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Dynamic Modeling and Analysis of Arch Bridges Using
Beam-Arch Segment Assembly

Wei-Xin Ren1,2,3, Cong-Cong Su1 and Wang-Ji Yan1

Abstract: A beam-arch segment assembly procedure is presented in this paper
for the dynamic modelling and analysis of arch bridges. Such a beam-arch segment
assembly is composed of different structural elements of arch bridges such as arch
ribs (curved beams), suspenders, girders and floor beams. Based on the energy
principle in structural dynamics, the stiffness matrix and mass matrix of such an
assembly are formulated. The proposed procedure is then implemented to carry
out the free vibration analysis of the Jian concrete filled tubular arch bridge. It is
demonstrated that the proposed beam-arch segment assembly procedure is efficient
with the advantages of less element numbers and enough accuracy. It is expected
that this methodology can be an effective approach for the further dynamic response
analysis of arch bridges under all kinds of dynamic loads such as earthquakes,
winds and vehicles.
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1 Introduction

The arch bridge is often regarded as an aesthetic form of bridge. Its history can
be traced to circa 3600 B.C. in the ancient kingdoms of Egypt and Mesopotamia
[Peng and Fairfield (1999)]. China’s oldest surviving stone masonry arch bridge,
Zhao Zhou Bridge, dated back to 500 A.D., has withstood earthquakes, floods, traf-
fic loading and weathering and still bears witness to it [Qian (1987)]. Various as-
pects of the history and development of the arch bridge were discussed [Billington
(1977); Burden (1993)]. Compared with other types of bridge superstructures, arch
bridges transmit the applied loads to the supports primarily through axial compres-
sion in the arch ribs while bending moments are relatively small. Moreover, with
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some other merits such as high strength, good seismic behavior and convenience
of construction, arch bridges are still one of the main bridge types in the field of
bridge engineering in recent decades [Nazmy (1997)].

Dynamic analysis of arch bridges has been carried out through theoretical, numer-
ical and experimental analysis by many researchers [Raithel and Franciosi (1984);
Lee and Wilson (1989); Roeder, Macrae, Crocker, Arima and Wong (2000); Non-
aka and Ali (2001); Calcada, Cunha, Delgado (2002); Ren and Zong (2004); Zong,
Jashi, Ge and Ren (2005)]. Theoretical methods involved in solving differential
equations can provide exact solutions. However, the limitations are such that the
behavior of complex surroundings and creations of arch bridges can not be com-
pletely described in one operation. During past five decades, the finite element
method has rapidly become a very popular technique for the numerical solution
of complex arch bridges. The finite element method is the most general and ver-
satile method for analysis of structural problems. The conventional finite element
method, however, may be too general to conveniently represent structural behavior
in global for a specific type of bridge due to so many elements and output infor-
mation involved. For some circumstances such as the vehicle-bridge interaction
vibration analysis of complex bridges, it is still an issue to reduce the element num-
ber or degree of freedoms even with today’s computational capacity.

Thus the process of subdividing the structure into the individual components, whose
behavior is readily understood, and then rebuilding the original structure from such
components has been another natural and effective way. With this regard, a assem-
bly procedure named “beam–arch segment assembly” is proposed in this paper for
the dynamic analysis of arch bridges. Such a segment assembly is composed of
different supper-structural elements of arch bridges such as a curved-beam element
for arch ribs, a truss element for suspenders and beam elements for floor beams and
girders. The beam–arch segment assembly is able to treat the bridge segment com-
posed of several different materials and different kinds of elements as a unit whole
element naturally. Therefore, the advantage of the proposed approach, in contrast
with the conventional finite element method, is that the beam–arch segment as-
sembly reduces the number of degrees of freedom dramatically and simplifies the
calculation.

In the proposed procedure of beam–arch segment assembly for the dynamic analy-
sis of arch bridges the segment between two adjacent suspenders is regarded as one
assembly. The super-structure of an arch bridge is firstly discetized into a number
of segments. For each segment, the reasonable spatial displacement modes incor-
porated with the arch ribs, suspenders, and bridge deck are conceived. Then the
total potential energy of elastic force and inertia force for the beam–arch segment
assembly can be computed respectively. Based on the minimum principle of to-
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tal potential energies in elastic system and corresponding forming matrix method
[Zeng and Guo (1999); Zeng (2000)], the stiffness matrix and mass matrix of such
a beam–arch segment assembly can be derived. Afterwards, the global stiffness
matrix and mass matrix of an arch bridge can be obtained through assembling the
matrixes of each beam–arch segment assembly. To demonstrate the applicability
and efficiency of presented approach, the beam–arch segment assembly procedure
is used to carry out the free vibration analysis of the Jian concrete-filled steel tube
(CFST) arch bridge in Jangxi Province, China that was tested under operational
vibration conditions. The obtained natural frequencies and mode shapes of the
bridge are compared with those obtained from the commercial finite element soft-
ware ANSYS (1994) and field ambient vibration testing. It is demonstrated that the
proposed beam–arch segment assembly procedure for the dynamic analysis of arch
bridges has less element numbers and achieves enough accuracy. It is expected
that proposed beam–arch segment assembly procedure can be effectively used for
the further complex dynamic response analysis of arch bridges under all kinds of
dynamic loads such as earthquakes, winds and vehicles.

1.1 Formulation of beam-arch segment assembly

1.2 Beam-arch segment

The super-structure of an arch bridge is normally composed of suspenders (columns),
bridge deck and arch ribs. The segment between two adjacent suspenders can be
regarded as one assembly named as “beam-arch segment assembly” as shown in
Fig. 1. It can be seen that such a compound segment is made of different structural
elements of arch bridges such as suspenders, girders (or tie bars), floor beams and
arch ribs (curved beams).

Take a single (the eth) segment, as shown in Fig. 2, as an example. In the global co-
ordinate system x-y-z, the segment assembly nodal displacement vector is defined
by:

{δi}=
[

uULi vULi wULi θxULi θyULi θzULi uURi vURi wURi

θxURi θyURi θzURi uLLi vLLi wLLi θxLLi θyLLi θzLLi

uLRi vLRi wLRi θxLRi θyLRi θzLRi
]T (1a)

{
δ j
}

=
[

uUL j vUL j wUL j θxUL j θyUL j θzUL j uUR j vUR j wUR j

θxUR j θyUR j θzUR j uLL j vLL j wLL j θxLL j θyLL j θzLL j

uLR j vLR j wLR j θxLR j θyLR j θzLR j
]T (1b)

where δi and δ j are the displacement vectors on the ith and jth sides of the segment
assembly. u,v and w denote the displacements along x-axes, y-axes and z-axes,
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respectively; θx,θy andθz denote the rotations about x-axes, y-axes and z-axes, re-
spectively. ULi, LLi, URi, LRi, UL j, LL j, UR j and LR j are the eight nodes of
such a segment assembly where the first letters U and L denote the segment assem-
bly’s upper and lower nodes, while the second letters L and R denote the segment
assembly’s left (front) and right (back) nodes.

 

Figure 1: Sketch of a beam-arch segment assembly

 

Figure 2: The eth beam-arch segment assembly

1.3 Curved beam element for arch ribs

It has been usually proposed to approximately model the arch rib by straight beam
elements, which will degrade numerical efficiency. Considering that the arch rib
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plays an important role in the load transferring of arch bridges, the number of the
straight beam elements is supposed to be enough to represent the curved ribs. Com-
pared with the straight beam elements, the curved beam elements, adopted in this
paper, are more efficient since they are capable of transferring loads through the
combined action of bending and stretching.

For each curved beam element, there are two nodes and each node has six degrees
of freedom. Fig. 3 shows the nodal displacements of one segment arch rib at nodes
ULi and UL j. The nodal displacement vectors with respect to the local coordinate
system are represented by:{

δ
′
ULi
}

=
[
u′ULi v′ULi w′ULi θ ′xULi θ ′yULi θ ′zULi

]T
(2a)

{
δ
′
UL j
}

=
[
u′UL j v′UL j w′UL j θ ′xUL j θ ′yUL j θ ′zUL j

]T
(2b)

where the local curvilinear coordinates x′-y′-z′ are defined with the x′-axis along
the neutral axis of the beam. The y′-axis is in the normal direction and the z′-axis
is in the bi-normal direction.

 

Figure 3: Nodal displacements of curved beam element

Based on the theory of curved beam [Yao (1989)], the displacements of an arbi-
trary point (denoted by k with coordinate x′) of the curved beam element can be
approximated as:

u′ak
v′ak
θ ′xak

= [Na1]×
[
u′ULi v′ULi θ ′zULi u′UL j v′UL j θ ′zUL j

]T
(3a)
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{
w′ak
}

= [Na2]×
[
w′ULi −θ ′yULi w′UL j −θ ′yUL j

]T
(3b){

θ
′
yak
}

= [Na3]×
[
θ ′yULi θ ′yUL j

]T
(3c){

θ
′
zak
}

= [Na4]×
[
θ ′zULi θ ′zUL j

]T
(3d)

with the shape functions [Na1], [Na2], [Na3] and [Na4] being shown as the following:

[Na1] =

 1− x′
la

0 0
− x′

r +2 x′2
rla
− x′3

rl2
a

1−3 x′2
la

+2 x′3
l2
a

s−2 x′2
la

+ x′3
l2
a

x′
r −3 x′2

rl2
a

−6 x′
l2
a
+6 x′2

l3
a

1−4 x′
la

+ x′3
l2
a

x′
la

0 0
x′2
rla
− x′3

Rl2
a

3x′2
la
−2 x′3

l2
a
− x′2

la
+ x′3

l2
a

3 x′
rla
−3 x′2

r2 6 x′
l2
a
−6 x′2

l3
a
−2 x′

la
+3 x′3

l2
a

 (4a)

[Na2] =
[

1−3(
x′

la
)2 +2(

x′

la
)3 x′−2

x′2

la
+

x′3

l2
a

3(
x′

la
)2−2(

x′

la
)3 − x′2

la
+

x′3

l2
a

]
(4b)

[Na3] =
[

1−6
x′

l2
a

+6
x′2

l3
a

1−4
x′

la
+

3x′2

l2
a

6
x′

l2
a
−6

x′2

l3
a
− 2x′

la
+

3x′2

l2
a

]
(4c)

[Na4] =
[

1− x′

la

x′

la

]
(4d)

in which the subscript a denotes the arch rib; u′ak, v′ak and w′ak denote displacements
of arbitrary point along x′, y′ and z′-axis, respectively; θ ′xak, θ ′yak and θ ′zak denote
rotations about x′, y′ and z′-axis, respectively; la is the length of the curved beam
element; r is the curvature radius of the arch, which is assumed that the arch rib has
a constant radius of curvature.

The displacements of the curved beam element presented above are in terms of the
local coordinates, while the nodal displacements of the beam-arch segment are in
the global co-ordinate system. Transforming displacements from the local coordi-
nates to the global ones is required. The nodal displacement vectors of the curved
beam element representing the arch rib with respect to global coordinate system are
defined as:

{δULi}=
[
uULi vULi wULi θxULi θyULi θzULi

]T (5a){
δUL j

}
=
[
uUL j vUL j wUL j θxUL j θyUL j θzUL j

]T (5b)
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Then the relationship between the nodal displacement vector with respect to local
coordinate system and that with respect to global coordinate system is given by{

δ ′ULi
δ ′UL j

}
= [λ ]

{
δULi

δUL j

}
(6)

where

[λ ] =


λ1

λ1
λ2

λ2



in which [λ1] =

 cosα1 sinα1 0
−sinα1 cosα1 0

0 0 1

; [λ2] =

 cosα2 sinα2 0
−sinα2 cosα2 0

0 0 1


where α1 denotes the angle between two sets of axes at node ULi and α2 denotes
the angle at node UL j. The displacements of arbitrary point of the curved element
in the global co-ordinates can be determined accordingly.

The axial strain εak, curvatures κzak and κyak about z′ and y′ axes, as well as torsional
curvature κxak can be derived from:

εak =
du′ak
dx′
−

v′ak
r

(7a)

κzak =
d2v′ak
dx′2

+
v′ak
r2 (7b)

κyak =
d2w′ak
dx′2

−
θ ′xak

r
(7c)

κxak =
dθ ′xak
dx′

+
1
r

dw′ak
dx′

(7d)

For a curved arch rib beam element, the axial strain energy Ua1, flexural strain
energies Ua2 and Ua3 about z′ and y′ axes, as well as torsional strain energy Ua4 can
be further calculated from

Ua1 =
1
2

EaAa

∫ la

0
ε

2
akdx′ (8a)

Ua2 =
1
2

EaIza

∫ la

0
κ

2
zakdx′ (8b)
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Ua3 =
1
2

EaIya

∫ la

0
κ

2
yakdx′ (8c)

Ua4 =
1
2

GaIda

∫ la

0
κ

2
xakdx′ (8d)

where Ea is Young’s modulus of the arch rib; Aa is the sectional area; la is the length
of the curved element; Ga is shear modulus of t of the arch rib; Iya and Iza are the
inertia moment about y′ and z′ axis; Ida is the polar inertia moment.

Therefore, the total elastic strain energy of the arch rib segment with nodes ULi

and UL j are

Ua = Ua1 +Ua2 +Ua3 +Ua4 (9)

Moreover, the potential energy of inertia force is defined as the negative value of
work done by constant value of the inertia force:

Va = ma

∫ la

0
(u′akü′ak + v′akv̈′ak +w′akẅ′ak)dx′ (10)

where ma is the mass of arch rib’s unit length.

1.4 Consideration of suspenders

The elements used to simulate the suspenders in a beam-arch segment assembly
are the truss element having three degrees-of-freedom per node as shown in Fig. 4.
The nodal displacement vector of a suspender with nodes ULi and LLi in the local
coordinate system is represented by:

{
δ
′
s
}

=


u′ULi u′LLi
v′ULi v′LLi
w′ULi w′LLi

 (11)

The suspender displacements of an arbitrary point (denoted by k) can be calculated
from the shape functions and the nodal displacements:

u′sk
v′sk
w′sk

= [INs1 INs2]
{

δ
′
s

}
(12)

where the subscripts denotes the suspender and I is a three by three identity matrix.
The shape functions with a linear interpolation are given as:

Ns1 = 1− y′/ls; Ns2 = y′/ls (13)
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Figure 4: Nodal displacements of suspender element

in which y′ is the coordinate along the axis of the suspender in the local co-ordinates
and ls is the length of the suspender.

The axial strain εsk of a suspender element can be determined as:

εsk =
dv′sk
dy′

(14)

The axial strain energy Us of the suspender with nodes ULi and LLi can be calcu-
lated from:

Us =
1
2

EsAs

∫ ls

0
ε

2
skdy′ =

1
2

EsAs

∫ ls

0

(
dv′sk
dy′

)2

dy′ (15)

where Es is Young’s modulus of the suspender and As is the area of its cross section.

Similarly, the potential energy of the suspender is the work done by constant value
of the inertia force:

Vs = ms

∫ ls

0
(u′skü′sk + v′skv̈′sk +w′skẅ′sk)dy′ (16)
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in which ms is the mass of the suspender’s unit length. The total energies for other
three suspenders in a beam-arch segment assembly as shown in Fig. 1 can be
determined in the same way.

1.5 Consideration of floor beams

The elements used to simulate the floor beams in a beam-arch segment assembly
are the spatial beam element having six degrees-of-freedom per node as shown in
Fig. 5. Taking the floor beam with nodes LLi and LRi in the local coordinate
system as an example, the nodal displacement vector is represented by:{

δ
′
f

}
=
{

δ ′LLi
δ ′LRi

}
(17)

where

{
δ
′
LLi
}

=


u′LLi θ ′xLLi
v′LLi θ ′yLLi
w′LLi θ ′zLLi

 ;
{

δ
′
LRi
}

=


u′LRi θ ′xLRi
v′LRi θ ′yLRi
w′LRi θ ′zLRi

 (18)

 

Figure 5: Nodal displacements of floor beam element

The displacements of an arbitrary point (denoted by k) in the floor beam can be



Dynamic Modeling and Analysis of Arch Bridges 77

calculated from the shape functions and the nodal displacements:

u′f k
v′f k
w′f k
θ ′x f k
θ ′y f k
θ ′z f k


=



N f 1
N f 2
N f 3
N f 4
N f 5
N f 6


{

δ
′
f
}

(19)

where the subscript f denotes the floor beam. The shape functions of the beam
element are given as:

[N f 1] =
[

1− 3z′2
l2

f
+ 2z′3

l3
f

0 0 0 −
(

z′− 2z′2
l f

+ z′3
l2

f

)
0 3z′2

l2
f
− 2z′3

l3
f

0 0 0−
(
− z′2

l f
+ z′3

l2
f

)
0
]

(20a)

[N f 2] =
[

0 1− 3z′2
l2

f
+ 2z′3

l3
f

0
(

z′− 2z′2
l f

+ z′3
l2

f

)
0 0 0 3z′2

l2
f
− 2z′3

l3
f

0 − z′2
l f

+ z′3
l2

f
0 0

]
(20b)

[N f 3] =
[
0 0 1− z′

l f
0 0 0 0 0 z′

l f
0 0 0

]
(20c)

[N f 4] =
[

0 0 0 1− z′
l f

0 0 0 0 0 z′
l f

0 0
]

(20d)

[N f 5] =
[
0 0 0 0 1− z′

l f
0 0 0 0 0 z′

l f
0
]

(20e)

[N f 6] =
[
0 0 0 0 0 1− z′

l f
0 0 0 0 0 z′

l f

]
(20f)

In which z′ is the coordinate along the axis of the beam in the local co-ordinates
and l f is the length of the floor beam. The displacements with respect to the local
coordinate system can be transformed to a global system following a similar pattern
as the curved beam does.

Furthermore, the axial strain ε f k, the curvatures κx f k and κy f k about x′ and y′ axes,
as well torsional curvature κz f k can be calculated as follows:

ε f k =
dw′f k

dz′
(21a)
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κx f k =
d2v′f k

dz′2
(21b)

κy f k =
d2u′f k

dz′2
(21c)

κz f k =
dθ ′z f k

dz′
(21d)

Thus, the corresponding strain energy can be obtained by

U f 1 =
1
2

E f A f

∫ l f

0
ε

2
f kdz′ (22a)

U f 2 =
1
2

E f I f x

∫ l f

0
κ

2
x f kdz′ (22b)

U f 3 =
1
2

E f I f y

∫ l f

0
κ

2
y f kdz′ (22c)

U f 4 =
1
2

G f I f d

∫ l f

0
κ

2
z f kdz′ (22d)

where E f and G f are respectively Young’s and shear modulus of the floor beam.
A f is the sectional area. l f is the length of the floor beam. Ix f and Iy f are the inertia
moment about x′ and y′ axes;. Id f is the polar moment of inertia.

The total elastic strain energies of the floor beam can thus be obtained:

U f = U f 1 +U f 2 +U f 3 +U f 4 (23)

The potential energy of the floor beam is the work done by constant value of the
inertia force:

Vf = m f

∫ l f

0
(u′f kü′f k + v′f kv̈′f k +w′f kẅ′f k)dz′ (24)

where m f is the mass of the floor beam’s unit length. The elastic strain energies
and potential energy for the other floor beams in the beam-arch segment assembly
can be obtained in the same way.
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Figure 6: Bridge girder (stringer) segment

1.6 Consideration of girders

The bridge girders (tie bars) or stringers in a beam-arch segment assembly are also
modeled by the spatial beam elements having six degrees-of-freedom per node as
shown in Fig. 6. Once the nodal displacement vector of a girder segment in a
local coordinate system are defined, similar to the floor beams, the displacements
of a girder segment at an arbitrary point can be calculated by the shape functions
of a standard beam element, and corresponding elastic strain energy Ugk as well as
potential energy Vgk of the inertia force for thekth girder segment can be obtained.

In addition, if there are the wind braces between two arches in a beam-arch segment
assembly, the corresponding elastic strain energy and potential energy of the inertia
force can be calculated in a similar way of floor beams.

1.7 Total energies of a beam-arch segment assembly

The total potential energy of elastic force and the potential energy of inertia force
in a beam-arch segment assembyl are the sum of their counterparts in each sub-
element. It is worth noting that each suspender and floor beam is shared by two
adjacent segments. What is meant by this is that a half of their energy contribution
should be included in each beam-arch segment assembly. Consequently, the total
potential energy of elastic force for the eth beam-arch segment assembly as shown
in Fig. 2 can be directly formulated as follows:

Ue = Ue
a +

Ue
s

2
+

Ue
f

2
+Ue

g (25)

where

Ue
a = UULi−UL j

a +UURi−UR j
a (26a)
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Ue
s = UULi−LLi

s +UUL j−LL j
s +UURi−LRi

s +UUR j−LR j
s (26b)

Ue
f = ULLi−LRi

f +ULL j−LR j
f (26c)

Ue
g =

N1

∑
k=1

Ugk (26d)

in which N1 is the total number of stripes that the bridge deck can be divided
into. Likewise, the total potential energy of inertia force can be also formulated as
follows:

V e = V e
a +

V e
s

2
+

V e
f

2
+V e

g (27)

where

V e
a = VULi−UL j

a +VURi−UR j
a (28a)

V e
s = VULi−LLi

s +VUL j−LL j
s +VURi−LRi

s +VUR j−LR j
s (28b)

V e
f = V LLi−LRi

f +V LL j−LR j
f (28c)

V e
g =

N1

∑
k=1

Vgk (28d)

2 Stiffness and mass matrices of a beam-arch segment assembly

To directly formulate the mass matrix and stiffness matrix of the beam-arch seg-
ment assembly, the principle of total potential energy with stationary value in elas-
tic dynamics system and the “set-in-right-position” rule for formulating matrixes
[Zeng and Guo (1999); Zeng (2000)] are used. With the aid of inertia forces (d’
Alembert’s principle), the governing equations of motion in structural dynamics
can be represented by the equations of dynamic equilibrium. It follows that the
vibrating structure is in equilibrium under the action of a set of forces including
the inertia force, elastic interactive force, damping force and external loads at any
instant time. From the principle of virtual work, the system dynamic equilibrium
equations can be formulated as

δ ∏ = 0 (29)

where ∏ is the total potential energy of dynamic system. It is worthwhile to note
that the variational operation δ should only be performed on the displacements or
natural deformations of system, whereas all the forces are treated as invariants. As
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an extension of the principle of stationary potential energy in statics to deal with the
dynamic problems, the spatial vibration equations can be methodically and easily
formulated by above principle.

To formulate the stiffness and mass matrices in finite element method, the dynamic
equilibrium of system (Eq. (29)) can be rewritten in the following form if an elastic
system has n degrees of freedom

δ ∏ =
n

∑
i=1

∂ ∏

∂ui
δui = 0 (30)

Since δui is arbitrarily chosen and not equal to zero, thus, one has:

δu1
∂ ∏

∂u1
= 0, δu2

∂ ∏

∂u2
= 0, ......, δun

∂ ∏

∂un
= 0 (31)

Eq. (31) represents the governing differential equations of motion for the dis-
cretized dynamic system. In general, each of them contains acceleration, velocity
and displacement of system. By categorizing these structural variables, a matrix
form can be written as

{δu}T ([M]{ü})+ [C]{u̇}+[K]{u}−{P}) = 0 (32)

where {ü}, {u̇} and {u} are the vectors of acceleration, velocity and displacement.
[M], [C] and [K] are system matrices. {P} is the vector of external load. {δu} is a
diagonal matrix as given below

{δu}= diag

δu1 · · · 0
...

. . .
...

0 · · · δun


(n×n)

The reason to keep the item of {δu}T in Eq. (32) is that it contains the impor-
tant information to form the system matrices. From Eq. (31) and (32), it can be
found that the symbol δui represents the ith row of [M], [C] and [K], while ü j, u̇ j

and u j represents the jth column of [M], [C] and [K] respectively. Therefore, the
coefficients in each terms of Eq. (32), which are multiplied by δuiü j, δuiu̇ j and
δuiu j, should be placed at the intersection position of the ith row and jth column of
[M], [C] and [K] respectively. In addition, the coefficients only associated with δui

should be placed at the ith row of {P}. This is the “set-in-right-position” rule for
formulating system matrices. Since this rule is derived fromδ ∏ = 0, it allows to
directly formulate the system matrices of the compound element or structure from
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the total energy that is the sum of each simple sub-element or sub-system. This rule
is helpful to form the system matrices of train-bridge vibration system [Zeng and
Guo (1999)].

For the free vibration analysis without damping, the total potential energies of cur-
rent beam-arch segment assembly include the elastic strain energy Ue and work V e

done by the inertia force upon the displacement measured from the reference point
of potential energy. In such a case, Eq. (30) for a beam-arch segment assembly
becomes

δ ∏ =
N2

∑
i=1

∂Ue

∂ui
δui +

N2

∑
i=1

∂V e

∂ui
δui = 0 (33)

where ui is the ith nodal displacement of the beam-arch segment assembly, while
N2 is the total number of nodal displacements of the beam-arch segment assembly.
Thus the elemental stiffness matrix [k]e that is associated with the first term in Eq.
(33) and elemental mass matrix [m]e that is associated with the second term in Eq.
(33) can be formulated based on “set-in-right-position” rule.

Afterwards, the global mass matrix [[M]] and stiffness matrix [[K]] of the structure
can be obtained by assembling all corresponding assembly matrixes:

[[M]] =
N3

∑
e=1

[m]e (34a)

[K] =
N3

∑
e=1

[k]e (34b)

where N3 is the total number of beam-arch segment assembly.

Once the global mass and stiffness matrices are determined, the dynamic charac-
teristic analysis is formulated by solving the eigenvalue problem:(
[K]−ω

2 [M]
)
{ϕ}= 0 (35)

3 Case study

3.1 Description of Jian concrete filled steel tubular arch bridge

To verify the applicability and efficiency of proposed beam-arch segment assem-
bly procedure, a case of real arch bridge is studied. The bridge is the Jian Bridge
located in Jian city, Jiangxi Province, China. It is a concrete filled steel tubu-
lar arch bridge. Fig. 7 shows a photograph of the completed bridge. The eleva-
tion and plan of the bridge are shown in Fig. 8. The bridge has a total length of
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536 m, which consists of three concrete-filled steel tubular half-through arch spans
(138m+188m+138m) and two symmetric side cantilevered half RC arch spans of
36 m.

 

Figure 7: Side view of the Jian Bridge

 
 Elevation 

 

 
 

 Plane 
 

Figure 8: A general arrangement drawing of the bridge

The arch span has two parallel truss arch ribs, each of which has a triangular cross-
section consisting of three steel tubes, with the dimensions of 1,000×16 mm (the
upper steel tube) and 750 × 12 mm (the lower steel tubes). The steel tubes below
the bridge deck are filled with high fluidity concrete. The depth of the arch rib
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is 3,500 mm, and the width of the arch rib is 2,000 mm. The suspenders of the
arch are the wire cables like those of suspension bridges. There are totally 120
suspenders spacing between 5 m to 6 m, which are vertically connected to the arch
ribs and the floor beams of bridge deck. Each steel wire cable of the suspender has
a diameter of 50 mm.

The deck load carrying system of the bridge consists of two main girders and floor
beams. The girder is the I-beam arranged longitudinally with a different height
depending on the position of the bridge. Two ends of the girder are connected by
16 pre-stressed steel strands acted as the tie bars to balance the horizontal forces
arising from the arch. A reinforced concrete slab has a thickness of 600 mm.

3.2 Modeling with beam-arch segment assembly

In this paper, only the main span (188m) of the Jian bridge is considered in the
analysis. The main span is divided into 31 beam-arch segment assemblies as shown
in Fig. 9. Because the bridge is a half through arch bridge, the arch ribs and floor
beams may be connected by either suspenders or columns, which leads to two kinds
of beam-arch segment assemblies as shown in Fig. 10.

 

Figure 9: Segment discretization of Jian bridge main span

The curve of the arch rib is theoretically assumed by the catenaries, and its equation
is defined as follows:

y =
f

m−1
{ch[K(

2x
L

)]−1} (36)

where

K = ln(m+
√

m2−1) (37)
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 Connected by suspenders                                  Connected by columns 
 

Figure 10: Two types of beam-arch segment

in which the length of the centre span is L=188m, the rise is f =54m, and the ratio
of rise to span is m=0.3. Thus the geometric parameters of the arch rib such as
the arch rib length la, curvature r, the angle α between two sets of axes, suspender
length ls can be calculated from above equations and they are shown in Table 1.
As the main span of the bridge is symmetric, the geometric parameters in Table
1 represent the half of the main span. The concrete filled steel tubular arch rib is
considered as a composite material where the equivalent Young’s modulus is used
in the computation. The material parameters used in the analysis are summarized
in Table 2.

The program of proposed beam-arch segment assembly procedure has been devel-
oped in the MATLAB environment. With the developed program, the free vibration
(modal) analysis of the Jian bridge can be carried out and corresponding dynamic
characteristics of the bridge such as natural frequencies and mode shapes can be
obtained.

3.3 Modeling with ANSYS

To compare and validate the proposed beam-arch segment assembly procedure,
a three-dimensional linear finite element model of the Jian Bridge is developed
by ANSYS (1994), a commercial finite element analysis package. The arch ribs,
girders, floor beams and other bracing members are modeled by the 3-D two node
beam elements (BEAM4). All suspenders are modeled by the tension-only truss
elements (LINK10). The deck concrete slab of the bridge is modeled by the shell
elements (SHELL63). Solid elements (SOLID45) are used to model the platform
of piers. The full 3-D view of the finite element model of the arch bridge is as
shown in Fig. 11. With ANSYS, the free vibration (modal) analysis of the Jian
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Table 1: Geometric parameters of the bridge

Node la(m) r(m) α(degree) ls(m)
1 10.50 254.15 -52.93 16.37
2 10.72 223.96 -50.56 8.11
3 8.02 199.44 -47.82 0.00
4 8.37 179.54 -45.51 5.83
5 8.01 161.25 -42.84 11.67
6 7.67 145.26 -34.00 16.97
7 7.36 131.40 -36.97 21.74
8 7.08 119.47 -33.76 26.00
9 6.84 109.32 -30.37 29.77
10 6.62 100.81 -26.79 33.04
11 6.43 93.82 -23.03 35.83
12 6.28 88.24 -19.10 38.14
13 6.16 83.99 -15.03 39.98
14 6.07 81.01 -10.83 41.36
15 6.03 79.23 -6.53 42.28
16 6.00 78.65 -2.18 42.74

Table 2: Physical parameters of the bridge

Sub-structure Young’s Modulus Poisson’s Mass density
(MPa) ratio (kg/m3)

Arch rib above bridge deck 4.58×104 0.30 2800
Arch rib below bridge deck 4.16×104 0.30 2550

Column 5.66×104 0.30 2550
Suspender 1.95×105 0.30 7850

Bridge deck 3.25×104 0.17 2500

bridge can be carried out and corresponding dynamic characteristics of the bridge
such as natural frequencies and mode shapes can be obtained.

3.4 Field ambient vibration tests of the bridge

The experimental modal analysis basically refers to the extraction of modal param-
eters (frequencies, damping ratios and mode shapes) from vibration measurements.
These modal parameters can serve as a basis for finite element model updating ver-
ification and validation (V&V), structural damage detection, structural safety eval-
uation, and structural health monitoring. The controlled forced vibration testing by
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Figure 11: 3-D finite element model of the bridge

artificial means such as shakers or drop (releasing) weights is costly and difficult
for intensively used bridges. In contrast, ambient vibration testing by using natural
excitations such traffic, wind, pedestrian, and their combinations is a more feasi-
ble method for the bridges under operational conditions. Ambient vibration testing
and modal parameter identification have been successfully applied to many bridges
by authors and colleagues [Ren, Zhao and Harik (2004); Ren, Harik, Blandford,
Lenett, Baseheart (2004); Ren, Zatar and Harik (2004); Ren, Peng and Lin (2005)].

The field dynamic testing on the Jian Bridge was carried out by using the method
of ambient vibration. The equipments used to measure the acceleration-time re-
sponses consisted of 891-II accelerometers, cables and 32-channel data acquisition
system. For the bridge deck, the accelerometers were directly placed on the surface
of the bridge deck in the vertical direction as shown in Fig. 12. Measurement points
were chosen on both upstream and downstream sides of the bridge at a location near
the joint between the suspenders and deck. As a result, a total of 176 locations (88
points per side) were selected for acceleration measurements as shown in Fig. 13a.
18 test set-ups were used to cover the planned all measurement locations. Two ref-
erence (fixed) locations were selected for each set-up where one was in the center
of the main span and another was near to the supporting of the main span. For the
ambient vibration testing on the arch rib of the main span, 7 measurement locations
as shown in Fig. 13b were instrumented with only one set-up.

Accelerometer placed on the deck surface Data Acquisition System

Once the measured time domain data are available from testing, the modal pa-
rameters (natural frequencies, damping ratios and mode shapes) can be identified
from these data. The data processing and modal parameter identification were car-
ried out by MACEC, a modal analysis toolbox for civil engineering construction
[De Roeck and Peeters (1999)] where a rather simple peak-picking (PP) technique
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Accelerometer placed on the deck surface                         Data Acquisition System 
 

Figure 12: Accelerometer and data acquisition system

 

(a)

 

(b)

Figure 13: Details of measurement locations

in frequency-domain and an advanced stochastic subspace identification (SSI) in
time-domain are complementally used.

3.5 Results comparison and discussion

The natural frequencies of the main span and arch rib of the Jian bridge obtained
from the proposed beam-arch segment assembly procedure, ANSYS and field am-
bient vibration testing are compared in Table 3 that presents the natural frequencies
of first two vertical modes, the first two torsional modes of the bridge deck, and the
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natural frequencies of first two vertical modes and transverse modes of the arch rib.
Fig. 14 compares the mode shapes obtained from the beam-arch segment assembly
procedure, ANSYS and field ambient vibration testing.

Table 3: Identified and calculated natural frequencies (Hz)

Sub-structure Modes Test Current Error ANSYS Error
method (%) (%)

Bridge deck

1st vertical 0.624 0.617 1.0 0.637 2.0
1st torsion 1.005 1.039 3.4 1.030 5.3

2nd vertical 1.063 1.092 2.7 1.079 1.5
2nd torsion 1.539 1.713 11.3 1.700 10.4

Arch rib

1st vertical 0.624 0.617 1.0 0.637 2.0
2nd vertical 1.063 1.092 2.7 1.079 1.5

1st transverse 0.303 0.221 27.0 0.224 26.0
2nd transverse 0.594 0.583 1.9 0.512 13.8

 

Current method                        ANSYS                              Field test 

1st vertical             

2nd vertical           

1st torsion            

2nd torsion            

 

Figure 14: Comparison of mode shapes

It can been seen that both natural frequencies and mode shapes calculated from the
proposed beam-arch segment assembly procedure agree well with those obtained
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from the commercial finite element analysis package ANASYS and field ambient
vibration testing. The proposed beam-arch segment assembly procedure is suitable
and reliable for the dynamic analysis of arch bridges with less element numbers
and enough accuracy.

It is demonstrated that the natural frequencies of the first and second vertical modes
for the arch rib and the bridge deck are the same with the values of 0.623Hz and
1.063Hz. This means that the first two vertical vibrations of the arch rib and bridge
deck occur simultaneously. However, the first transverse vibration of the arch rib
of the Jian bridge shows a little bit low natural frequency of 0.303Hz.

4 Concluding remarks

An efficient beam-arch segment assembly procedure for the dynamic analysis of
arch bridges is presented in this paper. Such a beam-arch segment assembly is
composed of different structural elements of arch bridges such as a curved-beam
element for arch ribs, a truss element for suspenders and beam elements for floor
beams and girders. Based on the principle of total potential energy with station-
ary value in elastic dynamics system, the stiffness matrix and mass matrix of such
a compound assembly are derived in details. The corresponding MATLAB-based
computer program is developed. The proposed beam-arch segment assembly pro-
cedure is then implemented to carry out the dynamics characteristics analysis of the
Jian concrete filled steel tubular arch bridge in Jangxi Province, China. Both nat-
ural frequencies and mode shapes of the Jian bridge calculated from the proposed
beam-arch segment assembly procedure agree well with those obtained from the
commercial finite element analysis package ANASYS and field dynamic testing
under operational vibration conditions. It is demonstrated that the proposed beam-
arch segment assembly procedure is suitable and reliable for the dynamic analysis
of arch bridges with the advantages of less element numbers and enough accuracy.
It is expected that this methodology can be an effective approach for the further
dynamic response analysis of arch bridges under all kinds of dynamic loads such
as earthquakes, winds and vehicles.
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