of the stiffness matrices [Ktr
E ] and [K pc

σ ] are required by
the dynamic relaxation solution procedure. [Ktr

E ] is the 3×3 elastic stiffness ma-
trix defined in Eqn. 15 acting on the side extensions δ1, δ2 and δ3, and written
symbolically as:

[Ktr
E ] =




Ktr
11 Ktr

12 Ktr
13

Ktr
21 Ktr

22 Ktr
23

Ktr
31 Ktr

32 Ktr
33


 (43)
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The diagonal terms of the global elastic stiffness matrix [Kt
E ] acting on nodal dis-

placements {u1 v1 w1 u2 v2 w2 u3 v3 w3} are:

[Kt1
E ] = Ktr

11 ·




c2
x1

c2
y1

c2
z1


+Ktr

33 ·




c2
x3

c2
y3

c2
z3


 (44)

[Kt2
E ] = Ktr

11 ·




c2
x1

c2
y1

c2
z1


+Ktr

22 ·




c2
x2

c2
y2

c2
z2


 (45)

[Kt3
E ] = Ktr

22 ·




c2
x2

c2
y2

c2
z2


+Ktr

33 ·




c2
x3

c2
y3

c2
z3


 (46)

From the Eqn. 16, the diagonal terms of [K pc
σ ] are:

[K pc
σ11] =

Tci

li
− Tci

li
c2

xi (47)

[K pc
σ22] =

Tci

li
− Tci

li
c2

yi (48)

[K pc
σ33] =

Tci

li
− Tci

li
c2

zi (49)

where cxi, cyi and czi are the direction cosines of the pseudo cable i in the global
x,y,z co-ordinate system, and i = 1→ 3. The values of Tc1, Tc2, Tc3 are calculated
from Eqn. 18.

In a similar format to the elastic stiffness terms, the diagonal terms of the global
geometric stiffness matrix [Kt

pc] may be written as:

[Kt1
pc] = [I3](

Tc1

L1
+

Tc3

L3
)− Tc1

L1
·




c2
x1

c2
y1

c2
z1


− Tc3

L3
·




c2
x3

c2
y3

c2
z3


 (50)
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[Kt2
pc] = [I3](

Tc1

L1
+

Tc2

L2
)− Tc1

L1
·




c2
x1

c2
y1

c2
z1


− Tc2

L2
·




c2
x2

c2
y2

c2
z2


 (51)

[Kt3
pc] = [I3](

Tc2

L2
+

Tc3

L3
)− Tc2

L2
·




c2
x2

c2
y2

c2
z2


− Tc3

L3
·




c2
x3

c2
y3

c2
z3


 (52)

The total global stiffness matrix [Kt
T ] can be expressed as the summation of [Kt

E ]
and [Kt

pc]:

[Kt
T ] = [Kt

E ]+ [Kt
pc] (53)

where the nine diagonal terms are given by summing the corresponding compo-
nents of eqns. 44-46 and 50-52.

Similarly the nodal forces of the CST element in the coordinate system xyz can be
calculated from:

f1 =





f x
1

f y
1

f z
1



=−Tc1 ·




cx1
cy1
cz1


−Tc3 ·




cx3
cy3
cz3


 (54)

f2 =





f x
2

f y
2

f z
2



= Tc1 ·




cx1
cy1
cz1


+Tc2 ·




cx2
cy2
cz2


 (55)

f3 =





f x
3

f y
3

f z
3



=−Tc2 ·




cx2
cy2
cz2


+Tc3 ·




cx3
cy3
cz3


 (56)

with Eqn. 18 defining the values of Tc1, Tc2, and Tc3.
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6 Wrinkling

With relatively negligible flexural stiffness, vanishing of tensile stresses in an arbi-
trary position or direction of the membrane surface will immediately lead to buck-
ling in the form of wrinkles in the membrane material. In this case, the membrane
will completely or partially lose stiffness and load resistance in the wrinkled area.
From the perspective of either aesthetics or structural safety, wrinkling can be re-
garded as a type of structural (serviceability) failure, and should be inadmissible
during membrane structural design. Structural analysis taking into account wrin-
kling is sophisticated because the detailed wrinkling pattern not only depends on
the stress state but the imperfection of membrane material introduced during the
fabrication process. Therefore, in this section, the main aim of the finite element
formulation taking into account wrinkling concentrates on the prediction of wrin-
kling under loading as opposed to simulating the physical forms of the wrinkles.

Wrinkling criteria developed by OttoOtto (1962), MillerMiller, Hedgepeth, Wein-
garten, Das, Kahyai (1985) and Roddeman Roddeman (1987) (summarised in
Table 1) are based on principal stress (denoted σp), strain (εp) or combined prin-
cipal strain and stress (σp,εp). According to these criteria, the membrane state
can be described as taut(no wrinkle), wrinkled(uniaxial wrinkling) or slack (biaxial
wrinkling).

Wrinkling criteria Wrinkling Membrane
σp εp σp,εp state state

σII > 0 εI ≥ 0 and εII ≥ υεI σII > 0 None Taut
σI > 0 and σII < 0 εI ≥ 0 and εII ≤−υεI εI ≥ 0 and σII ≤ 0 Uniaxial Wrinkled

σI ≤ 0 εI ≤ 0 εI ≤ 0 Biaxial Slack
Table 1: Wrinkling criteria based on principal stresses

For the local stresses σX ,σY ,τXY ,the major principal stress σI and minor principal
stress σII are,

σI,II =
σX +σY

2
±
√

(
σX −σY

2
)2 + γ2

XY (57)

and corresponding principal strains are:

εI,II =
εX + εY

2
±
√

(
εX − εY

2
)2 +(

γXY

2
)2 (58)
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In zones where wrinkling occurs, the direction of the major principal strain (εI) is
colinear with the wrinkle direction. If θp is the angle between wrinkle direction
and local X axis, then:

θp =
1
2

tan−1(
2γXY

εX − εY
) (59)

When calculating the element stiffness matrix, the existence of wrinkling should be
taken into account. In this case it is not sufficient to use

{σ}=
{

σX σY τXY
}T = [E]





εX

εY

γXY



= [E][B]{U} (60)

in which, {U} is the vector of nodal displacements. If compressive stresses are not
permitted and therefore the stiffness normal to the wrinkle direction is zero, solu-
tion convergence is not always smooth and sometimes may not be achieved Rossi
(2005); Liu (2001); Rossi (2003). Rossi Rossi (2005) proposed an algorithm for
the stabilization of the material manipulation. Using his method, if the membrane
is in a "wrinkled state", a modified elastic stiffness matrix [Emod ] is defined as:

[Emod ] =




Erot,11 P ·Erot,12 Erot,13
P ·Erot,21 P ·Erot,22 P ·Erot,23

Erot,31 P ·Erot,32 Erot,33


= [Erot ]× [P] (61)

in which, P is the penalization parameter, and

[Erot ] = [R]T [E][R] (62)

[R] is a transformation matrix. Denoting the orientation of the principal stress to
the local X axis is αw, then

c = cos(αw);s = sin(αw); [R] =




c2 s2 −2cs
s2 c2 2sc
sc −sc c2− s2


 (63)

If the penalization is constant, the performace of the wrinkling procedure may be
compromised. An alternative definition of P to improve the stability is to make
P a function of the maximum (σmax) and effective compressive stresses (σ2)Rossi
(2005):

Pσ =
σmax

σ2
→
{

Pσ > P → P = Pσ

Pσ > 1 or Pσ < 0 → P = 1.0

}
(64)
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If the modification makes the state change (from wrinkled or slack to taut), then P
is increased by a factor ω , where ω = 10 is recommended (Rossi (2005)). The
elastic stiffness matrix then becomes:

KE,mod =
∫

v
BT [Emod ]Bdv (65)

In addition to the obvious change in the element stiffness matrix, the equivalent
nodal load vector is also changed to be of the form:

fe =
∫

V
B0(Emod · ε +σ0)dV (66)

In this method, a small compressive stress is allowed in the analysis to enhance
the stability of solution procedure and the accuracy. It is necessary to note that
there is no guarantee that the "fictitious" compressive stresses are removed during
each iteration and at the final configuration, but wrinkling can be predicted with an
acceptable accuracy and economical computational cost using this approach Rossi
(2005).

7 Numerical examples

Three types of numerical example are presented in this section that aim to not only
demonstrate the capabilities of the element formulations proposed in this paper, but
also to facilitate discussion of topics relevant to the analysis of membrane struc-
tures.

7.1 In-plane shear test

The basis of the small and meso-strain CST formulations is that sinγXY ≈ γXY . In
addition, approximations are made that truncate the definition of the strain descrip-
tions in these two elements. No such approximations are made in the large strain
CST element. The capability of the element formulations to simulate combined
direct and shear stresses are examined by the simulation of an in-plane shear test
depicted in fig. 10.

The elastic modulus of the orthotropic patch is Ex = Ey = 600kN/m, G = 30kN/m,
with Possion’s ratio ν = 0.3 and a thickness t of unity. The fictitious patch is dis-
cretized with a mesh of 192 CST elements. When subjected to an edge traction
(10), the patch deforms in combined direct and shear strain mode (11). Wrinkling
is assumed not to occur in this example. Whilst the applied load of 75 kN/m is
clearly high, generating maximum shear strains of approximately 60o, this numer-
ical example is used to explore potential severe scenarios in the vicinity of clamp
plates and edge cables, for example, where shear strains can be very significant.
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Fig. 12-14 illustrate the stress σx obtained from the small, meso, and large strain
CST formulations, respectively. Within the context of a constant strain field within
each element, the mesh-scale field continuity of σx predicted by the large strain
CST formulation (fig. 14) is greater than that from the small amd meso strain CST
(fig. 12 and 13). With increasing distance from the upper boundary, the trends of
stress σx are similar, but near the bottom line of the patch, the small and meso strain
CST models produce much lower values of σx , with a target value expected to be
close to the applied load Fx = 75kN/m with pure tension in x direction at the lower
boundary. Similar characteristics are displayed by σy.

The shear stresses illustrated in fig. 15-17 are absolute values, such that the maxi-
mum shear stresses from each of the formulations can be compared more directly.
The discontinuity at the top right corner of the mesh produces peak shear stresses.
The two small strain CST forumlations significantly overestimate the stresses in
this area compared with the predictions obtained from the large strain CST (and an
independent solution obtained from a discretisation of 6-node plane stress triangu-
lar elements featuring geometric non-linearity but not stress stiffening - fig. 18).

It may also be noted that the small-strain and meso-strain CST formulations pro-
duce a chequerboard style stress distribution. This phenomenon is erroneous and
is symptomatic of a type of solution instability, in this case introduced by trunca-
tion and small shear assumptions within the strain-displacement components of
the cable-analogy formulation. Similar, undesirable solution characteristics are
not reproduced by the CST triangle based on the large strain formulation (c.f. 16
with 17). It is clear that adding higher-order terms to the basic CST forumlation
εi = εX · cos2θi + εY · sin2

θi + γXY sinθi · cosθi whilst maintaining the necessary ap-
proaximation sin(γXY )≈ γXY to generate the meso-strain formulation does not lead
to an improvement in the predicted stress field under condistions of severe shear
strain.

Furthermore, relating the element strains and side extensions in the meso-strain
formulationis not straight-forward, requiring the introduction of the tertiary coef-
ficient α . The accuracy of the strain field represented by the side extensions is
a function of α . However, the solution process to determine α is not necessarily
smooth, and in many cases, the value of α that correctly defines the strain field is
difficult to find. As such, the application of the meso-strain formulation may be
limited to analyses where α is known a priori, either because the strain state is
well defined, or from experience. Moreover, the analysis of membrane structures
is generally a complicated nonlinear solution process, normally requiring a stable
strain-deformation relation at each iteration. The application of the meso-strain
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formulation may result in slow rates of convergence or numerical divergence.

7.2 Analysis of the Newcastle University biaxial test cruciform

The design and manufacture of a fabric structure normally relies on a biaxial test to
determine the compensation factors to be applied to the cutting patterns, the aim of
which is to achieve a prescribed stress state at the point at which the fabric is fully
installed on the supporting structure. For large projects, or when the membrane ma-
terial is of a new type or composition, for example, more extensive biaxial tests are
commissioned to establish the stiffness characteristics of the fabric. Owing to the
complex nature of the behaviour of architectural fabrics, the design of the biaxial
test protocol and the test specimen and methodology are not simple. In the follow-
ing example, we use the analysis of a current biaxial test cruciform to demonstrate
the capabilities of the existing and proposed CST element formulations, and the
types of complex stress fields that are obtained for a simple, fictitious, orthotropic
"fabric".

In the simulation of the membrane biaxial test illustrated in fig. 19, the material
properties are: Ex = 600kN/m, Ey = 600kN/m , G = 30kN/m, and Poisson’s ratio
v = 0.3. The loads and mesh are shown in figures 19 and 20. The biaxial specimen
is characterised by eleven slits, 150mm long, in each of the four strips around the
central square (see fig. 19).
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Figure 7: Error in the linear cable analogy formulation under large strains
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Figure 11: Deformed mesh — large CST with Fx=75 kN/m

Figure 12: Stress σx — small strain CST
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Figure 13: Stress σx — meso-strain CST

Figure 14: Stress σx — large strain CST
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Figure 15: Shear τxy — small strain CST

Figure 16: Shear τxy — meso-strain CST
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Figure 17: Shear τxy — large strain CST

Figure 18: Shear stress τxy — plane stress, linear strain
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Figure 19: Numerical representation of membrane biaxial test
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Figure 20: CST discretisation of the biaxial cruciform
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The distribution of the maximum principal stress σx of the biaxial cruciform mem-
brane under the load Fx = 30kN/m,Fy = 30kN/m, as predicted by the original
(small strain) CST formulation is depicted in fig. 21. The same simulation so-
lution with the displayed stress range limited to the range 28-30 kN/m for clarity is
presented in fig. 22. It is clear in fig. 21 and 22 that the solution for σx to this sym-
metrical problem are not symmetrical, with the maximum shear stress ≤ 5kN/m.
With the load increased to Fx = Fy = 60kN/m and hence the strains similarly in-
creased, the asymmetry of the geometrically nonlinear result is reinforced (c.f. fig.
with 22 with 23).

Figures 24 and 25 present the maximum principal stress results obtained from the
CST formulation assuming large deformations and strains. From the large strain
CST model, the maximum principal stress in the biax cruciform is similar to that
predicted by the small strain formulation. However, in contrast to the small strain
element, the large strain formulation is shown to be fully symmetrical, not only
about x,y axis, but also about the diagonal line A-B (fig. 25). The solution also
remains fully symmetrical for higher values of strain (e.g. when Fx = 60kN/m 26).
The symmetry is well captured by the eye, as colour patterns are easily seen in the
symmetrical solution. It should also be noted that the small and large strain solu-
tions are based on the same mesh of elements.

The analysis of the cruciform biaxial test specimen clearly serves as a useful infor-
mal benchmark, making use of the essential symmetry. It also provides potential
insight into the stress state within the biaxial test specimen. For example, using the
large strain formulation it is possible to estimate the stress state associated with the
location of strain measurement for the purposes of establishing material stiffnesses.
In the present example it is clear that less than 100% of the applied load appears as
a stress at the centre of the specimen, leading to an over estimate of the predicted
fabric stiffness. Furthermore, the region of relatively uniform stress can be used to
guide the placement and extent of strain measurement, with clear impacts on the
accuracy of the experimental test methodology.

7.3 Wrinkling analysis

The prediction of wrinkling (loss of tautness) within a fabric membrane is an im-
portant necessary capability for the practical application of a simulation code in
this field. The potential capability of the proposed large strain CST formulation is
demonstrated using the combined stress-strain criterion and computation algorithm
summarised in section 6 using the reference shear test Ishii (1989) defined in fig.
27.
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Figure 21: Principal stresses, σx, for Fx = Fy = 30kN/m - small strain

Figure 22: Principal stresses σx in the range 28-30 kN/m for Fx = Fy = 30kN/m -
small strain
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Figure 23: Principal stresses σx in the range 55-60 kN/m for Fx = Fy = 60kN/m -
small strain

Figure 24: Principal stresses σx for Fx = Fy = 30kN/m - large strain
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Figure 25: Principal stresses σx in the range 28-30 kN/m for Fx = Fy = 30kN/m -
large strain

Figure 26: Principal stresses σx in the range 55-60 kN/m for Fx = Fy = 60kN/m -
large strain
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Figure 27: Geometry, boundary and loading conditions for the shear test calculation

In the virtual shear test the membrane is pre-stressed in the x-direction by a dis-
placement (prestrain) of ux = 1mm. This displacement is held fixed for the sub-
sequent shear loading which induces a maximum displacement in the y direction
of uy = 10mm. An isotropic ETFE-foil membrane material is assumed (ETFE-foil
thickness t = 200µ , Young’s modulus is E = 600N/mm2 and the Poisson’s ratio
is µ = 0.45). The corresponding numerical results from reference Ishii (1989)
are shown in fig. 28, in which, ux and uy denote the orthogonal displacements in
the membrane plane respectively. Solid hexahedral elements were used to model
the foil, with the aim of capturing the full 3-D physical behaviour as the wrinkles
developed, including out-of-plane deformations. These are represented by the dis-
placement measure uz, reflecting the depth of the wrinkles in the membrane.

As illustrated in fig. 28, the wrinkles start to arise at the two ends, then propagate to
the middle of the patch. It is also observed that wrinkling develops before the lateral
displacement uy reaches 1.65 mm, with the wrinkle depths uz less than 0.0035mm,
subsequently from uy = 1.65mm the wrinkles start to develop dramatically, and the
maximum wrinkle depth increases up to 0.62mm with a small increment (∆uy =
2.0−1.65 = 0.35mm) in the lateral displacement. After uy = 2.0mm, the wrinkles
develop proportionally, and propagate to the majority of the foil when uy = 2.2mm.

This numerical test is repeated using a large strain CST element discretisation com-
prising 64 elements (fig. 29). The element mesh is coarse compared with the
meshes used in the reference solutionIshii (1989) (at least 10×20) which aimed
at determining the physical details of the wrinkles (e.g depths) using hexahedral
elements. In the context of the introduction of this paper, it is notable that in the re-
liability analysis of fabric structures using membrane finite elements, the existence
of wrinkling is regarded as one of the structural failure modes. Therefore, a primary
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Figure 28: Displacement uz [mm] normal to the membrane plane for the develop-
ment of wrinkles for selected shear displacements uy in reference test

goal for the analysis system must be to predict the existence of wrinkling, and not
the physical details of the wrinkles. At the same time, it must be capable of achiev-
ing this without recourse to a mesh density inconsistent with other requirements
of the simulation. As such, it is desireable, from an engineering design perspec-
tive, not to be required to use an overly dense mesh to assess the the capabilities
of the large strain CST element in initially predicting the onset of wrinkling and
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simulating the development of wrinkled zones as the analysis proceeds.
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Figure 29: Wrinkling numerical test - large strain CST mesh I.

The positions and directions of the predicted fabric wrinkles are represented by the
short lines in fig. 30. The principal stresses are constant across the CST element,
meaning that the wrinkling point and direction are single valued for each element.

Given the invariance of stress within each of the CST elements, the dependency of
the prediction of the existence of wrinkling solution has been assessed. The test
foil has been remeshed using the same number of D.O.F used in the mesh shown
in fig. 29 (denote mesh I) to create the mesh depicted in fig. 31 (mesh II). The
corresponding results are presented in fig. 32. Comparing the wrinkle patterns
predicted using CST mesh I and II, the wrinkling distributions and directions are
shown to correspond very closely.

Comparisons of figs. 30 and 32 with fig. 28, suggest that the onset and existence
of the wrinkling in the patch can be predicted by the CST models accurately, even
when they are not easy to observe in a three-dimensional (hexahedral) simulation
(fig. 28) with wrinkle depths in the range uz = 0.002− 0.0035mm. The general
propagation trend of the wrinkles can also be closely predicted.

8 Conclusions

The existing (original) CST formulation, currently used extensively in the engi-
neering analysis of membrane structures, and based on the cable-analogy has been
examined. The formulation is shown to assume small strains (e.g εX = ∂U

∂X , εY = ∂V
∂Y

and sin(γXY ) = γXY ). Furthermore, to ensure a linear strain-displacement (D.O.F)
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Figure 30: Detected wrinkle locations and directions for selected shear displace-
ments uy - mesh I.

relationship, a second simplifying assumption is made to limit the inclusion of only
first-order strain components(Eqn. 8). The adoption of the cable-analogy leads to a
compact formulation in which the element continuum strains are written as a func-
tion of the element side extensions. As such, the continuum is effectively replaced
by a triangulated truss. However, when applying standard quality checks often used
in finite element technologies, the formulation is shown to be deficient. For exam-
ple, it does not pass a basic uniaxial patch test. Under moderate strains (5%-10%
strains in the biax cruciform example), the deficiency of the existing CST formula-
tion is implied by the development of non-symmetric stresses in the analysis of a
symmetric problem.
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Figure 31: Wrinkling numerical test - large strain CST mesh II.

A revised formulation – meso-strain CST has been derived by adding high order
terms to the small strain CST from Eqn 4 - 7. Whilst maintaining the small strain
assumption (εX = ∂U

∂X etc.), the modifications to the element aim to explore the sig-
nificance of the second assumption referred to above. It should be noted that the
small strain assumption appears only once (at the beginning) in the formulation.
The adoption of the element side lengths as D.O.F help to introduce higher-order
effects that are otherwise missing. The meso-strain CST formulation shows some
improvements over the original form of the element. However, it fails to pass the
same patch test and produces significant errors at large strains, again manifested as
unexpected asymmetry.

From the perspective of computational compactness and ease of implementation
of a new element into an existing engineering code, it is expedient to maintain the
element side-lengths as D.O.F. Based on Green’s strains and classical finite ele-
ment philosophies, a large strain CST formulation has been successfully derived
that satisfies tests associated with finite element technology standards. The pro-
posed new element has been shown to successfully pass the patch test and achieve
other desired benchmark results. It also serves to illustrate the significance and de-
ficiency of assuming small strains in the existing CST element. The element has
also been shown to successfully and efficiently predict the onset and development
of wrinkling, which is an important practical engineering requirement. The formu-
lation satisfies rules of finite element technologies. Whilst maintaining the efficient
"computational architecture" in the form of side-length D.O.F. coupled with the
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Figure 32: Detected wrinkle locations and directions for selected shear displace-
ments uy - mesh II.

dynamic relaxation algorithm, the formulation can directly replace deficient small
strain constant strain triangle cable-analogy elements currently used in engineering
practice.
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