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Abstract: The Lattice Boltzmann method (LBM) became, today, a powerful tool
for simulating fluid flows. Its improvements for different applications and configu-
rations offers more flexibility and results in several schemes such as in presence of
external/internal forcing term. However, we look for the suitable model that gives
correct informations, matches the hydrodynamic equations and preserves some fea-
tures like coding easily, preserving computational cost, stability and accuracy. In
the present work, high order incompressible models and equilibrium distribution
functions for the advection-diffusion equations are analyzed. Boundary conditions,
acceleration, stability and preconditioning with initial fields are underlined which
permit to rigorously selecting two LBGK thermal models. The two selected mod-
els are modified, leading to two new schemes going well with the above mentioned
computational advantages. The standard and modified schemes have been validated
on benchmark computations based two-dimensional natural convection problems
for steady flows. First, the standard and modified schemes are intensively tested on
a heated differentially air-filled cavity for a wide range of Rayleigh number. Fol-
lowing, we present the predictability level of a selected model based transitional
two test cases concerning process of solidification, since these flows types present
transition thresholds in the dynamic behaviour. The produced results are compared
to high-order accurate solutions in available literature finding results. It is found
that the commonly used LB thermal models give similar and consistent results.
However, they are time consuming in its standard forms. The modified models
show an improvement of the computational cost and permit to suggest an appropri-
ate model based on the most required features in Computational Fluid Dynamics.
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1 Introduction

The computational aspect and its implications for algorithm development in com-
putational fluid dynamics is an important subject since the advancement of power-
ful and efficient computers [Leung, Berzins (2003); Shu, Ding, Yeo (2005); Tsukiji,
Yamamoto (2005)]. These aspects concern numerical integration, polynomial inter-
polation, mesh generation, moving mesh, algorithm parallelization, hybrid compu-
tational approach and especially solvers acceleration. The literature on all these
interesting topics is vast [Forth and Staroselsky (2005); El Ganaoui, Bontoux,
Lamazouade, Leonardi and de Vahl Davis (2002)]. Besides, the study of natural
convection is of particular importance and a broad range of responses was made
for numerous applications of classical and recent interest [El Ganaoui, Bontoux,
Lamazouade, Leonardi and de Vahl Davis (2002); Liang, Li, Fu and Ma (2009); El
Ganaoui and Semma (2009)].

Additionally, numerical simulation and modelling using LB method becomes a
challenging branch in CFD [Guo and Zhao (2005); Chatterjee (2010)]. For in-
stance, the LBM enjoys high order accuracy (second order in time and space), ef-
ficient computational resources and has met with significant success for numerical
simulation and modelling of many classical, complex and flows of current inter-
est [Djebali, El Ganaoui, Sammouda and Bennacer (2009); Djebali, Pateyron, El
Ganaoui and Sammouda (2009)]. Recently, the LB method has known an expo-
nential development and appearance of new models and schemes always looking
for more improvements. The advances are, usually, made at the additional exter-
nal/internal terms, the treatment of boundary conditions, the stability, the accuracy
and the speeding-up. Such axes are the subject of the present work based on natural
convection and heat transfer test cases. The key points and main contents of this
paper consist of five sections described as follows: the selection of the equilibrium
distribution function for the advection equation, the selection of the equilibrium
distribution function for the diffusion equation, the selection of high-order bound-
ary condition treatment, a discuss of the acceleration and the stability of the LB
models and finally a results section, where some significant results are achieved.

2 Choice of the equilibrium function for the advection equation

The discrete lattice Boltzmann equation in the presence of body force can be ex-
pressed as:

fk(x′, t ′)− fk(x, t) = − 1
τυ

(
fk(x, t)− f eq

k (x, t)
)

+∆t Sk (1)

The choice of the appropriate form for the forcing term Sk has been studied by
[Mohamad, Kuzmin (2010)]. The authors concluded that the source/sink term Sk =
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wkek.F/c2
s (where F is the body force) shows more better results compared to other

schemes. Such a form will be adopted in the present study.

The macroscopic density and velocity are computed in a 9-bits lattice as:[
ρ(x, t)

ρ u(x, t)

]
= ∑

k=0,8

[
fk

ek fk

]
(2)

In the literature, the equilibrium density distribution function f eq
k (x, t) has under-

gone some modifications looking for eliminating the compressibility effects due to
the LB method itself. In LB modelling and simulation, the following three models
are usually adopted:

- The completely incompressible model due to [Guo, Shi and Zheng, (2002)], writ-
ten as:

f eq
k (x, t) =


−4σ p+ s0(u), k = 0
λ p+ sk(u), k = 1,4
η p+ sk(u), k = 5,8

,

sk(u) = ωk[3 ek.u+4.5(ek.u)2−1.5u2],
σ = 5/12, λ = 1/3 and η = 1/12

(3)

The macroscopic pressure and velocity are, computed as:
p(x, t) = 3

5( ∑
k=1,8

fk− 2
3 u2)

u(x, t) = ∑
k=1,8

ek fk
(4)

- The incompressible model due to [He, Luo, (1997)], written as:

f eq
k (x, t) = ωkρ +ρ0sk(u) (5)

and the macroscopic variables are computed as:[
ρ(x, t)

ρ0 u(x, t)

]
= ∑

k=0,8

[
fk

ek fk

]
(6)

- The commonly used compressible model (in the limit of Ma→0, where Ma is the
Mach number) written as:

f eq
k (x, t) = ρ(ωk + sk(u)) (7)
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where the macroscopic density and velocity are computed as in equation (2).

For all the cited schemes, the relaxation times τυ is linked to the kinetic viscosity
as τυ=3υ+0.5.

It is worth-noting that in the He’s model, the compressible effect is reduced ef-
fectively by explicitly eliminating the terms of order o(Ma2), and both the Guo’s
model (first) and the He’s model (second) are theoretically the most appropriate for
steady and unsteady dynamic flows. In several tests (not presented here), we have
found that the He’s model shows some difficulties in thermal flows simulated using
LB double population models for high Reynolds and Rayleigh numbers. The third
model has been used in many complex applications (for steady and unsteady flow)
and has found to give reliable results compared to classical discretization methods
[Peng, Shu and Chew (2003); Chew, Shu and Niu (2002)]. It has been, also, exten-
sively verified, used and has shown better performance in 2D and 3D simulations
[Shu, Niu and Chew (2003)]. For these reasons and for its simple scheme (com-
pared to the incompressible Guo’s model) it will be adopted in the following, under
same rigor modifications.

3 Choice of the equilibrium distribution for the diffusion equation

For the double population thermal approach, three models are commonly used.
That depends mainly on the used lattice (m-bits) or the equilibrium distribution.
The governing equation for the diffusion equation is written as:

hk(x′, t ′)−hk(x, t) =− 1
τα

(
hk(x, t)−heq

k (x, t)
)

(8)

- The simple way is to use a 9-bits lattices (m=9) as for the dynamic field and
for a simple coding: since we will use the same streaming subroutines, the same
weighting factors wk and the same velocity vectors ek for the two distributions. The
temperature equilibrium distribution function for the titled passive scalar approach
will be:

heq
k (x, t) = T (x, t)(ωk + sk(u)) (9)

the macroscopic temperature is computed as:

T (x, t) = ∑
k=0,8

hk (10)

The corresponding relaxation time τα is linked to the thermal diffusivity as τα =
3α +0.5.
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- The simplified thermal energy model (STEM) proposed by [Peng, Shu and Chew
(2003)], for the energy equation, has been also extensively used and has shown
great features. Its equilibrium distribution function is written as:

heq
k =ωkρε

(
1.5(e2

k−u2)+

3
(
1.5e2

k−1
)
(ek.u)+4.5(ek.u)2) (11)

where ε = DRT/2, D = 2 and R = 1. The macroscopic temperature is computed
as:

ρ
DR
2

T (x, t) = ∑
k=0,8

hk (12)

The corresponding relaxation time τα is linked to the thermal diffusivity as τα =1.5α+0.5.
A 4-bits STEM was proposed by [Azwadi, Sidik (2007)], but it will not be consid-
ered here for lack of accuracy.

- The 4-bits passive scalar model is more recommender by [Mohamad (2007)]
based on the idea that the diffusion equation are linear on velocity. This model
has been, also, used by [Djebali, Pateyron, El Ganaoui and Sammouda (2009)] for
very high temperature jet flows and has shown great efficiency. The corresponding
equilibrium distribution function is expressed as follows:

heq
k (x, t) = 0.25T (x, t) [1+2 ek.u] (13)

the macroscopic temperature is computed as:

T (x, t) = ∑
k=1,4

hk (14)

The corresponding relaxation time τα is linked to the thermal diffusivity as τα=2α+0.5.

We have to mention here, that the first thermal 9-bits approach is memory con-
suming since the LBM needs to memorize nine values per variable (over against
4 for the D2Q4 model); and is time consuming since the collision process takes
about 70% per time step (it takes five additional operations over against the D2Q4
model). Furthermore, it has been demonstrated in [Peng, Shu and Chew (2003)]
that the second 9-bits form (STEM) is more efficient in the computational cost. For
these raisons, the first 9-bits thermal model will be discarded and we will consider
in the following the D2Q4 passive scalar model and the 9-bits STEM model. A
rigorous comparison will be carried out between the D2Q9-STEM form and the
D2Q4 one to determine each features based on the test problems. The two models
will be:
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Figure 1: Boundary condition treatment for D2Q9 lattice. Continuous: known and
dashed: unknown functions at wall node.

 

Figure 2: Geometry and boundary conditions of natural convection problem in a
square cavity.
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-Model 1: a double population based on different lattices, D2Q9-D2Q4 for the
dynamic and thermal fields respectively:{

f eq
k (x, t) = ρ(ωk + sk(u)), k = 0,8

heq
k (x, t) = 0.25T [1+2 ek.u], k = 1,4

(15)

and the macroscopic variables are computed using the equations (2) and (14).

- Model 2: a double population based on the same 9-bits lattice for the dynamic
and thermal fields, D2Q9-D2Q9:

f eq
k (x, t) = ρ(ωk + sk(u))

heq
k = ωkρε

(
1.5(e2

k−u2)+
3
(
1.5e2

k−1
)
(ek.u)+4.5(ek.u)2

) , k = 0,8 (16)

and the macroscopic variables are computed using the equations (2) and (12).

4 Boundary condition treatment

Implementation of boundary condition is an important issue in the LB method.
In general case, there are two classes of boundary conditions: the free boundary
condition (periodic boundary, open boundary and moving boundary) and the solid
boundary condition (non-slip boundary, slip boundary). The treatments differ from
one problem to other. We discuss in here the quite simple and commonly used
schemes. For the present problem, the non-slip boundary condition is adopted at
the four walls and the bounce-back rule will be adopted.

As one can see for the left wall (Fig. 1), the distributions functions f6, f3 and
f7 (solid) are determined by the streaming process. However the incoming ones
(dashed), f1, f5 and f8 are unknown and are determined using standard bounce-
back rule as: f1 = f3, f5 = f7 and f8 = f6.

The same treatment is applied to the unknown distributions functions (dashed vec-
tors) at all nodes of the other walls. Inspite of its simplicity, some authors claim
that this scheme is first order accurate which can alter the accuracy of second order
in LBM.

A second order accurate scheme is the bounce-back of the non-equilibrium part,
expressed as f neq

α = f neq
β

. For the unknown functions, we have:
f1 = f3 +( f eq

1 − f eq
3 )

f5 = f7 +( f eq
5 − f eq

7 )
f8 = f6 +( f eq

8 − f eq
6 )

(17)
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Figure 3: Contour-maps of isotherms (left) and streamlines (right) for the model I
(dashed) and model II (solid) for Ra=105.

      

(a)                                                                       (b) 

 Figure 4: (a) Time history of the Nusselt numbers at the hot wall (red), at the cold
wall (blue) and throughout the cavity (green). Dashed line: model I, continuous
line: model II; (b) zoomed part near the established regime, Ra=105.

The bounce-back rule of the non-equilibrium part is also adopted for the STEM
thermal model, and is expressed as:

hneq
α −~e2

α f neq
α =−(hneq

β
−~e2

β
f neq
β

) (18)
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where α and β are two opposite directions at a wall node, α incoming and β

outgoing. The bounce-back rule of the non-equilibrium part for the passive scalar
thermal model is expressed as:

hneq
α = hneq

β
(19)

The wall temperatures are used for the calculation of the equilibrium parts and
the Neumann boundary condition is solved by the classical second order finite dif-
ferencing. The bounce-back rule of the non-equilibrium parts will be used in the
following.

5 Acceleration and stability

The lattice Boltzmann equation is valid for the limit τ >0.5. For the two limits
(0.5, ∞), we have code divergence or non physical oscillations. To overcome the
unphysical oscillations, [Hui and ChuiJie (2009)] introduce a modification in the
relaxation time expression as: τυ = 3υ/θ + 1− 0.5/θ , where θ is a weighting
coefficient. The post-collision distribution function is computed as:

f (x, t +∆t) = θ f (x, t +∆t)+(1−θ) f (x, t) (20)

One must choose θ under the condition τυ > 0.5 which introduces new constraint.

An intuitive model, originally proposed by [Guo, Zhao and Shi (2004)] and ex-
tended by [Premnath, Pattison and Banerjee (2009)] to flow with body force, offers
more stability to the LB method, allows accurate results for coarser grid-size and
speeds-up the convergence for steady flows or the established regime for unsteady
flows. The model is quite simple compared to other techniques of acceleration
(such as Multi-Grid Technique). At our best knowledge, this study is the first ex-
tension of this technique to thermal flows.

The models 1 and 2 will be modified respectively to models I and II including
accelerating coefficients as:

- Model I:
f eq
k (x, t) = ωkρ (1+3ek.u
+(4.5(ek.u)2−1.5u2)/γ f

)
, k = 0,8

heq
k (x, t) = 0.25T (1+2 ek.u/γh) , k = 1,4

(21)

and the corresponding relaxation times become τν = 3υ/γ f +0.5 and τα = 2α/γh +
0.5.
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Figure 5: Time history of the Nusselt numbers for Ra=106 at the hot wall (red),
at the cold wall (blue) and throughout the cavity (green). Dashed line: model I,
continuous line: model II, bold: γ =1, fin: γ =0.1.

-Model II:


f eq
k = ωkρ

(
1+3ek.u+(4.5(ek.u)2−1.5u2)/γ f

)
heq

k = ωkρε3
(
1.5(e2

k−u2/γh)+
,

[(
1.5e2

k−1
)
(ek.u)+4.5(ek.u)2

]
/γh
) , k = 0,8 (22)

and the corresponding relaxation times become τν = 3υ/γ f +0.5 and τα = 1.5α/γh +
0.5.

Following the modified equilibrium thermal distribution, the preconditioned inter-
nal energy equation is derived using the Chapman-Enskog procedure (see Appendix
A). It is noted that the Mach number becomes Ma∗ = Ma/γ0.5

f and the accuracy of
the models I and II is linear function of υ/γ f and α/γh compared to the standard
models 1 and 2 [Premnath, Pattison and Banerjee (2009)].
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6 Results

In this section three test cases are investigated. All cases interested flow and heat
transfer problems for different topics and are based on different two-dimensional
configurations. The reference scales used for length, velocity and time are (respec-
tively) H, α/H and H2/α . All the calculations are performed on the computing
server CALI (CAlcul en LImousin). To conduct rigorous comparison in any simu-
lation test, the routines of the two models I and II are launched simultaneously (in
parallel).

Test case 1: Side wall heated cavity (steady)
The natural convection problem in a square cavity is presented in Fig. 2. The cavity
is of LxH dimensions (L=H). To describe the convective heat transfer we use the
averaged Nusselt numbers at the hot wall Nuh, at the cold wall Nucand in the whole
domain Nu, expressed as:

Nuh =
1

α∆T/H
1
H

H
∫
0
(uT −α (∂T/∂ x))|x=0 dy (23)

Nuc =− 1
α∆T/H

1
H

H
∫
0
(uT −α (∂T/∂ x))|x=L dy (24)

Nu =
1
L

L
∫
0

Nuh dx (25)

The convergence criteria used for the steady state is expressed as:∣∣∣∣Nu(t +5000)−Nu(t)
Nu(t)

∣∣∣∣≤ 10−4 (26)

Tab. 1 summarizes the present results for Ra=105 for the Models I and II taking
υ=0.01 and γ f = γh = γ =1 and different grid sizes. For convenience, the number
of iterations is expressed in unit of 5000 due to the convergence criteria checked
after each 5000 iterations. High order accurate reference results using FV method
and GDQ method are gathered for seek of comparison. The tested fields are the
maximal horizontal velocity at mid-width and its location, the maximal vertical
velocity at mid-height and its location, the maximal stream-function value and the
averaged Nusselt number throughout the cavity. Our results are expressed with four
digits float.

In the quantitative sense, one can see that the two models give very close results for
all the tested fields. Increasing the grid size the results are well improved compared
to references results. For the model II, better results can be obtained with finer grids
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as given in [Peng, Shu and Chew (2003)]. Qualitatively (see Fig. 3), the isotherms
and iso-stream-functions distributions show that the two models give the same or
very similar results.

For the computational cost, the model II generally takes few additionally iterations
to achieve steady state. That can be easily remarked from Fig. 4 (a), the time his-
tories of the Nusselt numbers Nuh, Nucand Nu are undistinguishable. The zoomed
part near the established regime (Fig. 4 (b)) shows that Nuh and Nuc, for the model
I, converge to the same value 4.5842 faster than the model II, which agrees well
with the iterations numbers taken for a grid size of 150x150. However, although
both models converge to almost the same number of iterations, the CPU times differ
considerably: Model I preserves much the computational time (see Tab. 1).

      
 

Figure 6: Contour-maps of isotherms for Ra=106. left: model I, right: model II,
solid: γ =1, dashed: γ =0.1.

In the second part of this section we discuss the effect of the preconditioning pa-
rameters γ . The Rayleigh number is chosen to be 106, the lattice kinetic viscosity
and thermal diffusivity are chosen to equal 0.0075 and for the preconditioning pa-
rameter, we examine the cases γ f = γg =1 and 0.1. It is noted above that when γ

< 1 the accuracy will be affected by the ratio υ /γ . Then, one must choose a new
kinetic viscosity and thermal diffusivity. We found that it is more intuitive to keep
invariant the Mach number ( 0.102); then, for the present test the new viscosity and
thermal diffusivity change from 0.0075 at γ =1 to 0.00237 at γ =0.1. The results
are presented in Tab. 2.

For γ =1, it is well seen that (i) the two models show a high level of predictability,
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Table 1: Comparison of the present LBM predictions with the numerical solutions
of references Ref.1 and Ref.2 for Ra=105, ‘x’ denotes: x5000 iterations. Ref.1: [de
Vahl Davis (1983)] and Ref.2: [Shu, Xue (1998).].

Lattice Model Umax y Vmax x ψmax Nu iter. CPU(s)

1002 I 34.5588 0.8500 68.0857 0.0700 9.5543 4.4706 49 x 672.96
II 34.6873 0.8500 68.1364 0.0700 9.5751 4.4618 47 x 831.12

1502 I 34.6963 0.8533 68.4569 0.0667 9.5877 4.4915 91 x 2842.40
II 34.7475 0.8533 68.5756 0.0667 9.6042 4.4887 94 x 3868.26

Ref.1 34.722 0.855 68.590 0.066 9.612 4.519 - -
Ref.2 34.736 0.855 68.640 0.065 9.618 4.523 - -

Table 2: Comparison of the present results for Ra=106 predicted using standard
models (γ=1) and accelerated models (γ=0.1), ‘x’ denotes: x5000 iterations. The
two findings are also compared to references Ref.1: [de Vahl Davis (1983)] and
Ref.2: [Shu, Xue (1998).].

Lattice Model γ Umax y Vmax x Nu iter. CPU(s)

1502 I 1 64.3298 0.8533 218.4357 0.0399 8.7328 79 x 2459.22
II 1 64.5907 0.8533 218.4111 0.0399 8.6920 77 x 3159.00

2002 I 1 64.6416 0.8500 219.3287 0.0399 8.7633 120 x 6961.89
II 1 64.7223 0.8500 219.2961 0.0399 8.7390 123 x 9430.67

1502 I 0.1 63.5481 0.8533 216.2578 0.0399 8.8043 30 x 941.25
II 0.1 64.4013 0.8600 216.6580 0.0399 8.7194 30 x 1317.20

2502 I 0.1 64.3910 0.8480 218.7332 0.0399 8.8041 67 x 6417.93
II 0.1 64.8949 0.852 218.8855 0.0399 8.7702 69 x 9168.07

Ref.1 - 64.630 0.850 219.360 0.0379 8.800 - -
Ref.2 - 64.775 0.850 220.640 0.0350 8.800 - -

(ii) as for Ra=105, the two standard models (γ=1) takes roughly the same number
of iterations to achieve the established regime, but the model I is clearly very fast
(it has less CPU time), (iii) increasing the grid size from 1502 to 2002, the accuracy
of the results is enhanced for the two models compared to the referenced results
and the CPU times are increased significantly.

For γ =0.1, let us first choose a grid size of 1502 for the two test models. The
predictions are found to be in good agreement with references results. Furthermore,
the CPU time is significantly decreased as shown in Tab. 2 and through the time
histories in Fig. 5. The comparison between the standard forms (γ=1) and the
modified ones (γ =0.1) is shown in Fig. 6. Near the walls, the two models represent
similarly the streamlines and isotherms structures. At the cavity core, the results of
the accelerated schemes undergo a slight deformation which affects the calculated
fields in Tab.2. The model II, as mentioned for Ra=105, takes more CPU time to
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Figure 7: Bifurcation diagram for the horizontal Bridgman model (fixed interface)
for Pr = 0.015.

  

  

Figure 7 : Bifurcation diagram for the horizontal Bridgman 
model (fixed interface) for Pr = 0.015. 

 

Figure 8 : Simplified vertical Bridgman configuration with 
fixed interface. 

In the second part of this section we discuss the effect of the 
preconditioning parameters γ. The Rayleigh number is 
chosen to be 106, the lattice kinetic viscosity and thermal 
diffusivity are chosen to equal 0.0075 and for the 
preconditioning parameter, we examine the cases γf = γg =1 
and 0.1. It is noted above that when γ < 1 the accuracy will 
be affected by the ratio υ/γ. Then, one must choose a new 
kinetic viscosity and thermal diffusivity. We found that it is 
more intuitive to keep invariant the Mach number (~0.102); 
then, for the present test the new viscosity and thermal 
diffusivity change from 0.0075 at γ =1 to 0.00237 at γ =0.1. 
The results are presented in Tab. 2. 

For γ =1, it is well seen that (i) the two models show a high 
level of predictability, (ii) as for Ra=105, the two standard 
models (γ=1) takes roughly the same number of iterations to 
achieve the established regime, but the model I is clearly very 
fast (it has less CPU time), (iii) increasing the grid size from 
1502 to 2002, the accuracy of the results is enhanced for the 

two models compared to the referenced results and the CPU 
times are increased  significantly. 

For γ =0.1, let us first choose a grid size of 1502 for the two 
test models. The predictions are found to be in good 
agreement with references results. Furthermore, the CPU 
time is significantly decreased as shown in Tab. 2 and 
through the time histories in Fig. 5. The comparison between 
the standard forms (γ=1) and the modified ones (γ =0.1) is 
shown in Fig. 6. Near the walls, the two models represent 
similarly the streamlines and isotherms structures. At the 
cavity core, the results of the accelerated schemes undergo a 
slight deformation which affects the calculated fields in 
Tab.2. The model II, as mentioned for Ra=105, takes more 
CPU time to achieve the steady state. 

The main idea of this part is to demonstrate that in general 
cases, for high flow parameters (Rayleigh, Reynolds,…), one 
must choose low values for the kinetic viscosity, which is not 
allowed due to the instability limit τ>0.5. The parameter γ 
can be, then, optimized to obtain acceptable results with 
coarse grid sizes or accurate results with fine grid size with 
speeding-up the established regime and keeping more 
stability which are important issues in CFD. This is well 
shown in Tab. 2: for a grid size of 2502, γ =0.1 and υ=0.005 
the predicted results are the best and are close to reference 
results. However, the CPU time, for the two models, is 
clearly decreased compared to the standard forms using even 
a grid size of 1502. 

To determine the speeding-up law of the preconditioning 
parameter γ, we assume that its effect results in a power, ie 
CPU(γ)=C. γ a where C and a are two parameters. The 
computations for Ra=106 and a grid size 150 (see Tab. 3) are 
used to calculate the coefficient a for the two models. The 
estimations lead to aI = 0.4173 and aII = 0.3801. These two 
values agree well with the value a ≈0.45 found previously by 
[Guo, Zhao, Shi (2004)]. 

The third part of this study focuses on the comparison of two 
ways of accelerating the established regime. The Rayleigh 
number is chosen to be 107 and the grid size is 2502. The fist 
way is the above tested procedure using the preconditioning 
parameter γ (with γ=0.1 and υ=0.00158), the second way is 
to use an initial non zero-fields (with γ =1 and υ=0.005). The 
adopted initial solution is the steady state solution 
corresponding to Ra=106 using a grid size of 2502. Tab. 3 
summarizes the predicted results. It is clear that the 
acceleration technique using non-zero initial fields is as 
effective and preserves significantly computational time. In 
fact and first, the CPU time taken for Ra=107 with a grid size 
2502 (Tab. 3) is much lower than that taken for Ra=106 using 
a grid size 2002 (Tab. 2): 4182.75 sec. for Ra=107 counter 
6961.89 for Ra=106. Second, the CPU times for the two 
models is much lower using the acceleration by means of 
non-zero initial field than the acceleration using the 
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initializing solution for Ra=106. For this reason, 
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Figure 8: Simplified vertical Bridgman configuration with fixed interface.

achieve the steady state.

The main idea of this part is to demonstrate that in general cases, for high flow
parameters (Rayleigh, Reynolds,. . . ), one must choose low values for the kinetic
viscosity, which is not allowed due to the instability limit τ>0.5. The parameter
γ can be, then, optimized to obtain acceptable results with coarse grid sizes or
accurate results with fine grid size with speeding-up the established regime and
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keeping more stability which are important issues in CFD. This is well shown in
Tab. 2: for a grid size of 2502, γ =0.1 and υ=0.005 the predicted results are the best
and are close to reference results. However, the CPU time, for the two models, is
clearly decreased compared to the standard forms using even a grid size of 1502.

To determine the speeding-up law of the preconditioning parameter γ , we assume
that its effect results in a power law, ie CPU(γ)=C. γ a where C and a are two
parameters. The computations for Ra=106 and a grid size 150 (see Tab. 3) are
used to calculate the coefficient a for the two models. The estimations lead to aI=
0.4173 and aII= 0.3801. These two values agree well with the value a ≈0.45 found
previously by [Guo, Zhao, Shi (2004)].

The third part of this study focuses on the comparison of two ways of accelerating
the established regime. The Rayleigh number is chosen to be 107 and the grid size is
2502. The fist way is the above tested procedure using the preconditioning parame-
ter γ (with γ=0.1 and υ=0.00158), the second way is to use an initial non zero-fields
(with γ =1 and υ=0.005). The adopted initial solution is the steady state solution
corresponding to Ra=106 using a grid size of 2502. Tab. 3 summarizes the pre-
dicted results. It is clear that the acceleration technique using non-zero initial fields
is as effective and preserves significantly computational time. In fact and first, the
CPU time taken for Ra=107 with a grid size 2502 (Tab. 3) is much lower than that
taken for Ra=106 using a grid size 2002 (Tab. 2): 4182.75 sec. for Ra=107 counter
6961.89 for Ra=106. Second, the CPU times for the two models is much lower
using the acceleration by means of non-zero initial field than the acceleration using
the preconditioning parameter γ as depicted in Tab. 3. However, this technique has
the disadvantage that the time saved in the computation at Ra=107 has been lost to
prepare the initializing solution for Ra=106. For this reason, preconditioning the
computation using the parameter γ is more efficient to save more computational
time for all. The two models results keep the same features discussed above for
Ra=105 and Ra=106.

In the following the two accelerated models will be considered versus discretization
approaches to solve problems interesting directional solidification industry. The
problems consider two situations with symmetry breaking for low Prandtl number
fluids flowing in enclosures: the horizontal and the vertical Bridgman models. Fur-
ther explanations for the two transitional test cases definitions can be found in [El
Ganaoui, Djebali (2010); Djebali, Sammouda, El Ganaoui (2010)].

In the following two case-tests, the focus is put on the predictability level of the
modified LB model in the results rather than to describe the models in details.

Test case 2: Transitions thresholds in the horizontal Bridgman model
In this test case, we consider the horizontal Bridgman cavity. The simplified model
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is the same as in Fig. 2, with an aspect ratio A = L/H =4. The cavity is filled
with Gallium of Prandtl number 0.015, the resolution is taken 320x80 and the pre-
conditioning parameter γ is chosen 0.1 for the two relaxation times. The simpli-
fied model considers a fixed interface, maintained at constant temperatures as for
former established benchmarks. This flow is characterized by a transition in the
dynamic structure behaviour at low Grashof numbers Gr*, where Gr*=Ra/Pr (Gr*
is the modified Grashof number, see [Gelfgat, Bar-Yoseph, Yarin (1999)]). The
zero initial conditions are taken for all the computed fields. The LB results (model
1) for the maximum stream-function magnitude vs the Grashof number Gr* are
summarized in Tab. 4.

     
 

Figure 9: Symmetry breaking for the simplified vertical Bridgman model, Pr=0.01.

For Gr=104, the flow is a one convective clock-wise rotating cell. A transition
occurs at a critical value of Gr≈31750 and the flow structure is a three counter-
rotating cells. In the vicinity of the critical point the Grashof number is increased
uniformly (by a step of 250). For Gr=32000, the flow exhibits a three cells struc-
ture. However, for Gr=32250 a new transition characterized by two-cell structure
is identified. The present results are gathered with previous solutions [Gelfgat,
Bar-Yoseph, Yarin (1999); Ben Hadid, Roux (1990); Pulicani, del Arco, Randria-
mampianina, Bontoux, Peyret (1990)]; Winters (1988); Winters (1990)] in Tab. 5.
The bifurcations diagram defined by the plot of maximum stream-function magni-
tude vs the Grashof number is presented in Fig. 7. The regime remains steady with
two rolls until Gr=35000. A change in the cells-shape is observed near isothermal
walls for Gr=40000, the stream-function magnitude increases considerably and no
time dependency is remarked. This behaviour defines a new branch with two cells
in the flow patterns. One can remark the excellent agreement between the LB re-
sults and those of the traditional methods in CFD. It can be concluded, through this
test case, that the present modified LB model is a promising alternative for transi-
tion thresholds at low Prandtl numbers flows, as it accurately captures the threshold
of transition even for coarser grid compared to the standard model used in [28].

Test case 3: Symmetry breaking behaviour in vertical Bridgman model
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Figure 10: Maximum dimensionless stream-function magnitude vs dimensionless
time for Gr=6 105 and different Knudsen numbers.

In this third test case, the modified LB first model is tested based simplified model
of the classical vertical Bridgman technique as depicted in Fig. 8. The cavity is
filled with a material of a Prandtl number Pr=0.01 and the resolution is chosen to
be 100x100. The preconditioning parameter γ is chosen 0.1 for the two relaxation
times.

Table 3: Comparison between preconditioned models (γ=0.1) and results with non-
zero initial fields for Ra=107, ‘x’ denotes: x5000 iterations, ‘*’ denotes. initialized
by the Ra=106 steady’s solution. Ref.: [Le Quéré (1991)]

Lattice Model γ ψmax Nuh Nuc Nu iter. CPU(s)

2502 I
1* 30.7951 16.5140 16.8165 16.3593 45 x 4182.75
0.1 29.9133 16.3613 17.2182 16.5568 61 x 5925.38

2502 II
1* 30.8918 16.4285 16.4989 16.4157 46 x 5577.18
0.1 29.9929 16.8432 16.8074 16.4880 59 x 8353.73

[Ref.] 30.165 16.523 16.523 16.523 - -
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Table 4: Estimation of Hopf point, maximum stream-function magnitude vs modi-
fied Grashof number.

Gr*=Gr/A.103 10 20 30 32 32.25 35 40
|Ψmax| 0.450 0.836 1.158 1.181 1.033 1.082 1.151

Table 5: Hopf point estimated for A=4 and Pr=0.015 with various methods: Ref.1:
[Gelfgat, Bar-Yoseph, Yarin (1999)], Ref.2: [Ben Hadid, Roux (1990)], Ref.3:
[Pulicani, del Arco, Randriamampianina, Bontoux, Peyret (1990)], Ref.4: [Win-
ters (1988)], Ref.5: [Winters (1990)] and (*): model 1.

Method Spectral FVM FDM Spectral FEM LBM
[Ref.1] [Ref.1] [Ref.2] [Ref.3] [Ref.4,5] Present (*)

Mesh 200x100 60x24 121x41 40x30 66x24 320x80
Gr.10−3 32.996 32.5-33.5 32.5-33.5 33.3 33.002 32.0

Table 6: Symmetry breaking and routes to unteadiness in vertical Bridgman growth
for Pr=0.01: comparison with various Ref.1: [results, Larroudé, Ouazzani, Alexan-
der, Bontoux (1994)], Ref.2: [Bennacer, El Ganaoui, Leonardi (2006)], Ref.3:
[Semma (2004)].

Method Symmetric, Ψmax(Gr=2 105) Grc of transition SS-AS
Spectral [Ref.1] - 2.5-3 105

FV (3D) [Ref.2] - 3 105

FV (2D) [Ref.3] 0.290 3.50 105

LBM (2D): Present 0.267 2.85-3 105

The model exhibits a rapid change in boundary conditions, and the onset of the flow
results from the Rayleigh-Bénard configuration. For low values of Grashof num-
ber, the flow is a steady symmetric structure (SS) showing two counter-rotating
cells. Enhancing the heat transfer by increasing the Grashof number, the maximum
stream-function magnitude ψmax is 0.267, 0.275, 0.356, 0.364 and 0.340 (in unit of
thermal diffusivity) for respectively Gr=2 105, 2.5 105, 2.75 105, 2.85 105 and 3
105, then the stream-function magnitude reaches its maximum for a Grashof num-
ber ranged between 2.85 105 and 3 105. The flow becomes completely asymmetric
(SAS) for Gr=3 105 and indicates a change in the flow pattern characterized by a
typical symmetry breaking in the melt flow structure (see Fig. 9). The present LB
first model results are confirmed by the 2D Spectral results [Larroudé, Ouazzani,
Alexander, Bontoux (1994)] where transition threshold is identified between 2.5
105 and 3 105 and FV ones (2D and 3D) [Bennacer, El Ganaoui, Leonardi (2006);
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Semma (2004)]. A recapitulative table gathers each results with the used method
(see Tab. 6).

The convergence dimensionless time is about 10 in unit of the thermal diffusion
time scale based the cavity height H2/α .

With more increase of Grashof number, the flow becomes steady and absolutely
asymmetric (SAS). Moreover, we observed the growth progressively of one roll
and the reduction of the other. We have remarked that this behaviour depends
strongly on the Knudsen number defined as follows:

Kn =
√

π σ/2.υ∗ /(cs H) (27)

Where σ is the heat capacity ratio for a monatomic ideal gas and is close to 5/3.
As example, for Gr=6 105, the flow structure is completely dominated by one roll
slightly distorted by the presence of two-linked left-vortices and two small right-
vortices for low Knudsen number (Kn=4.67 10−5: macroscopic scale) where the
macroscopic stream-function magnitude is close to 2.416. However, its value is
close to 1.506 for a Kn=2.80 10−4 (going to the mesoscopic scale) and the flow
pattern changes absolutely to asymmetric structure characterized by two counter-
rotating large cells (see Fig. 10). Note here that for all computations the Mach
number is less than 0.13.

7 Concluding remarks

We propose in this paper two LB models to be investigated and compared. The two
models are rigorously selected from the most commonly used approaches in LBM
based on some features, such as simplicity, accuracy, stability and computational
cost. The predicted results show a high level of predictability for the two models
compared to the referenced results. The model I based on two different lattices
D2Q9-D2Q4 is found to be faster than the model II based on the simplified ther-
mal energy model D2Q9-D2Q9, either for the standard forms and the accelerated
forms. This difference is in fact due to the additionally algebraic operations taken
by the model II in the collision process caused by the complex form of its energy
distribution function.

We easily conclude on the high efficiency of the two preconditioned models; how-
ever, the use of the model I (passive scalar approach) in its standard or accelerated
forms is extremely recommended. The preconditioned form of the model 1 has
been, then, tested on two natural convection problems concerning symmetry break-
ing in low Prandtl number flows concerning crystal growth in enclosures. The
corresponding results are compared to high order accurate solutions in available
literature finding results and have shown good agreements with previous works for
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transition thresholds. For high Grashof numbers (Gr≥6 105), it has been found that
the flow structure depends on the Knudsen number. We hope this work offers more
explanations and help for researchers in the use the presented models as powerful
and reliable tools in CFD.

Acknowledgement: This work has been done in very difficult conditions, in the
days of the revolution of freedom of the Tunisian people against the dictatorial
regime’s authoritarian.

Appendix A

Chapman-Enskog analysis for the preconditioned internal energy equation:

The Taylor serie expansions result in:

hα =
∞

∑
0

δ
nh(n)

α (1)

∂t =
∞

∑
0

δ
n
∂tn (2)

By under zero’th, first and second orders we have:

O(δ 0) : h(0)
α = heq

α (3)

O(δ 1) : (∂t0 + eα j∂ j)h
(0)
α =− 1

τ∗h
h(1)

α (4)

O(δ 2) : ∂t1h(0)
α +(1− 1

2τ∗h
)(∂t0 + eα j∂ j)h

(1)
α =− 1

τ∗h
h(2)

α (5)

Accounting for the summation (about α) constraints: ∑
α

h(0)
α = ρε , ∑

α

eα jh
(0)
α =

Λ
(0)
j = ρ Vj ε/γh, ∑

α

h(n≥1)
α = 0 and ∑

α

eα jh
(n≥1)
α = Λ

(n)
j .

Zero’th order moment of equation 4-5 give:

∂t0(ρε)+∂ j(ρVjε/γh) = 0 (6)

∂t1(ρε)+(1− 1
2τ∗h

)∇ j.Λ
(1)
j = 0 (7)

Où Λ1
j = ∑

α

eα jh
(1)
α
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First order moment of equation 5 give:

∂t0Λ
(0)
j +∇ j ∑

α

eα jeα jh
(0)
α =− 1

τ∗h
Λ

(1)
j (8)

Replacing equation (8) in equation (7) gives:

∂t1(ρε) = (τ∗h −
1
2
)∇ j.

(
∂t0Λ

(0)
j +∇ j.∑

α

eα jeα jh
(0)
α

)
(9)

Summing Eq. (8) + δ Eq. (11) with considering δ ≡ δ t, c2
s (τ
∗
h −

1
2)δ t = α

γh
,

∑
α

eα jeα jh
(0)
α = (c∗s )

2
ρε , ∂t0Λ

(0)
j ≈ O(Ma3)

and neglecting all terms of order O(Ma3) or O(Ma2.δT ), we finally obtain the
preconditioned internal energy equation (applying the same procedure yields to the
scalar equation):

∂t(ρε)+∂ j(ρVjε)/γh = α ∇
2
j(ρε)/γh (10)

The same procedure can be easily applied to the passive scalar approach.
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