
Copyright © 2011 Tech Science Press CMES, vol.71, no.1, pp.39-66, 2011

Stochastic Meshless Local Petrov-Galerkin (MLPG)
Method for Thermo-Elastic Wave Propagation Analysis in
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Abstract: The thermo-elastic wave propagation based on Green-Naghdi (GN)
coupled thermo-elasticity (without energy dissipation) is studied in a function-
ally graded thick hollow cylinder considering uncertainty in constitutive mechan-
ical properties under thermal shock loading. The meshless local Petrov-Galerkin
method accompanied with Monte-Carlo simulation is developed to solve the stochas-
tic boundary value problem. In the presented method, the mechanical properties of
FGM are considered to be as random variables with Gaussian distribution and mean
values equal to deterministic values reported in previous works, which are gener-
ated using Monte-Carlo simulation with various coefficients of variations (COVs).
The time evolution for transient problems is treated by using the Newmark finite
difference method. The FG cylinder is assumed to be under axisymmetric and plane
strain conditions. The mechanical properties of FGM are nonlinearly graded along
the radial direction. A weak formulation for the set of coupled governing equations
is transformed into local integral equations on local subdomains by using a Heav-
iside test function. All nodal points are regularly distributed along the thickness
of the FG cylinder in radial direction and each node is located in a uni-directional
subdomain to which a local integral equation is applied. The distributions of the
temperature and radial displacements as well as the time history of them are ob-
tained for some grading patterns of FGM at several time instants and for some
COVs. The propagation of thermal and elastic waves along the radial direction in
the FG thick hollow cylinder as well as the statistical characteristics of the variance
and maximum values of the temperature and displacement are discussed in details.
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1 Introduction

Safe and reliable design for FG structures under thermo-mechanical shock load-
ings or structures subjected to transient boundary conditions requires the engineer-
ing parameters to be considered as uncertain and random variables obeying phys-
ical conditions during manufacturing processes of materials. Some of the most
important parameters, which are considered as input parameters in some engineer-
ing problems, are mechanical properties such as modulus of elasticity, density and
heat transfer coefficients. The uncertain mechanical properties can be randomly
generated using the Monte Carlo simulation with various coefficients of variations
(COVs) and normal distribution. The stochastic analysis of dynamic problems as
well as wave propagation in FG structures is helpful for prediction of all possi-
ble responses caused by uncertainties of mechanical properties. In recent years,
several research works have been carried out in various topics dealing with uncer-
tainty of engineering parameters such as mechanical properties that some of them
are addressed in the following paragraphs.

The stochastic analysis of elastic buckling considering independent random Young’s
modulus and Poisson’s ratio was carried out in a FG plates by Yang, Liew and Kiti-
pornchai (2005a). In another work, the flexural deflection was stochastically stud-
ied in FG plates with various boundary conditions by Yang, Liew and Kitiporn-
chai (2005b). In those works, the FG plate was subjected to static loading. The
response of the FG plate under thermal boundary conditions was analyzed consid-
ering uncertain and random parameters for component volume fractions and the
porosity using non-Gaussian simulation technique by Ferrante and Graham-Brady
(2005). Kitipornchai, Yang and Liew (2005) obtained the vibration frequencies
for FG laminates subjected to various and general boundary conditions using the
mean-centered first-order perturbation technique for random free vibration. Rah-
man and Chakraborty (2007) presented a new stochastic finite element method to
predict the probabilistic characteristics of elastic mechanical model in function-
ally graded materials (FGMs). The stochastic finite element method was applied
also to solution of partial differential equations in one dimensional and time depen-
dent conditions with uncertain coefficients by Saleh, El-Kalla and Ehab (2007). A
stochastic analytical method with Monte Carlo simulation was presented to analyze
the thermo-elastic response in functionally graded plate under random temperature
loads [Chiba and Sugano (2007)] and with uncertain material properties [Chiba and
Sugano (2008)] as well as for functionally graded annular disc with variable and/or
constant thickness and random heat transfer coefficients by Chiba (2009). Shaker
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et al. (2008) employed the stochastic finite element method for free vibration and
fundamental frequency sensitivity stochastic analyses assuming uncertainty in ma-
terial parameters. Chakraborty and Rahman (2008) presented an analytical method
based on three stochastic multi-scale models including sequential, invasive, and
concurrent models for the crack stochastic analysis in functionally graded com-
posites. The applicability of the presented analytical method was compared with
the results obtained using the direct Monte Carlo simulation. To have safe and
reliable design in FG thick hollow cylinder subjected to shock loading, hybrid nu-
merical methods with Monte Carlo simulation were developed for the dynamic re-
sponses [Shahabian and Hosseini (2010)] and stress field reliability [Hosseini and
Shahabian (2010)] with assuming Gaussian distribution for uncertain constitutive
mechanical properties of FGMs.

In the last decade, the Meshless local Petrov-Galerkin method (MLPG) proved to
be one of the most efficient numerical methods in engineering problems. In this
method, the analyzed domain is considered to be covered by small subdomains
which are randomly distributed and local (symmetric or unsymmetric) weak forms
integrations are considered over these subdomains. Based on the MLPG method,
some works on thermo-elasticity and heat conduction problems in isotropic and
functionally graded materials were carried out by researchers in the recent years.
The meshless local Petrov-Galerkin (MLPG) method was deeply investigated for
many meshless formulations with trial and test functions from various functional
spaces by [Atluri (2004)]. The application of local integral equations and also
MLPG method can be found to solve the governing equations on elastodynamic
analysis [Sladek et al. (2003a and 2003b)], heat conduction and temperature field
analysis [Sladek et al. (2003c, 2003d and 2005)], uncoupled thermo-elasticity
[Sladek et al. (2001)] and coupled thermo-elasticity [Sladek et al. (2006) and
Hosseini et al. (2011)] in homogeneous and nonhomogeneous solids. The MLPG
method was successfully employed also for 3D transient heat conduction prob-
lems in materials with continuously non-homogeneous and anisotropic properties
[Sladek et al (2008a)]. One of the most important topics in designing and engineer-
ing purposes for functionally graded materials (FGMs) is wave propagation anal-
ysis in the FG structures under shock loading in both displacement (elastic wave)
and temperature (thermal wave) fields. The study of wave propagation phenomena
is based on the coupled thermo-elasticity for which several theories have been de-
veloped. The Green-Naghdi (GN) theory seems to be the best realistic one of them.
In GN theory, the wave propagation speed can be estimated in both temperature
and displacement fields.

In this article, the effects of uncertainty in constitutive mechanical properties for
functionally graded thick hollow cylinder are studied. The mechanical properties of
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FGM are considered to be random variables, which are generated using the Monte
Carlo simulation with proper coefficients of variations (COVs). To find the thermo-
elastic waves and dynamic behaviors of temperature and displacement fields, the
stochastic coupled governing equations based on Green-Naghdi theory of thermo-
elasticity are solved using the meshless local Petrov-Galerkin (stochastic MLPG)
method accompanied by the Newmark finite difference method for discretizing the
time. In the presented work, the FG cylinder is supposed to be axisymmetric and
with translational symmetry along its infinite length (plane strain conditions). After
substitution of spatial approximations into the local integral equations of coupled
thermo-elasticity governing equations, a system of ordinary differential equations
(ODE) is obtained. The system of the ODE is solved by the Newmark finite dif-
ference method. The time history of maximum and variance of temperature and
displacement fields are obtained for several grading patterns and coefficients of
variations (COVs). The effects of uncertainty on thermo-elastic wave propagation
along the radial direction are studied for various grading patterns of FGM in which
the mechanical properties vary as nonlinear function of radius in volume fraction
form. The frequency histogram, cumulative frequency histogram and cumulative
distribution function of temperature and radial displacement are calculated for some
volume fraction exponents, COVs and time intervals.

2 Stochastic coupled thermo-elasticity equations

A model in coupled thermo-elasticity, which is called the GN theory of thermo-
elasticity, was presented by Green and Naghdi (1993). The governing equations
of motion and heat conduction based on the GN theory of linear thermo-elasticity
without energy dissipation for isotropic and non-homogeneous medium are given
as

∇ ·σ +ρF = ρü (1)

c T̈ + γ T0 ∇ · ü = ρ ġ+∇ · (k∗∇T ) (2)

where σ is the stress tensor whose Cartesian components are given as

σi j = δi j(λuk,k− γT )+ µ(ui, j +u j,i)

u is the displacement vector, T is the temperature fluctuation around the uniform
reference temperature T0, F is the density of external forces and ġ is the rate of
external supply of heat. Both the F and ġ are assumed to be absent in this work.
Furthermore, ρ is the mass density, c is the specific heat, λ and µ are the Lame
constants and

γ = (3λ +2µ)β
∗ (3)
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whereβ ∗ is the coefficient of linear thermal expansion and k∗is a material parameter
of the GN theory. The coupled equations (1) and (2) can be rewritten into the
stochastic form as follows

∇ ·σ + ρ̃F = ρ̃ü (4)

c̃ T̈ + γ̃ T0 ∇ · ü = ρ̃ ġ+∇ ·
(
k̃∗∇T

)
(5)

with

σi j = δi j(λ̃uk,k− γ̃T )+ µ̃(ui, j +u j,i)

γ̃ =
(

3λ̃ +2µ̃

)
β̃
∗

where the tilde stands for stochastic parameters that are generated as random vari-
ables.

In what follows, we shall be interested in the thermoelastic problems in a cylin-
drical domain. Therefore the cylindrical coordinates and components appear to be
appropriate. Assuming the axial symmetry as well as the translational symmetry
along the infinitely long cylinder, we conclude that all physical quantities are inde-
pendent on the angular and axial coordinates and

uθ = 0, uz = 0, σrr = 2µ̃ur,r +
(

λ̃e− γ̃T
)

, σθθ = 2µ̃ur/r +
(

λ̃e− γ̃T
)

,

σzz = λ̃e− γ̃T, σrθ = 0 = σrz = σzθ , e = ur,r +ur/r

The governing equations (4) and (5) are reduced to the equations

σrr,r +
1
r

(σrr−σθθ )− ρ̃ ür =−ρ̃Fr (6)

c̃ T̈ + γ̃ T0

(
ür,r +

ür

r

)
−
(
k̃∗T,r

)
,r−

k̃∗

r
T,r = ρ̃ ġ . (7)

Assuming Fr = 0, ġ = 0 and having used the following non-dimensional parameters

r̄ =
r
l

t̄ =
v
l
t, κ̃ = k̃∗

k̃∗0
(8)

as well as non-dimensional field variables

ū =
λ̃0 +2µ̃0

lγ̃0 T0
u, T̄ =

T
T0

,
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σ̄rr =
σrr

γ̃0 T0
, σ̄θθ =

σθθ

γ̃0 T0
(9)

the governing equations become

∂ σ̄rr

∂ r̄
+

1
r̄

(σ̄rr− σ̄θθ )− 1
c̃2

p

∂ 2ūr

∂ t̄2 = 0 (10)

(
∂

∂ r̄
+

1
r̄

)(
κ̃

∂ T̄
∂ r̄

)
− 1

c̃2
T

∂ 2T̄
∂ t̄2 −

1
c̃2

ε

(
∂

∂ r̄
+

1
r̄

)
∂ 2ūr

∂ t̄2 = 0. (11)

Note that “l” is a characteristic length and “v” is a characteristic speed, while

λ̃0 = 2µ̃0
ν

1−2ν
, µ̃0 = Ẽ0/2(1+ν), γ̃0 =

(
3λ̃0 +2µ̃0

)
β̃
∗
0 ,

C̃2
p =

λ̃0 +2µ̃0

ρ̃ v2 , C̃2
T =

k̃∗0
c̃ v2 , C̃2

ε =
k̃∗0(λ̃0 +2µ̃0)

γ̃ γ̃0T0 v2 (12)

with ν being the Poisson ratio, E0, β ∗0 and k∗0 are certain values of the Young mod-
ulus, linear thermal expansion coefficient and k∗-parameter, respectively, say taken
on the inner surface of the cylinder.

In coupled thermo-elasticity analysis, the Monte Carlo method is suggested to be
used since the analytical solution is not available and the stochastic domain cannot
be expressed or approximated by an analytical form. In the Monte Carlo estimation,
the probability of uncertain parameters Pf which are greater than mean value can
be calculated as

Pf =
n
N

where N is the total number of simulations and n is the number of simulations
which have greater values than the value for deterministic inputs (mean values of
random variables).

The uncertain mechanical properties of FG cylinder, such as Young’s modulus Ẽ,
the mass densityρ̃ , the thermal expansion coefficient β̃ ∗, the coefficient k̃∗ and the
specific heat c̃ are graded along the thickness of cylinder. The radial distribution of
material properties is shown by

P̃ =
(
P̃out − P̃in

) ( r̄ − r̄in

r̄out − r̄in

)ψ

+ P̃in (13)

where P̃ is material property, ψ is a non-negative volume fraction exponent and
subscripts "in" and "out" stand for quantities on the inner and outer surfaces of FG
cylinder, respectively.
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3 Meshless technique

As the first step in MLPG method, we have to determine the analyzed domain for
the problem. All physical fields are dependent only on the radial coordinate due
to the axial and translational symmetry in the presented problem. Consequently,
in this problem, the analyzed domain is considered to be an abscissa along the ra-
dial coordinate of the FG cylinder. Some small subdomains with finite size in line
segments form are distributed on the analyzed domain. Nodal points are randomly
distributed in the global domain and each interior node r̄I is surrounded by a sub-
domain (line segment) ΩI = [r̄I0, r̄I1] on which a local weak formulation for the
set of Green-Naghdi coupled thermoleasticity governing equations (10) and (11) is
considered. Nevertheless, the balance equations should be satisfied over the actual
physical subdomain which is the hollow cylinder of thickness (r̄I1− r̄I0) and finite
height [Sladek et al 2008b]. Since the integrands are independent on the angular
and axial coordinates, the integrations with respect to these coordinates are trivial
and it remains to integrate along the radial coordinate over the subdomain ΩI The
local weak form of coupled equations over the subdomain ΩI can be written using
test functions h(r̄) for displacement field and g(r̄) for temperature field

∫
ΩI

{
∂ σ̄rr

∂ r̄
+

1
r̄

(σ̄rr− σ̄θθ )− 1
c̃2

p

∂ 2ūr

∂ t̄2

}
h(r̄) r̄ dr̄ = 0 (14)

∫
ΩI

{(
∂

∂ r̄
+

1
r̄

)(
κ̃

∂ T̄
∂ r̄

)
− 1

c̃2
T

∂ 2T̄
∂ t̄2 −

1
c̃2

ε

(
∂

∂ r̄
+

1
r̄

)
∂ 2ūr

∂ t̄2

}
g(r̄) r̄ dr̄ = 0 (15)

for all interior nodes I = 1, 2, ..., n. Using the integration by parts technique, the
equations (14) and (15) can be rewritten in the following forms

r̄σ̄rrh(r̄)|r̄I1
r̄I0
−

r̄I1∫
r̄I0

{(
σ̄θθ +

r̄
c̃2

p

∂ 2ūr

∂ t̄2

)
h(r̄)+ r̄σ̄rr

∂h(r̄)
∂ r̄

}
dr̄ = 0

r̄
[

κ̃
∂ T̄
∂ r̄
− 1

c̃2
ε

∂ 2ūr

∂ t̄2

]
g(r̄)

∣∣∣∣r̄I1

r̄I0

−
r̄I1∫

r̄I0

{
r̄
[

κ̃
∂ T̄
∂ r̄

∂g(r̄)
∂ r̄
− ∂ 2ūr

∂ t̄2
∂

∂ r̄

(
g(r̄)
c̃2

ε

)]
+

+
r̄g(r̄)

c̃2
T

∂ 2T̄
∂ t̄2

}
dr̄ = 0 (16)

We shall consider the Heaviside unit step function for the test functions h(r̄) and
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g(r̄) in each subdomain

h(r̄) = g(r̄) =

{
1 at r̄ ∈ ΩI

0 at r̄ /∈ ΩI

The local integral equations (16) and (17) are simplified as

r̄σ̄rr|r̄I1
r̄I0
−

r̄I1∫
r̄I0

(
σ̄θθ +

r̄
c̃2

p

∂ 2ūr

∂ t̄2

)
dr̄ = 0 (17)

r̄
[

κ̃
∂ T̄
∂ r̄
− 1

c̃2
ε

∂ 2ūr

∂ t̄2

]∣∣∣∣r̄I1

r̄I0

−
r̄I1∫

r̄I0

r̄
[

1
c̃2

T

∂ 2T̄
∂ t̄2 −

∂ 2ūr

∂ t̄2
∂

∂ r̄

(
1
c̃2

ε

)]
dr̄ = 0 (18)

Using the radial basis functions (RBFs), the field variables ū(r̄, t̄) and T̄ (r̄, t̄) are
spatially distributed over a number of randomly located nodes r̄I , I = 1,2, ...,n
employing the meshless approximation. Consequently, we will use the following
approximations for the temperature and displacement fields

ū(r̄, t̄) = RT (r̄) α (t̄) (19)

T̄ (r̄, t̄) = RT (r̄) β (t̄) (20)

where RT (r̄) = [R1 (r̄) , R2 (r̄) , ... , Rn (r̄)] is the set of radial basis functions cen-
tered around r̄I , and α and β are vectors containing the time-dependent coefficients
of αI and βI , I = 1,2, ...,n. In this article, we use the multiquadric form of radial
basis functions, which can be defined as

RI (r̄) =
(
|r̄− r̄I|2 + c2

)m/2
(21)

To find the terms α and β , the aforementioned interpolation equations (20) and
(21) should be solved using following system of linear equations.

R0 α (t̄) = û(t̄) (22)

R0 β (t̄) = T̂ (t̄) (23)

where

T̂ T (t̄) =
[
T̄ 1 (t̄) , T̄ 2 (t̄) , ... , T̄ n (t̄)

]
(24)

û T (t̄) =
[
ū1 (t̄) , ū2 (t̄) , ... , ūn (t̄)

]
(25)
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are composed of the time variable nodal values of displacements ūI (t̄) and temper-
ature T̄ I (t̄), while R0 is the matrix defined by nodal values of the RBFs as

R0 =


R1 (r̄1) R2 (r̄1) ... Rn (r̄1)
R1 (r̄2) R2 (r̄2) ... Rn (r̄2)

: : : :
R1 (r̄n) R2 (r̄n) ... Rn (r̄n)

 (26)

The vectors α (t̄) and β (t̄)can be calculated using following equations

α (t̄) = R−1
0 û(t̄) (27)

β (t̄) = R−1
0 T̂ (t̄) (28)

The approximated functions can be expressed in terms of the nodal values and the
shape functions as

ū (r̄, t̄) = RT (r̄) R−1
0 û (t̄) = Φ

T (r̄) û (t̄) =
n

∑
a=1

φ
a (r̄) ūa (t̄) (29)

T̄ (r̄, t̄) = RT (r̄) R−1
0 T̂ (t̄) = Φ

T (r̄) T̂ (t̄) =
n

∑
a=1

φ
a (r̄) T̄ a (t̄) (30)

where φ a (r̄) is the shape function associated with the node a. The nodal shape
functions are given by

Φ
T (r̄) = RT (r̄) R−1

0 (31)

Assuming the Poisson ratio to be constant and bearing in mind the definitions of
dimensionless stresses, in view of the approximations (30) and (31), we obtain the
approximations for stress tensor components

σ̄rr(r̄) =
Ẽ(r̄)
Ẽ0

n

∑
a=1

[(
∂φ a(r̄)

∂ r̄
+

ν

1−ν

φ a(r̄)
r̄

)
ūa(t̄)− β̃ ∗(r̄)

β̃ ∗0
T̄ a(t̄)

]
(32)

σ̄θθ (r̄) =
Ẽ(r̄)
Ẽ0

n

∑
a=1

[(
ν

1−ν

∂φ a(r̄)
∂ r̄

+
φ a(r̄)

r̄

)
ūa(t̄)− β̃ ∗(r̄)

β̃ ∗0
T̄ a(t̄)

]
. (33)

Now, we can collocate the prescribed boundary conditions on the surface of the
cylinder and at the interior nodes, we shall consider the discretized local integral
equations (18) and (19) given as
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n

∑
a=1

ūa(t̄)

 Ẽ(r̄)
(

r̄
∂φ a(r̄)

∂ r̄
+

ν

1−ν
φ

a(r̄)
)∣∣∣∣r̄I1

r̄I0

−
r̄I1∫

r̄I0

Ẽ(r̄)
(

ν

1−ν

∂φ a(r̄)
∂ r̄

+
φ a(r̄)

r̄

)
dr̄

−

−
n

∑
a=1

¨̄ua(t̄)
r̄I1∫

r̄I0

r̄ Ẽ0

c̃2
p(r̄)

φ
a(r̄)dr̄−

−
n

∑
a=1

T̄ a(t̄)

 r̄Ẽ(r̄)
β̃ ∗(r̄)

β̃ ∗0
φ

a(r̄)

∣∣∣∣∣
r̄I1

r̄I0

−
r̄I1∫

r̄I0

Ẽ(r̄)
β̃ ∗(r̄)

β̃ ∗0
φ

a(r̄)dr̄

= 0 (34)

n

∑
a=1

¨̄ua(t̄)

− r̄
c̃2

ε(r̄)
φ

a(r̄)
∣∣∣∣r̄I1

r̄I0

+
r̄I1∫

r̄I0

r̄φ
a(r̄)

∂ c̃−2
ε

∂ r̄
dr̄

− n

∑
a=1

¨̄T a(t̄)
r̄I1∫

r̄I0

r̄
c̃2

T (r̄)
φ

a(r̄)dr̄+

+
n

∑
a=1

T̄ a(t̄) κ̃(r̄)r̄
∂φ a(r̄)

∂ r̄

∣∣∣∣r̄I1

r̄I0

= 0 . (35)

It should be noted that the essential boundary conditions on ∂ Ωscan be imposed
directly using the interpolation approximation (30) and (31). In this regards, we
consider the following thermal shock applied on inner surface of FG cylinder as
boundary condition. The inner surface of cylinder is assumed to be under thermal
shock and simply supported conditions for displacements, which can be defined as
follows. At inner surface we have

T̄ (r̄in , t̄) = H (t̄) , ū (r̄in , t̄) = 0 (36)

and for outer surface, we can write

T̄ (r̄out , t̄) = 0, ū (r̄out , t̄) = 0 (37)

where H(t̄) is the Heaviside unit step function. We use the interpolation approxi-
mation on boundary conditions as follows

T̄ (r̄in , t̄) =
n

∑
a=1

φ
a (r̄in) T̄ a (t̄) = H (t̄) (38)
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ū (r̄in , t̄) =
n

∑
a=1

φ
a (r̄in) ūa (t̄) = 0 (39)

T̄ (r̄out , t̄) =
n

∑
a=1

φ
a (r̄out) T̄ a (t̄) = 0 (40)

ū (r̄out , t̄) =
n

∑
a=1

φ
a (r̄out) ūa (t̄) = 0 (41)

The homogeneous initial conditions will be assumed in this paper, i.e.

ūr(r̄, t̄ = 0) = 0, ˙̄ur(r̄, t̄ = 0) = 0, T̄ (r̄, t̄ = 0) = 0, ˙̄T (r̄, t̄ = 0) = 0.

In view of the considered spatial interpolations, the discretized boundary conditions
and the integral equations on local sub-domains can be written in the matrix form
as a system of ordinary differential equations (ODEs) for the time dependent nodal
values of the displacement and temperature.

[M] {η̈} + [K] {η} = [ f ] (42)

where

{η} =
{

[û(t̄)][
T̂ (t̄)

]} (43)

ûT (t̄) =
[
ū1 (t̄) , ū2 (t̄) , .... , ūn (t̄)

]
(44)

T̂ T (t̄) =
[
T̄ 1 (t̄) , T̄ 2 (t̄) , .... , T̄ n (t̄)

]
(45)

There are some numerical methods to solve the set of equations (43) in time do-
main. We use the well-known Newmark finite difference method with suitable time
step in which the terms β and γ are selected equal to β = 0.25 and γ = 0.5 for the
best convergence rate.

4 Numerical example and discussions

A functionally graded thick hollow cylinder is considered in axisymmetric and
plane strain conditions with inner and outer radii r̄in and r̄out , respectively. The
thickness of cylinder can be calculated as h = r̄out − r̄in. All results for both the
temperature and displacement fields are obtained for three values of coefficients
of variations (COVs) as COV = 2.5%, COV = 5% and COV = 10%. At first, in
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order to verify the presented method and data, the volume fraction exponent is con-
sidered to be equal to zeroψ = 0. Consequently, the cylinder is considered as an
isotropic and homogeneous thick cylinder and material properties throughout the
cylinder are equal to the material properties on the outer surfacePout . The material
properties are the same as in the published work by Taheri et al. (2005)

Cp = 0.5, CT = 1.0, Cs =
√

µ

ρ v2 = 0.267, ε
∗ = 0.073 (46)

The prescribed initial and boundary conditions are specified in the previous section.
The distribution of non-dimensional temperature across the thickness of the homo-
geneous cylinder (the same as in the published work by Taheri (2005)) can be seen
for various COVs and deterministic inputs in Fig.1. The results for the cylinder
with COV = 0%, which means the deterministic data, should coincide with those
of the previous work based on deterministic analysis [Taheri et al. (2005)]. It can
be clearly seen in Fig.1 a good agreement in comparison between the results cor-
responding to deterministic inputs COV = 0% and published data. Moreover, Fig.
1 shows the influence of material coefficients variations (COVs) on temperature
distribution along the thickness of cylinder.
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Figure 1: Comparison of non-dimensional temperature distribution for various
COVs and published data [Taheri (2005)] in homogeneous cylinder.

In order to investigate the influence of uncertainty in FGMs on thermo-elastic wave
propagation, the following non-dimensional material parameters are considered as
mean values of random variables, which are generated using the Monte Carlo sim-
ulation with various (COVs):

(Cp)
mean
in = 0.7, (CT )mean

in = 1.2, (Cs)
mean
in = 0.26, (ε∗)mean

in = 0.07 (47)
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(Cp)
mean
out = 0.5, (CT )mean

out = 1, (Cs)
mean
out = 0.28, (ε∗)mean

out = 0.08 (48)

In stochastic analysis of coupled thermo-elasticity, we have a set of outputs for the
non-dimensional temperature and displacement in each investigation point on the
thickness of the cylinder at various the time instants for the specified (COVs) and
particular grading patterns of FGM. As a sample, the non-dimensional temperature
in middle point of the thickness for COV = 2.5%, ψ = 0.5 at the non-dimensional
time t̄ = 0.5 is illustrated in Fig.2 using for example 100 samples. We can see
the mean, maximum and minimum values for variation. In engineering design, the
maximum values and also the values over the mean value should be considered
in the design procedure. We find the thermo-elastic wave propagation and also
the time history of both the displacement and temperature fields corresponding to
maximum values of . . . (WHAT ???). Additionally, some stochastic parameters are
found for the problem based on the results of coupled thermo-elasticity analysis in
FGM such as frequency histogram, cumulative frequency histogram and cumula-
tive distribution functions (CDFs).
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Figure 2: Variation of non-dimensional temperature versus number of simulations
at middle point of thickness for certain "ψ", "t̄" and "COV ".

The frequency histogram of non-dimensional temperature at r = rin +3h/4 is shown
in Fig.3 for a sample case specified by ψ = 0.5, t̄ = 1.8 and COV = 5%. The dis-
tribution of sample values can be found using the frequency histogram, which can
help us to obtain the cumulative frequency histogram and CDF.

The Fig.4 shows us a sample of the cumulative frequency histogram of non-dimensional
temperature in r = rin +3h/4 for ψ = 0.5, t̄ = 1.8 and COV = 5%. Using the his-
togram of cumulative frequency, the cumulative distribution function (CDF) can be
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Figure 3: Frequency histogram of non-dimensional temperature for "r = rin +
3h/4", "ψ = 0.5", "t̄ = 1.8" and "COV = 5%".
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Figure 4: Cumulative frequency histogram of non-dimensional temperature for
"r = rin +3h/4", "ψ = 0.5", "t̄ = 1.8" and "COV = 5%".

obtained for various parameters such as volume fraction exponent ψ and COV in
various points on thickness and at different time instants. The influence of COV on
behavior of CDF can be found in Fig.5 for r = rin +h/2, ψ = 0.5 and t̄ = 0.5.

It is concluded from Fig.5that with increasing the “COV ”the CDF is becoming hor-
izontally more stretched, which means the distribution of data is becoming wider.
Using the presented method, we can find the CDF for other variation of parameters.
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Figure 5: Cumulative distribution function (CDF) of non-dimensional temperature
for various COV and r = rin +h/2", "ψ = 0.5" and "t̄ = 0.5"
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Figure 6: Cumulative distribution function (CDF) of non-dimensional temperature
for various grading patterns in FGM and "r = rin +3h/4", "ψ = 0.5", "t̄ = 1.8" and
"COV = 5%".

The influence of various parameters on CDF can be helpful for designing procedure
and probabilistic analysis of structures made of functionally graded materials.

By increasing the value of the volume fraction exponent, the CDF is stretching
in the temperature domain. This phenomenon can be seen in Fig.6, which shows
the cumulative distribution function for several values of the volume fraction expo-
nent and r = rin + 3h/4, COV = 5% and t̄ = 1.8. The width of the distribution of
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Figure 7: The time history of maximum, mean and minimum values of non-
dimensional temperature for r = rin +h/2", "COV = 5%" and "t̄ = 0.5"
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Figure 8: The time history of maximum values of non-dimensional temperature for
various values of volume fraction exponent, r = rin +h/2" and "COV = 5%"

stochastic data for the temperature field is increasing with increasing the value of
the volume fraction exponentψ .

The time history of maximum, mean and minimum values of the non-dimensional
temperature in the middle point of thickness is drawn in Fig.7 with taking COV =
5% and ψ = 0.5. If we consider the material properties as uncertain and random
variables, the dynamic response of FG structures is highly affected by some sta-
tistical parameters such as COV. In other words, there is a significant difference
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Figure 9: The time history of maximum values of non-dimensional temperature for
various COV at middle point of thickness "ψ = 0.5".
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Figure 10: Non-dimensional temperature distribution across thickness of FG cylin-
der at "t̄ = 0.25" and "ψ = 0.5" and "COV = 5%".

between the maximum and mean values at each time instant and any point on the
thickness of the FG cylinder.

Consequently, the time history of maximum values of temperature should be con-
sidered for engineering calculations in designing purposes. The influence of the
volume fraction exponent variation on the time history of maximum values of
non-dimensional temperature can be observed in Fig.8. The period of time os-
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Figure 11: The distribution of maximum values of non-dimensional temperature
across thickness of FG cylinder at "t̄ = 0.25" and "ψ = 0.5" and various COV.
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Figure 12: The propagation of thermal wave corresponding to maximum and min-
imum values along the radial direction for "COV = 5%" and "ψ = 0.5".

cillations is increased with decreasing the value of ψ . The maximum values of
non-dimensional temperature should increase with increasing the value of COV.

This phenomenon was verified by numerical results at each point along the thick-
ness of the FG cylinder and it is illustrated for a sample with ψ = 0.5 at the middle
point of the thickness in Fig.9. The distribution of the non-dimensional tempera-
ture along the thickness of the FG cylinder is plotted for several values of the COV
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Figure 13: The distribution of non-dimensional temperature for various grading
patterns of FGM and "COV = 5%" and "t̄ = 0.25".
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Figure 14: Variation of non-dimensional radial displacement versus number of sim-
ulations at middle point of thickness for certain "t̄", "ψ" and "COV ".

in Fig.10. It can be seen from Fig.10 that the position of the thermal wave front is
different for maximum, mean and minimum values of the temperature field. Hence,
we conclude again that the thermal wave corresponding to maximum values should
be considered in design calculations.

The thermal wave fronts for bigger values of the COV should reach the outer bound-
ing surface of the cylinder sooner than the wave fronts for smaller values of the
COV, as can be seen on Fig.11 for t̄ = 0.25 and ψ = 0.5. The thermal wave propa-
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Figure 15: Frequency histogram of non-dimensional radial displacement at middle
point of thickness for certain "ψ = 0.5", "t̄ = 0.5" and "COV = 5%".
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Figure 16: Cumulative frequency histogram of non-dimensional radial displace-
ment for "r = rin +h/2", "ψ = 0.5", "t̄ = 0.5" and "COV = 5%".

gations corresponding to the maximum and minimum values of temperature can be
tracked for some time instants in Fig.12 with COV = 5% and ψ = 0.5. The influ-
ence of various grading patterns in FGM on the thermal wave propagation corre-
sponding to the maximum values of non-dimensional temperature is demonstrated
in Fig.13 for COV = 5% and t̄ = 0.25.

The same behavior can be observed for the non-dimensional radial displacement
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Figure 17: Cumulative distribution function (CDF) of non-dimensional temperature
for various grading patterns in FGM and "r = rin +h/2", "COV = 5%", "t̄ = 0.5".

field in the coupled thermo-elasticity analysis for the FG thick hollow cylinder.
Figs.14 to 17 show the behavior of statistical characteristics such as frequency his-
togram and cumulative distribution functions for the non-dimensional radial dis-
placement with the same description and interpretation being valid as discussed for
the temperature field. For example, with increasing the value of the volume fraction
exponent, the CDF of the non-dimensional radial displacement is stretching in the
displacement domain, as can be seen from Fig.17.

The effects of variation in value of COV on CDF of the non-dimensional radial
displacement can be found in Fig.18 for r = rin +h/2, ψ = 0.5 and t̄ = 0.5. Also,
the time history of maximum, mean and minimum values of the non-dimensional
radial displacement at the middle point of the thickness are presented in Fig.19 for
ψ = 0.5 and COV = 5% with confirming the same behavior as for the temperature
field.

It is shown in Fig.20 that the period of time history is affected by variation of the
volume fraction exponent. The period of time oscillations for the non-dimensional
radial displacement is decreased when the value of ψ is increased. Fig.21 shows
the time history of maximum values of the non-dimensional radial displacement
for various values of the COV at the middle point on the cylinder thickness for
ψ = 0.5.

The distributions of the non-dimensional radial displacement along the thickness of
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Figure 18: Cumulative distribution function (CDF) of non-dimensional radial dis-
placement for various grading patterns in FGM and "r = rin + h/2", "ψ = 0.5",
"t̄ = 0.5".
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Figure 19: The time history of maximum, mean and minimum values of non-
dimensional radial displacement for "r = rin +h/2", "ψ = 0.5", "ψ = 0.5".

the FG thick hollow cylinder corresponding to the maximum, mean and minimum
values of the non-dimensional radial displacement and various values of the COV
can be observed in Figs. 22 and 23.

The behavior of the displacement field presented in Figs. 22 and 23 the behavior of
the temperature field discussed earlier. Using the present method, the propagation
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Figure 20: The time history of maximum values of non-dimensional radial dis-
placement for various values of volume fraction exponent, "r = rin + h/2" and
"COV = 5%".
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Figure 21: The time history of maximum values of non-dimensional radial dis-
placement for various COV at middle point of thickness "ψ = 0.5".

of the radial displacement waves along the radial direction and corresponding to
the maximum and minimum values of the non-dimensional radial displacement is
revealed in Fig.24 at several time instants.
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Figure 22: Non-dimensional radial displacement distribution across thickness of
FG cylinder at "ψ = 0.5", "t̄ = 0.25" and "COV = 5%".
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Figure 23: The distribution of maximum values of non-dimensional radial displace-
ment across thickness of FG cylinder at "t̄ = 0.25" and "ψ = 0.5" and various COV.

5 Conclusion

The stochastic transient analysis of thermo-elastic wave propagation and time evo-
lution of temperature and displacement fields based on Green-Naghdi theory of
coupled thermo-elasticity (without energy dissipation) in a FG thick hollow cylin-
der are studied by developing the stochastic meshless local Petrov-Galerkin (MLPG)
method. The presented method is based on the combination of the MLPG, the New-



Stochastic Meshless Local Petrov-Galerkin (MLPG) Method 63

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Non−dimensional radial distance

N
on

−
di

m
en

si
on

al
 r

ad
ia

l d
is

pl
ac

em
en

t

t = 0.25

Maximum values of temperatures
Minimum values of temperatures

t = 0.1

t = 0.4

COV = 5%
Volume fraction exponent ψ = 0.5

 

Figure 24: The propagation of radial displacement wave based on maximum and
minimum values through radial direction for "COV = 5%" and "ψ = 0.5".

mark finite difference (for discretization of time domain) methods and the Monte
Carlo simulation (to generate the random variables). The constitutive material
properties of FGM are considered to be random variables with the Gaussian dis-
tribution. Moreover, the material properties of FGM are assumed to vary along the
radial direction as nonlinear function in terms of the volume fraction. The local
integral equations are derived from the weak form of the governing equations with
considering Heaviside step function as the test functions. The spatial variation of
the temperature and radial displacement are approximated using an interpolation
based on multiquadric radial basis function.

The thermo-elastic wave propagation corresponding to maximum values of both
temperature and radial displacement fields are obtained for various grading pat-
terns in FGM and for several values of coefficients of variations (COVs). The
frequency histogram, cumulative frequency histogram and cumulative distribution
function (CDF) of the temperature and displacement fields have been found for var-
ious grading patterns of FGM. The numerical results show that designers should
consider the maximum values of the temperature and radial displacement fields in
designing procedure in order to get a safe and reliable design of the FG cylinder
subjected to thermal shock loadings. Furthermore, the effects of uncertainty in ma-
terial properties of FGM on dynamic responses and wave propagation are studied in
details and related statistical parameters are calculated using the presented method.
In this approach, there is no need to consider the FG cylinder as a multi-layer cylin-
der with various material properties in each sub-cylinder. The present stochastic
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MLPG method is very convenient computational method for stochastic analyses of
structures made of FGMs with considering uncertainty in material properties. The
MLPG method can be also applied to analyze the coupled thermo-elasticity prob-
lems based on other theories such as classical, the LS (Lord-Shulman) and the GL
(Green-Linsay) theories in FG structures with uncertainty.
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