
Copyright © 2010 Tech Science Press CMES, vol.70, no.1, pp.1-9, 2010

Fuzzy Optimization of Multivariable Fuzzy Functions

Şahin Emrah Amrahov1 and Iman N. Askerzade1

Abstract: In this paper we define multivariable fuzzy functions (MFF) and cor-
responding multivariable crisp functions (MCF). Then we give a definition for the
maximum value of MFF, which in some cases coincides with the maximum value
in Pareto sense. We introduce generalized maximizing and minimizing sets in order
to determine the maximum values of MFF. By equating membership functions of
a given fuzzy domain set and the corresponding maximizing set, we obtain a curve
of equal possibilities. Then we use the method of Lagrange multipliers to solve
the resulting nonlinear optimization problem when the membership functions are
differentiable. We finally present examples of finding extreme points of MFF.
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1 Introduction

Fuzzy sets were defined by Zadeh(1965). The concept of fuzzy functions was in-
troduced in fuzzy theory by many authors [Sasaki(1993); Demirci(1999); Klir and
Yuan(1995); Lee and Lee Kwang(2001); Amrahov and Askerzade(2010);]. Find-
ing extremes of fuzzy functions is important in practice. In early research, fuzzy
extremes of single variable crisp functions defined on fuzzy domain were inves-
tigated. Maximizing and minimizing sets were introduced for the case of single
variable functions [Lee Kwang(2005)]. In this paper we are interested in extremes
of multivariable fuzzy functions (MFF). We tackle the problem by extending the
concept of maximizing and minimizing sets to the multivariable case.

The paper is organized as follows: In Section 2, we give a precise definition for
MFF and corresponding multivariable crisp functions (MCF). In Section 3, we in-
troduce maximizing and minimizing sets for MFF. In Section 4, we consider the
curve of equal possibilities by equating the membership functions of fuzzy domain
sets and corresponding maximizing sets. On such curves, we define the maximum
value of MFF. Then in some sample cases, we discuss whether the maximum value
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defined as such coincides with the Pareto maximum. We then apply the method
of Lagrange multipliers to solve the arising nonlinear optimization problem with
constraints if the membership functions have partial derivatives. We finally provide
examples demonstrating the method. In Section 5, we give suggestions regarding
further research on the topic.

2 Multivariable Fuzzy Functions (MFF)

Let D be a fuzzy subset of Rn with a membership function µD and let f be a real-
valued function defined on D. Then we say f is a multivariable fuzzy function
(MFF).

Example1. Consider the fuzzy set

D =
{

x = (x1,x2)|x2
1 + x2

2 ≤ 1,x = (x1,x2) ∈ R2} (1)

with the membership function

µD(x) = µD(x1,x2) =

{
x2

1 + x2
2, if (x1,x2) ∈ D

0, otherwise
(2)

and the function

f (x) = f (x1,x2) = 3x1 +4x2 (3)

defined on D. Then f is an MFF.

Now consider the function g defined on the set X = D with the membership function

µX(x) =

{
1, if x ∈ X
0, if x /∈ X

(4)

Note that X is a crisp set. If for all x ∈ X the equality g(x) = f (x) holds then the
function g is called the multivariable crisp function (MCF) corresponding to f and
is denoted by f̄ .

Example2. Consider the function

g(x) = g(x1,x2) = 3x1 +4x2 (5)

defined on the set X =
{

x = (x1,x2)|x2
1 + x2

2 ≤ 1,x = (x1,x2) ∈ R2
}

Then g is the MCF for f from example 1.
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3 Maximizing and Minimizing Sets

Let f be an MFF defined on a fuzzy set D ⊂ Rn with the membership function
µD and let f̄ be MCF corresponding to f . Suppose that f̄ has finite infimum and
supremum. Put b = sup( f̄ ) and a = inf( f̄ ) respectively. The maximizing set M of
f is defined as a fuzzy set with membership function

µM(x) =

{
f̄ (x)−a
b−a , if x ∈M

0, otherwise
(6)

Minimizing set of f is defined as the maximizing set of − f .

Example 3. For the function in example 2, by the Cauchy-Schwarz inequality we
have

|3x1 +4x2| ≤
√

32 +42
√

x2
1 + x2

2 ≤ 5 (7)

From here and taking into account that f (−0.6, −0.8) = −5 and f (0.6, 0.8) = 5
we have a =−5, b = 5, µM(x) = 3x1+4x2+5

10 .

4 Fuzzy optimization

Firstly, we will consider the maximum value of f̄ on a crisp domain. Assume
that x0 = (x0

1,x
0
2, ...x

0
n) is the point at which f̄ attain the maximum value on a crisp

domain X ⊂Rn. Hence x0 = (x0
1,x

0
2, ...x

0
n) gives µM(x1,x2, ...xn) its maximum value.

In other words,

µM(x0
1,x

0
2, ...x

0
n)≥ µM(x1,x2, ...xn) for all x = (x1,x2, ...xn) ∈ X ,

where µM(x) is the membership function of the maximizing set.

Therefore we have

µM(x0) = max
x∈X

µM(x) = max
x∈Rn

min[µM(x),µX(x)] (8)

Here

µX(x) =

{
1, if x ∈ X
0, if x /∈ X

(9)

Now we can consider optimizing f on a fuzzy set D ⊂ Rn with the membership
function µD. Similar to the crisp case, we can maximize the function

µM∩D = min [µM,µD] (10)
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Let us define

S = {s ∈ D|µM∩D(x)≤ µM∩D(s),∀x ∈ D} (11)

and

S′ = {x ∈ Rn|µM(x) = µD(x)} (12)

We define the maximum value of MFF f in the fuzzy set D as the maximum value
of the MCF f̄ in crisp set S′. If S ⊂ S′, that f attains its maximum at x = x0 means
the following:

There does not exist an x ∈ D that satisfies both of the following inequalities such
that at least one of them is strict.

f̄ (x)≥ f̄ (x0) (13)

µD(x)≥ µD(x0) (14)

This actually means that in this case the maximum value we defined is the same
as the maximum value in Pareto sense. We note that in many cases we can expect
S⊂ S′. The following graph of single-variable functions demonstrates that.

 X

Y 

O 

)(xDμ

)(xMμ

1 

a b c

Figure 1: Some membership functions µD(x) and µM(x).
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Figure 2: Some other membership functions µD(x) and µM(x).

Note, that in Fig.1, S = {b}; S′ = {a, b, c}.
But it is not always the case that S⊂ S′ as shown in the graph below. (see Fig.2)

Note, that in Fig. 2, S = {d}; S′ = {a, b, c, e}
We notice that the maximum value here is not the same as the Pareto maximum. In
fact, in this case it would be preferable to maximize the function µM∩D = min [µM,µD].
In other words, in order to obtain the maximum of f in Pareto sense, we need to
maximize

µM∩D(x) = min [µM(x),µD(x)] = (µM(x)+ µD(x)−|µM(x)−µD(x)|)/2 (15)

In this paper, we confine our attention to the case S ⊂ S′. Hence we have an opti-
mization problem with constraints. We are supposed to find the maximum value of
f̄ under the constraint

µM(x) = µD(x) (16)

We can use the method of Lagrange multipliers [Giordano, Weir and Fox (2003)].
We introduce a new variable λ , so-called the Lagrange multiplier, and study the
Lagrange function defined by

L(x,λ ) = f̄ (x)+λ (µM(x)−µD(x)) (17)
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If x is an extreme for the original problem, then there exists a λ such that (x,λ ) is
a stationary point for the Lagrange function (stationary points are those where the
partial derivatives of L vanish).

Theorem. Let f be an MFF defined on a fuzzy set D ⊂ Rn with differentiable
membership function µD and let f̄ be the MCF corresponding to f defined on
crisp set X = D ⊂ Rn. Further, suppose that f̄ is differentiable and bounded. Let
(x0

1,x
0
2, ...x

0
n,λ

0) be a stationary point for the Lagrange function and let the largest
and the smallest values of f̄ be b = sup( f̄ ), a = inf( f̄ ). Then the following equali-
ties hold:

∂ f̄ (x0
1,x

0
2, ...x

0
n)

∂xi

(
1+

λ 0

b−a

)
= λ

0 ∂ µD(x0
1,x

0
2, ...x

0
n)

∂xi
, i = 1,2, ...n (18)

and

µM(x0
1,x

0
2, ...x

0
n) = µD(x0

1,x
0
2, ...x

0
n) (19)

Proof. According to the methods of Lagrange multipliers, at point (x0
1,x

0
2, ...x

0
n,λ

0)
partial derivatives of L(x,λ ) = f̄ (x) + λ (µM(x)− µD(x)) vanish. Then for each
i ∈ {1,2, ...n}
we have

∂ f̄
∂xi

+λ
∂ µM

∂xi
−λ

∂ µD

∂xi
= 0 (20)

at point (x0
1,x

0
2, ...x

0
n,λ

0). Then from (6) and (20) the equality

∂ f̄
∂xi

+
λ

b−a
∂ f̄
∂xi
−λ

∂ µD

∂xi
= 0 (21)

holds at point (x0
1,x

0
2, ...x

0
n,λ

0). Thus we have (18). Finally, the equality (19) holds
because of the condition ∂L

∂λ
= 0 at the point (x0

1,x
0
2, ...x

0
n,λ

0).
Corollary. Let (x0

1,x
0
2, ...x

0
n,λ

0) be a stationary point for the Lagrange function.

Suppose that for all i ∈ {1,2, ...,n}

∂ µD(x0
1,x

0
2, ...x

0
n)

∂xi
6= 0 (22)

Then for all i 6= j and i, j ∈ {1,2, ...,n}

∂ f̄
∂xi

(x0
1,x

0
2, ...x

0
n)

∂ µD
∂xi

(x0
1,x

0
2, ...x0

n)
=

∂ f̄
∂x j

(x0
1,x

0
2, ...x

0
n)

∂ µD
∂x j

(x0
1,x

0
2, ...x0

n)
(23)
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Proof.
Under (22) from the equalities (18) we have

∂ f̄ (x0
1,x

0
2,...x

0
n)

∂xi

∂ µD(x0
1,x

0
2,...x

0
n)

∂xi

=
λ 0(b−a)
b−a+λ 0 (24)

which proves the equality (23) for all i 6= j,i, j ∈ {1,2, ...n}
Example 4. Find the maximum value of the MFF f (x1,x2) = 1 + x1x2 defined
on the fuzzy set D =

{
(x1,x2) ∈ R2|0≤ x1 ≤ 2,0≤ x2 ≤ 2

}
with the membership

function

µD(x1,x2) =

{
−x2

1+2x1−x2
2+2x2

2 , if (x1,x2) ∈ D
0, otherwise

(25)

Solution.
Consider the MCF f̄ (x1,x2). We have a = inf( f̄ ) = 1 and b = sup( f̄ ) = 5. Then
µM(x1,x2) = x1x2

4 . If the ∂ µD
∂xi
6= 0 for i = 1,2 from the (23) we have x2

1−x1
= x1

1−x2
.

Therefore x1 = x2 or x1 + x2 = 1. If x1 = x2 from the condition (19) we have
−2x2

1 +4x1−2x2
2 +4x2 = x1x2. Hence 8x1 = 5x2

1. For x1 = 0 the function f̄ attains
the minimum value. Then x1 = x2 = 8

5 . Therefore f (x1,x2) = 1 + x1x2 has the
value 89

25 with the possibility 16
25 . If x1 + x2 = 1 from the condition (19) we have

3x2
2 − 3x2 − 2 = 0. But in this case, either x1 or x2 is negative, that is outside

of D. If ∂ µD
∂x1

= −x1 + 1 = 0 then from (18) we have ∂ f̄
∂x1

= x2 = 0 or λ = a−
b = −4. In the first case x1 = 1,x2 = 0, f̄ (1,0) = 1 is the minimum value. In
second case again from (18) we have ∂ µD

∂x2
= −x2 + 1 = 0 and f̄ (1,1) = 2. But in

this case, µM(1,1) = 1
4 6= 1 = µD(1,1).The case in which ∂ µD

∂x2
= 0 is handled in a

similar fashion. Therefore f has its maximum value 89
25 at the point

(8
5 , 8

5

)
with the

possibility 16
25 .

Example5. Let D be defined as D =
{
(x1,x2) ∈ R2|0≤ x1 ≤ 1, 0≤ x2 ≤ 1

}
. Con-

sider the following example.

f (x) = f (x1,x2) = 2x1 +4x2 +5, (x1,x2) ∈ D (26)

µD(x) = µD(x1,x2) =

{
x2

1+x2
2

2 , if (x1,x2) ∈ D
0, otherwise

(27)

Solution.
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We find the membership function of maximizing set as µM(x) = 2x1+4x2+5−5
11−5 =

1
3 x1 + 2

3 x2. From the following equation µM(x) = µD(x) for 0≤ x1 ≤ 1,0≤ x2 ≤ 1

we have x2
1+x2

2
2 = 1

3 x1 + 2
3 x2. Hence x2

1 + x2
2 = 2

3 x1 + 4
3 x2. Therefore

(
x1− 1

3

)2 +(
x2− 2

3

)2 = 5
9 . Hence the curve of equal possibilities is the circle with radius

√
5

3
and centered at the point

(1
3 , 2

3

)
.

The intersection of this circle with the set D is shown in the Fig. 3. The maximum
value of the function is 11 and the function attains this value at the point (1,1) with
the possibility 1.
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Figure 3: Intersection the curve of equal possibilities with the domain set
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5 Conclusions

In conclusion, in this paper we have introduced the concept of maximum point for
MFF. This concept in some cases coincides with the concept of maximum point in
Pareto sense. We have shown how to determine the maximum values of partially
differentiable MFF using the method of Lagrange multipliers. We demonstrated
the suggested method on examples. In the future, one can investigate when the
maximum point defined in this paper is equivalent to the Pareto maximum. In
addition, one can look into the problem of maximizing (15) when they are not
equivalent.
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