
Copyright © 2010 Tech Science Press CMES, vol.69, no.3, pp.281-305, 2010

TVD Finite Element Scheme for Hyperbolic Systems of
Conservation Laws
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Abstract: A finite element scheme based on the concept of TVD (total variation
diminishing) with a flux-limiter for the hyperbolic systems of conservation laws
is presented. The numerical flux is formulated effectively by the weighted integral
form using exponential weighting functions. The TVD finite element scheme is ap-
plied to a Riemann problem, namely the shock-tube problem, for the Euler system
of equations. Numerical results demonstrate the workability and the validity of the
present approach through comparison with the exact solutions.
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1 Introduction

Numerical difficulties for solving the hyperbolic systems of conservation laws have
been experienced in the solutions of the compressible flow field involving shock
waves and contact surfaces. It is well known that the first-order upwind scheme
leads to a smearing of the numerical solutions and all second-order centered schemes
generate oscillations in the vicinity of discontinuities, e.g. [Godunov (1959);Sod
(1978);Hirsch (1990)]. Godunov[Godunov (1959)] has presented significantly a
first-order accurate upwind finite difference scheme for solving numerically and
monotonously the system of Euler equations with discontinuities (the Riemann
problem). The numerical results of various schemes on the Riemann problem,
namely a shock-tube one, were compared in detail by Sod [Sod (1978)], and the
Sod’s problems are also available in the books by Hirsch[Hirsch (1990)], and Toro
[Toro (1997)]. To overcome such "smear" nonstationary shocks and spurious os-
cillatory solutions, various upwind high-resolution schemes have been success-
fully achieved by using a flux-limiter function in a general framework, e.g. [van
Leer (1979);Roe (1981);Harten (1983);Osher and Chakravarthy (1983);Wang and
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Richards (1991)]. The second-order accurate upwind schemes to Godunov’s method
have been achieved by van Leer[van Leer (1979)], and the scheme was named
MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws). Roe[Roe
(1981)] has suggested approximate Riemann solvers for obtaining numerical solu-
tions to hyperbolic system of conservation laws. Harten[Harten (1983)] has in-
troduced the concept of explicit second-order accurate TVD schemes for the hy-
perbolic systems of conservation laws, and the extension of the implicit TVD
schemes has been newly developed by Yee, Warming and Harten[Yee, Warming
and Harten (1985)]. Osher and Chakravarthy[Osher and Chakravarthy (1983)] have
reviewed several upwind shock-capturing schemes for hyperbolic systems of con-
servation laws, and applied the Osher’s scheme to multidimensional Euler system
of equations. The high-order accurate ENO (Essentially Non-Oscillatory) schemes
have been successfully developed by Harten et al.[Harten, Engquist, Osher and
Chakravarthy (1987)] for the approximation of hyperbolic systems of conservation
laws.

In our previous work, we have proposed a finite element scheme for solving effec-
tively the non-conservation or conservation form of an incompressible viscous fluid
flow [Kakuda and Tosaka (1992);Kakuda, Tosaka and Nakamura (1996);Kakuda,
Miura and Tosaka (2006)]. The scheme is based on the Petrov-Galerkin weak for-
mulation using exponential weighting functions. However, it is difficult to solve
accurately the hyperbolic system of conservation laws, such as Euler system of
equations, in the Petrov-Galerkin finite element framework. Therefore, in order to
develop a finite element scheme for solving the problem of flow, we consider that
the concept of TVD scheme needs to be introduced in the Petrov-Galerkin finite el-
ement formalization [Hughes and Mallet (1985);Arminjon and Dervieux (1993)].

The purpose of this paper is to develop a finite element scheme based on the con-
cept of TVD with a suitable flux-limiter function for the hyperbolic systems of
conservation laws. In Section 2 we review finite element schemes based on TVD
in the context of the linear steady and unsteady advection-diffusion equations. The
TVD-based finite element scheme is also applied to the Burger’s equation and hy-
perbolic systems of conservation laws as the non-linear model equations. In Section
3 a high-precision finite element scheme based on TVD is presented to the linear
and non-linear advection model equations. The generalization to systems is de-
scribed in this section. The workability and the validity of the present approach
are demonstrated for a Riemann problem, namely the shock tube problem, through
comparison with the exact solutions[Toro (1997)]. The conclusions of this work
are draw in Section 4.

Throughout this paper, the summation convention on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect
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to the spatial/time variable.

2 A finite element scheme based on TVD

2.1 Steady advection-diffusion equation

2.1.1 Problem statement

Let us first consider the one-dimensional advection-diffusion equation in spatial
coordinate, x, given by

uϕ,x = kϕ,xx (1)

with the adequate boundary conditions, where u and k are the given velocity and
diffusivity, respectively.

Now, we define the following flux f in Eq. 1 :

f = uϕ (2)

With this definition, Eq. 1 is given as follows :

f,x = kϕ,xx (3)

2.1.2 Finite element formulation

In order to solve the flux in a stable manner, we shall adopt the Petrov-Galerkin fi-
nite element formulation using exponential weighting function [Kakuda and Tosaka
(1992)]. On the other hand, the conventional Galerkin finite element formulation
can be applied to solve numerically Eq. 3.

First of all, we start with the following weighted integral expression in a subdomain
Ωi = [xi−1,xi] with respect to weighting function w̃ :∫

Ωi

( f −uϕ)w̃dx = 0 (4)

The weighting function w̃ can be chosen as a general solution which satisfies

uw̃+∆xiσ(u)w̃,x = 0 (5)

where ∆xi = xi−xi−1, and σ(u) denotes some function described by Yee, Warming
and Harten [Yee, Warming and Harten (1985)], which is sometimes referred to as
the coefficient of numerical viscosity. The solution of Eq. 5 is

w̃ = Ae−ax (6)
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where A is a constant, and

a =
u

∆xiσ(u)
(7)

The weighting function can be approximated using the exponential function in the
subdomain Ωi as follows :

w̃ =
2

∑
α=1

Mα w̃α (8)

where w̃1 and w̃2 are the weighting at points xi−1(= x1) and xi(= x2), respectively,
and

Mα = e−a(x−xα ) (α = 1,2) (9)

On the other hand, the flux f and ϕ are taken approximately as the piecewise linear
function associated with node β be denoted by Nβ

f =
2

∑
β=1

Nβ fβ

ϕ =
2

∑
β=1

Nβ ϕβ

 (10)

Substituting Eq. 8 and Eq. 10 into Eq. 4, from w̃α 6= 0 we obtain the following
integral form∫

Ωi

MαNβ dx fβ −u
∫

Ωi

MαNβ dxϕβ = 0 (11)

Here, applying an element-wise mass lumping to the first term of the left-hand side
of Eq. 11, and carrying out exactly those integrals in Eq. 11, we have the following
finite element equation

c̃δαβ fβ =−uHαβ ϕβ (12)

where δαβ is the Kroneker’s delta, and

c̃ = e−γ − eγ

Hαβ =

 (eγ + c̃
2γ

) −(e−γ + c̃
2γ

)

(eγ − c̃
2γ

) −(e−γ − c̃
2γ

)


γ = u

2σ(u)


(13)
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From Eq. 12 we can obtain the following numerical flux fi−1/2 in the subdomain
Ωi

fi−1/2 = fi +
u
2
[1+{sgn(γ)coth|γ|− 1

γ
}](ϕi−1−ϕi) (14)

and similarly in another subdomain Ωi+1, we have

fi+1/2 = fi +
u
2
[−1+{sgn(γ)coth|γ|− 1

γ
}](ϕi−ϕi+1) (15)

where sgn(γ) denotes the signum function.

Let us now derive the Galerkin finite element model for Eq. 3. The weighted resid-
ual equation in Ωi is given as follows :∫

Ωi

( f,x− kϕ,xx)wdx = 0 (16)

Integrating by parts over the subdomain leads to∫
Ωi

( f,xw+ kϕ,xw,x)dx = k[ϕ,xw]xi
xi−1

(17)

Here, the weighting function w can be linearly interpolated as follows :

w =
2

∑
α=1

Nαwα (18)

Substituting Eq. 18 into Eq. 17 leads to∫
Ωi

NαNβ ,xdx fβ + k
∫

Ωi

Nα,xNβ ,xdxϕβ = k[ϕ,xNα ]xi
xi−1

(19)

The finite element equation for Eq. 19 is given as follows :

Gαβ fβ +Kαβ ϕβ = kqα (20)

where

Gαβ =
1
2

[
−1 1
−1 1

]
, Kαβ =

k
∆xi

[
1 −1
−1 1

]
, qα =

[
−ϕ,x(xi−1)

ϕ,x(xi)

]
(21)

In this stage, we assume a uniform mesh ∆xi = ∆x for simplicity of the formulation.
Taking into consideration the continuity of ϕ,x at nodal point i, we can obtain the
following discrete form

fi−1/2− fi+1/2 +
k

∆x
(ϕi−1−2ϕi +ϕi+1) = 0 (22)
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Substituting Eq. 14 and Eq. 15 into Eq. 22 and after some manipulations, we obtain
the following finite difference form

u
2∆x

(ϕi+1−ϕi−1) = (k + k̃)
ϕi−1−2ϕi +ϕi+1

∆x2 (23)

where for any velocity u

k̃ =
|u|∆x

2
{coth|γ|− 1

|γ|
} (24)

There exist some cases for possible choice of σ(u) in Eq. 5. Now if we assume
σ(u) to be

σ(u) =
|u|
α

(25)

in which an ad hoc parameter α is also chosen as follows :

α =
∆x|u|

k
(26)

then γ in Eq. 24 is given as

γ =
u

2σ(u)

= Pe (≡ ∆xu
2k

: element Peclet number) (27)

Using the element Peclet number Pe as γ , we reduce Eq. 23 to the following form

{sgn(Pe)− coth|Pe|}ϕi+1 +2coth|Pe|ϕi−{sgn(Pe)+ coth|Pe|}ϕi−1 = 0 (28)

This equation has the same structure as the SUPG scheme developed by Hughes
et al. [Brooks and Hughes (1982)], and it leads to nodally exact solutions for all
values of Pe [Christie, Griffiths, Mitchell and Zienkiewicz (1976)].

2.2 Unsteady advection-diffusion equation

2.2.1 Problem statement

Following the formulation of previous section we consider the one-dimensional
unsteady problem in space ,x, and time ,t, given by

ϕ,t + f,x = kϕ,xx (29)

with Eq. 2 as the flux , f , and the adequate boundary conditions and the initial one.
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2.2.2 Finite element formulation

In the following, let us construct the finite element model for Eq. 29. The weak
form with respect to Eq. 29 is given as follows :∫

Ωi

(ϕ,tw+ f,xw+ kϕ,xw,x)dx = k[ϕ,xw]xi
xi−1

(30)

Substituting Eq. 10 and Eq. 18 into Eq. 30, we obtain the following integral form∫
Ωi

NαNβ dxϕβ ,t +
∫

Ωi

NαNβ ,xdx fβ

+ k
∫

Ωi

Nα,xNβ ,xdxϕβ = k[ϕ,xNα ]xi
xi−1

(31)

and the finite element equation as follows :

M̃αβ ϕβ ,t +Gαβ fβ +Kαβ ϕβ = kqα (32)

where M̃αβ ≡ ∆xiδαβ /2 is the lumped mass matrix.

Assuming a uniform mesh ∆x for simplicity and taking into consideration the con-
tinuity of ϕ,x at nodal point i, we obtain the following form

∆xϕi,t = fi−1/2− fi+1/2 +
k

∆x
(ϕi−1−2ϕi +ϕi+1) (33)

Approximating the above equation using forward in time and substituting Eq. 14
and Eq. 15 we have

ϕ
n+1
i = ϕ

n
i +C+,i+1/2(ϕ

n
i+1−ϕ

n
i )−C−,i−1/2(ϕ

n
i −ϕ

n
i−1) (34)

where ϕn
i is a numerical solution of Eq. 34 at xi = i∆x and tn = n∆t, ∆t is the time

step, and

C+,i+1/2 = c
2 [−1+ 1

Pe +{sgn(γ)coth|γ|− 1
γ }]

C−,i−1/2 = c
2 [1+ 1

Pe +{sgn(γ)coth|γ|− 1
γ }]

}
(35)

where c = u∆t/∆x is the Courant number.

In this stage, let us design a sufficient condition that Eq. 34 be total variation di-
minishing (TVD) [Harten (1983)]. A sufficient condition for Eq. 34 with Eq. 35 to
be a TVD scheme is that

C−,i+1/2 ≥ 0 , C+,i+1/2 ≥ 0
C−,i+1/2 +C+,i+1/2 ≤ 1

}
(36)
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The resulting condition for γ is as follows :

1− 1
|Pe|
≤ coth|γ|− 1

|γ|
≤ 1
|c|
− 1
|Pe|

(37)

with |γ| = α/2. From this condition we can determine the bounds of γ or α by
using the given c and Pe.

2.2.3 Remarks

(1) If α = ∆x|u|/k (or γ = Pe, i.e., the case of nodal exact solution for steady
advection-diffusion equation), then the condition of Eq. 37 is reduced to

1≤ coth|Pe| ≤ 1
|c|

(38)

The above restriction can also be derived from applying the von Neumann stability
strategy to Eq. 34.

(2) If k = 0 (i.e., the case of advection equation), then the condition of Eq. 37 is
given as follows :

1≤ coth|γ|− 1
|γ|
≤ 1
|c|

(39)

The solution which satisfies the above condition is only given by (see Fig. 1)

coth|γ|− 1
|γ|

= 1 (40)

2.3 Burger’s equation

2.3.1 Problem statement

As an application of the concept of previous section to non-linear equation, we
consider the following Burger’s equation

u,t +uu,x = νu,xx (41)

where ν denotes a parameter which corresponds to the Reynolds number in viscous
fluid flow problems.

Now, linearizing the non-linear equation of Eq. 41 in the subdomain Ωi, we obtain
the following system of equations

f̂ = ûu (42)

u,t + f̂,x = νu,xx (43)

where û is assumed to be the mean value of the end points of each subdomain.
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Figure 1: A function f(r) for different values of r

2.3.2 Finite element formulation

Following the approach of previous section, the finite element approximations for
Eq. 42 and Eq. 43 are given as follows :

f̂i−1/2 = f̂i +
ûi−1/2

2 [1+{sgn(γi−1/2)coth|γi−1/2|− 1
γi−1/2

}](ui−1−ui)

f̂i+1/2 = f̂i +
ûi+1/2

2 [−1+{sgn(γi+1/2)coth|γi+1/2|− 1
γi+1/2

}](ui−ui+1)

 (44)

and

∆xui,t = f̂i−1/2− f̂i+1/2 +
ν

∆x
(ui−1−2ui +ui+1) (45)

respectively. Substituting Eq. 44 into Eq. 45 and using the forward difference in
time, we obtain the following explicit form in terms of ui

un+1
i = un

i +Ĉ+,i+1/2(u
n
i+1−un

i )−Ĉ−,i−1/2(u
n
i −un

i−1) (46)

where

Ĉ+,i+1/2 =
ci+1/2

2 [−1+ 1
Rei+1/2

+{sgn(γi+1/2)coth|γi+1/2|− 1
γi+1/2

}]

Ĉ−,i−1/2 =
ci−1/2

2 [1+ 1
Rei−1/2

+{sgn(γi−1/2)coth|γi−1/2|− 1
γi−1/2

}]

 (47)
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and ci±1/2 = ûi±1/2∆t/∆x is the Courant number, Rei±1/2 = ûi±1/2∆x/2ν is the cell
Reynolds number, and γi±1/2 = α ûi±1/2/2Q(ûi±1/2) in which Q(ûi±1/2) is defined
consistently by Harten [Harten (1983)].

The sufficient condition for γi+1/2 in Eq. 47 to be a TVD scheme is given as follows:

1− 1
|Rei+1/2|

≤ coth|γi+1/2|−
1

|γi+1/2|
≤ 1
|ci+1/2|

− 1
|Rei+1/2|

(48)

2.4 Hyperbolic systems of conservation laws

A generalization of the preceding ideas to one-dimensional hyperbolic systems of
conservation laws is constructed as follows.

2.4.1 Problem statement

Let us consider a hyperbolic systems of conservation laws

UUU ,t +FFF(((UUU))),x = 000 (49)

where UUU is a m×1 vector, and

FFF(((UUU))) = AAA(((UUU)))UUU (50)

with AAA(((UUU))) = ∂FFF(((UUU)))/∂UUU is the Jacobian of FFF(((UUU))). If an ’average’ value of AAA(((UUU)))
is assumed in each subdomain, then we obtain

AAA(((UUU))) = SSSΛΛΛSSS−1 (51)

where ΛΛΛ is a m×m diagonal matrix which consists of real eigenvalues âk (k =
1,2, ...,m) of AAA, and SSS denotes a complete set of right eigenvectors RRRk.

Now, we define the characteristic variables WWW with respect to UUU as follows :

WWW = SSS−1UUU (52)

Substituting Eq. 51 and Eq. 52 into Eq. 50 leads to

FFF = SSSΛΛΛWWW (53)

We also define as

F̂FF = ΛΛΛWWW (54)

Consequently, we adopt the following four systems of equations instead of the orig-
inal Eq. 49.

WWW = SSS−1UUU (55)

F̂FF = ΛΛΛWWW (56)

FFF = SSSF̂FF (57)

UUU ,t +FFF ,x = 000 (58)
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2.4.2 Finite element formulation

The key factor for solving the system of Eq. 55 to Eq. 58 is to calculate accurately
and in a stable manner Eq. 56 with respect to the component f̂k of F̂FF . We apply the
preceding exponential weighting strategy to solve Eq. 56. On the other hand, the
conservation law form of Eq. 58 can be formulated by the Galerkin finite element
method.

The weighted residual form for Eq. 56 in the subdomain Ωi = [xi−1,xi] is given by∫
Ωi

{ f̂k− âk
i−1/2wk}w̃kdx = 0 , (no sum on k) (59)

Applying the generation of Eq. 8 and Eq. 10 to the above equation, we obtain the
following integral form.∫

Ωi
Mk

αNβ dx( f̂β )k−
∫

Ωi
Mk

α âk
i−1/2Nβ dx(wβ )k = 0 , (no sum on k)

Mk
α = e−ak

i−1/2(x−xα )
, ak

i−1/2 =
(σ k

i−1/2)
−1âk

i−1/2
hi−1/2

 (60)

By implementing the integrals in Eq. 60 and using the mass lumping technique, we
find the solutions of f̂k in the subdomain Ωi as follows :

( f̂i−1/2)k =
âk

i−1/2

2
{(wi−1)k +(wi)k}

+
âk

i−1/2

2
{sgn(γk

i−1/2)coth|γk
i−1/2|−

1
γ

k
i−1/2

}{(wi−1)k− (wi)k} (61)

and similarly in an adjacent subdomain Ωi+1

( f̂i+1/2)k =
âk

i+1/2

2
{(wi)k +(wi+1)k}

+
âk

i+1/2

2
{sgn(γk

i+1/2)coth|γk
i+1/2|−

1
γ

k
i+1/2

}{(wi)k− (wi+1)k} (62)

The local matrix form for Eq. 61 and Eq. 62 is also given by respectively

F̂FF i−1/2 =
ΛΛΛi−1/2

2
(WWW i−1 +WWW i)+

ΛΛΛi−1/2

2
ζ̃ζζ i−1/2(WWW i−1−WWW i) (63)

F̂FF i+1/2 =
ΛΛΛi+1/2

2
(WWW i +WWW i+1)+

ΛΛΛi+1/2

2
ζ̃ζζ i+1/2(WWW i−WWW i+1) (64)
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where

ζ̃ζζ i±1/2 = diag{sgn(γγγ i±1/2)coth|γγγ i±1/2|− γγγ
−1
i±1/2}

γγγ i±1/2 =
ΣΣΣ
−1
i±1/2ΛΛΛi±1/2

2
ΛΛΛi±1/2 = diag{âaai±1/2}
ΣΣΣi±1/2 = diag{σσσ i±1/2}

 (65)

The finite element approximations for Eq. 55 to Eq. 58 can be eventually constituted
as follows :

(a) The forms of Eq. 55 in Ωi are given by

WWW i−1 = SSS−1
i−1/2UUU i−1 , WWW i = SSS−1

i−1/2UUU i (66)

and in Ωi+1

WWW i = SSS−1
i+1/2UUU i , WWW i+1 = SSS−1

i+1/2UUU i+1 (67)

(b) The forms for Eq. 56 are rewritten as

F̂FF i−1/2 = ΛΛΛi−1/2WWW i +
ΛΛΛi−1/2

2
{III + ζ̃ζζ i−1/2}(WWW i−1−WWW i) (68)

F̂FF i+1/2 = ΛΛΛi+1/2WWW i−
ΛΛΛi+1/2

2
{III− ζ̃ζζ i+1/2}(WWW i−WWW i+1) (69)

where III denotes an m×m unit matrix.

(c) The numerical flux for Eq. 57 is given by

FFF i±1/2 = SSSi±1/2F̂FF i±1/2 (70)

(d) Applying the finite element approximation to Eq. 58 leads to

UUUn+1
i = UUUn

i +λ (FFFn
i−1/2−FFFn

i+1/2) (71)

where λ = ∆t/∆x.

By substituting Eq. 66 to Eq. 70 into Eq. 71, we obtain the following final system
of equations to solve explicitly the unknown vector UUUn+1

i :

UUUn+1
i = UUUn

i −λ

[
SSSi−1/2ΛΛΛi−1/2Σ̃ΣΣi−1/2WWW n

i−1/2

+SSSi+1/2ΛΛΛi+1/2Σ̃ΣΣ
∗
i+1/2WWW n

i+1/2

]
(72)



TVD Finite Element Scheme for Hyperbolic Systems of Conservation Laws 293

where Σ̃ΣΣi±1/2 = (III + ζ̃ζζ i±1/2)/2, Σ̃ΣΣ
∗
i±1/2 = (III− ζ̃ζζ i±1/2)/2, and

WWW n
i−1/2 = WWW n

i −WWW n
i−1

= SSS−1
i−1/2{UUU

n
i −UUUn

i−1} (73)

WWW n
i+1/2 = WWW n

i+1−WWW n
i

= SSS−1
i+1/2{UUU

n
i+1−UUUn

i } (74)

3 A high-precision finite element scheme based on TVD

In the following, we shall construct a high-precision explicit scheme for hyperbolic
system of equations which is based on the concept into the finite element framework
[Brooks and Hughes (1982);Hughes and Mallet (1985)].

3.1 Linear advection equation

3.1.1 Problem statement

As before, the linear advection equation is given as follows :

f = uϕ

ϕ,t + f,x = 0

}
(75)

In order to construct an explicit scheme with a support of five mesh points, we shall
adopt the following governing equations modified by adding a term with a ’limiter’,
σ̃ , to the flux f

f̃ = f + σ̃g (76)

ϕ,t + f̃,x = 0 (77)

in which

g = hϕ,x (78)

where h is a characteristic length.

3.1.2 Finite element formulation

Let us consider the finite element models for Eq. 76 with Eq. 78 and Eq. 77 in
subdomains Ωi and Ωi+1.
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The finite element approximations for the modified numerical flux f̃ are given by
using the weighting function w̃ of Eq. 8 as follows :

f̃i−1/2 = fi−1/2−
σ̃i−1/2

c̃
{(eγ +

c̃
2γ

)gi−1− (e−γ +
c̃

2γ
)gi} (79)

f̃i+1/2 = fi+1/2−
σ̃i+1/2

c̃
{(eγ +

c̃
2γ

)gi− (e−γ +
c̃

2γ
)gi+1} (80)

The finite element form at a point i of Eq. 77 can also be rewritten by assuming a
uniform mesh as

∆xϕi,t = f̃i−1/2− f̃i+1/2 (81)

On the other hand, applying the Galerkin finite element strategy to Eq. 78 leads
easily to

gi−1 = 1
2{(ϕi−1−ϕi−2)+(ϕi−ϕi−1)}

gi = 1
2{(ϕi−ϕi−1)+(ϕi+1−ϕi)}

gi+1 = 1
2{(ϕi+1−ϕi)+(ϕi+2−ϕi+1)}

 (82)

By substituting Eq. 79 and Eq. 80 with Eq. 82 into Eq. 81, we obtain

∆xϕi,t = fi−1/2− fi+1/2

− 1
2


(eγ

c̃ + 1
2γ

)σ̃i−1/2{(ϕi−1−ϕi−2)+(ϕi−ϕi−1)}

−(e−γ

c̃ + 1
2γ

)σ̃i−1/2{(ϕi−ϕi−1)+(ϕi+1−ϕi)}

−(eγ

c̃ + 1
2γ

)σ̃i+1/2{(ϕi−ϕi−1)+(ϕi+1−ϕi)}

+(e−γ

c̃ + 1
2γ

)σ̃i+1/2{(ϕi+1−ϕi)+(ϕi+2−ϕi+1)}

 (83)

In order to obtain a relationship between the σ̃ and B-functions as described in
Hughes and Mallet [Hughes and Mallet (1985)], we assume u > 0,γ → ∞, and the
forward difference in time. With these assumptions Eq. 83 is reduced to

ϕ
n+1
i = ϕ

n
i + c(ϕn

i−1−ϕ
n
i )

− λ

2

[
(−σ̃i−1/2 + σ̃i+1/2 + rn

i σ̃i+1/2)(ϕn
i −ϕn

i−1)
−σ̃i−1/2(ϕn

i−1−ϕn
i−2)

]
(84)

where the smoothness moniter rn
i at node i, n-th time level is defined by

rn
i =

ϕ
n
i+1−ϕ

n
i

ϕ
n
i −ϕ

n
i−1

(85)
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Here, if σ̃i−1/2 and σ̃i+1/2 in Eq. 84 are given as follows :

σ̃i−1/2 = u(1− c)Bν(rn
i−1)

σ̃i+1/2 =
u(1− c){Bν(rn

i−1)+Bν(rn
i )}

1+ rn
i

 (86)

then we derive the following expression from Eq. 84

ϕ
n+1
i = ϕ

n
i + c(ϕn

i−1−ϕ
n
i )

− c(1− c)
2
{Bν(rn

i )(ϕ
n
i −ϕ

n
i−1)−Bν(rn

i−1)(ϕ
n
i−1−ϕ

n
i−2)} (87)

Repeating the process for u < 0 and γ →−∞ we obtain

ϕ
n+1
i = ϕ

n
i −|c|(ϕn

i −ϕ
n
i+1)

− λ

2

[
(σ̃i−1/2− σ̃i+1/2 + 1

rn
i

σ̃i−1/2)(ϕn
i −ϕn

i+1)

−σ̃i+1/2(ϕn
i+1−ϕn

i+2)

]
(88)

and we put

σ̃i−1/2 =
|u|(1−|c|){Bν(

1
rn

i
)+Bν(

1
rn

i+1
)}

1+
1
rn

i
σ̃i+1/2 = |u|(1−|c|)Bν( 1

rn
i+1

)


(89)

Then we lead to

ϕ
n+1
i = ϕ

n
i −|c|(ϕn

i −ϕ
n
i+1)

− |c|(1−|c|)
2

{Bν(
1
rn

i
)(ϕn

i −ϕ
n
i+1)−Bν(

1
rn

i+1
)(ϕn

i+1−ϕ
n
i+2)} (90)

The general cases of σ̃i±1/2 are summarized as follows :

σ̃i−s/2 = |u|(1−|c|)Bν((rn
i−s)

s)

σ̃i+s/2 =
|u|(1−|c|){Bν((rn

i )
s)+Bν((rn

i−s)
s)}

1+(rn
i )

s

 (91)

where s = sgn(u).
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3.2 Nonlinear advection equation

3.2.1 Problem statement

Let us consider the following nonlinear advection equation

u,t +uu,x = 0 (92)

The linearization of above Eq. 92 is given by

f̂ = ûu
u,t + f̂,x = 0

}
(93)

The modified equations in order to derive a high-precision scheme are of forms

g = hu,x (94)

f̃ ∗ = f̂ + σ̃(û)g (95)

u,t + f̃ ∗,x = 0 (96)

3.2.2 Finite element formulation

As before, we assume a uniform mesh ∆x. The finite element approximations for
Eq. 94 to Eq. 96 are given respectively as follows :

(a) The finite element model for Eq. 94 is of form

gi−1 = 1
2{(ui−1−ui−2)+(ui−ui−1)}

gi = 1
2{(ui−ui−1)+(ui+1−ui)}

gi+1 = 1
2{(ui+1−ui)+(ui+2−ui+1)}

 (97)

(b) The finite element model for Eq. 95 is of form

f̃ ∗i−1/2 = f̂i−1/2

−
σ̃(ûi−1/2)

c̃i−1/2
{(eγi−1/2 +

c̃i−1/2
2γi−1/2

)gi−1− (e−γi−1/2 +
c̃i−1/2
2γi−1/2

)gi}

f̃ ∗i+1/2 = f̂i+1/2

−
σ̃(ûi+1/2)

c̃i+1/2
{(eγi+1/2 +

c̃i+1/2
2γi+1/2

)gi− (e−γi+1/2 +
c̃i+1/2
2γi+1/2

)gi+1}


(98)

(c) The finite element form for Eq. 96 is

∆xui,t = f̃ ∗i−1/2− f̃ ∗i+1/2 (99)
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The substitution of Eq. 97 and Eq. 98 into Eq. 99 leads to

∆xui,t = f̂i−1/2− f̂i+1/2

− 1
2



( eγi−1/2

c̃i−1/2
+ 1

2γi−1/2
)σ̃(ûi−1/2){(ui−1−ui−2)+(ui−ui−1)}

−(e−γi−1/2

c̃i−1/2
+ 1

2γi−1/2
)σ̃(ûi−1/2){(ui−ui−1)+(ui+1−ui)}

−( eγi+1/2

c̃i+1/2
+ 1

2γi+1/2
)σ̃(ûi+1/2){(ui−ui−1)+(ui+1−ui)}

+(e−γi+1/2

c̃i+1/2
+ 1

2γi+1/2
)σ̃(ûi+1/2){(ui+1−ui)+(ui+2−ui+1)}


(100)

In the following, the above equation is formulated within the same assumptions as
previous strategy. For ûi±1/2 > 0 and γi±1/2→ ∞ we obtain

un+1
i = un

i + cn
i−1/2(u

n
i−1−un

i )

− λ

2

 {−σ̃(ûn
i−1/2)+ σ̃(ûn

i+1/2)+ r̂n
i

ûn
i−1/2

ûn
i+1/2

σ̃(ûn
i+1/2)}(u

n
i −un

i−1)

−σ̃(ûn
i−1/2)(u

n
i−1−un

i−2)

 (101)

where cn
i±1/2 = ûn

i±1/2∆t/∆x, and

r̂n
i =

ûn
i+1/2(u

n
i+1−un

i )

ûn
i−1/2(u

n
i −un

i−1)
(102)

From the following σ̃(ûn
i±1/2) associated with the B-functions

σ̃(ûn
i−1/2) = ûn

i−1/2(1− cn
i−1/2)Bν(r̂n

i−1)

σ̃(ûn
i+1/2) =

ûn
i−1/2(1− cn

i−1/2)Bν(r̂n
i−1)+ ûn

i+1/2(1− cn
i+1/2)Bν(r̂n

i )

1+ r̂n
i

ûn
i−1/2

ûn
i+1/2

 (103)

we can obtain

un+1
i = un

i + cn
i−1/2(u

n
i−1−un

i )

− 1
2

[
cn

i+1/2(1− cn
i+1/2)Bν(r̂n

i )(u
n
i −un

i−1)
−cn

i−1/2(1− cn
i−1/2)Bν(r̂n

i−1)(u
n
i−1−un

i−2)

]
(104)
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On the other hand, the assumptions of ûi±1/2 < 0 and γi±1/2→−∞ lead to

un+1
i = un

i −|cn
i+1/2|(u

n
i −un

i+1)

− λ

2

 {σ̃(ûn
i−1/2)− σ̃(ûn

i+1/2)+ 1
r̂n

i

ûn
i+1/2

ûn
i−1/2

σ̃(ûn
i−1/2)}(u

n
i −un

i+1)

−σ̃(ûn
i+1/2)(u

n
i+1−un

i+2)

 (105)

and from the definitions

σ̃(ûn
i−1/2) =

|ûn
i−1/2|(1−|c

n
i−1/2|)Bν(

1
r̂n

i
)+ |ûn

i+1/2|(1−|c
n
i+1/2|)Bν(

1
r̂n

i+1
)

1+
1
r̂n

i

ûn
i+1/2

ûn
i−1/2

σ̃(ûn
i+1/2) = |ûn

i+1/2|(1−|c
n
i+1/2|)Bν( 1

r̂n
i+1

)


(106)

we obtain the following expression

un+1
i = un

i −|cn
i+1/2|(u

n
i −un

i+1)

− 1
2

 |cn
i−1/2|(1−|c

n
i−1/2|)Bν( 1

r̂n
i
)(un

i −un
i+1)

−|cn
i+1/2|(1−|c

n
i+1/2|)Bν( 1

r̂n
i+1

)(un
i+1−un

i+2)

 (107)

The general cases of σ̃(ûn
i±1/2) are also summarized in form :

σ̃(ûn
i−s/2) = |ûn

i−s/2|(1−|c
n
i−s/2|)Bν((r̂n

i−s)
s)

σ̃(ûn
i+s/2) =

|ûn
i−s/2|(1−|c

n
i−s/2|)Bν((r̂n

i−s)
s)+ |ûn

i+s/2|(1−|c
n
i+s/2|)Bν((r̂n

i )
s)

1+(r̂n
i )

s
ûn

i−s/2

ûn
i+s/2

 (108)

where s = sgn(ûn
i±1/2).

3.3 Hyperbolic systems of conservation laws

3.3.1 Problem statement

In this stage, in order to develop a high-resolution scheme based on the TVD we
add an ad hoc function GGG to Eq. 56. As a result, we obtain the following modified
hyperbolic systems of conservation laws :

WWW = SSS−1UUU (109)

GGG = hWWW ,x (110)
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F̃FF = ΛΛΛWWW + Σ̂ΣΣGGG (111)

F̃FF∗ = SSSF̃FF (112)

UUU ,t + F̃FF∗,x = 000 (113)

where Σ̂ΣΣ is a m×m diagonal matrix associated with the limiter functions.

3.3.2 Finite element formulation

As before, the weighted integral form of Eq. 111 in the subdomain Ωi = [xi−1,xi] is
given by∫

Ωi

{F̃FF−ΛΛΛi−1/2WWW − Σ̂ΣΣi−1/2GGG}MMMαdx = 000 (114)

in which MMMα is the exponential weighting functions as follows :

MMMα = e−aaai−1/2(x−xα )

aaai−1/2 =
ΣΣΣ
−1
i−1/2ΛΛΛi−1/2

hi−1/2

 (115)

By calculating the integrals in Eq. 114 and using the flux lumping technique such
as the mass lumping one, we find the solutions of F̃FF i−1/2 in Ωi as follows :

F̃FF i−1/2 = F̂FF i−1/2 + Σ̂ΣΣi−1/2[GGGi +
1
2
{III + ζ̃ζζ i−1/2}(GGGi−1−GGGi)] (116)

and similarly in an adjacent subdomain Ωi+1

F̃FF i+1/2 = F̂FF i+1/2 + Σ̂ΣΣi+1/2[GGGi−
1
2
{III− ζ̃ζζ i+1/2}(GGGi−GGGi+1)] (117)

where III is the unit matrix, and F̂FF i±1/2 denotes the first-order accurate numerical
flux of Eq. 68 and Eq. 69.

On the other hand, the finite element approximations for Eq. 109, Eq. 110, Eq. 112
and Eq. 113 are constituted formally as follows :

WWW i−1/2 = WWW i−WWW i−1

= SSS−1
i−1/2{UUU i−UUU i−1} (118)

GGGi =
1
2
{(WWW i−WWW i−1)+(WWW i+1−WWW i)} (119)

F̃FF∗i±1/2 = SSSi±1/2F̃FF i±1/2 (120)
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UUUn+1
i = UUUn

i +λ (F̃FF∗ni−1/2− F̃FF∗ni+1/2) (121)

By substituting Eq. 116 to Eq. 120 into Eq. 121 we obtain the final system of
equations as follows :

UUUn+1
i = UUUn

i −λ

[
SSSi−1/2ΛΛΛi−1/2Σ̃ΣΣi−1/2WWW n

i−1/2

+SSSi+1/2ΛΛΛi+1/2Σ̃ΣΣ
∗
i+1/2WWW n

i+1/2

]

+
λ

2



SSSi−1/2Σ̂ΣΣi−1/2


Σ̃ΣΣi−1/2(III + rrri−1

ΛΛΛi−3/2
ΛΛΛi−1/2

)WWW n
i−3/2

+Σ̃ΣΣ
∗
i−1/2(III + 1

rrri

ΛΛΛi+1/2
ΛΛΛi−1/2

)WWW n
i+1/2


−SSSi+1/2Σ̂ΣΣi+1/2


Σ̃ΣΣi+1/2(III + rrri

ΛΛΛi−1/2
ΛΛΛi+1/2

)WWW n
i−1/2

+Σ̃ΣΣ
∗
i+1/2(III + 1

rrri+1

ΛΛΛi+3/2
ΛΛΛi+1/2

)WWW n
i+3/2




(122)

3.3.3 Application to Euler equations

For the Euler equations of gasdynamics, UUU and FFF(((UUU))) in Eq. 49 are given as follows:

UUU =

 ρ

m
E

 , FFF(((UUU))) =

 m
mu+ p
Eu+ pu

 (123)

where ρ,u, p = (κ − 1)(E −mu/2), and E = ρe are the density, the velocity, the
pressure, and the total energy, respectively, and m = ρu is the momentum, and κ

denotes the gas constant (= 1.4). The Jacobian matrix of Eq. 51 is given by Harten
[Harten (1983)]

AAA(((UUU))) =

 0 1 0
(κ̄/2−1)u2 (2− κ̄)u κ̄

(κ̄u2−κe)u ε− κ̄u2 κu

 (124)

The set of eigenvectors and the eigenvalues of the above Jacobian matrix are also

SSS =

 1 1 1
u− c u u+ c

H−uc u2/2 H +uc

 (125)

ΛΛΛ = diag
(

u− c, u, u+ c
)

(126)

where κ̄ = κ−1, ε = κe− κ̄u2/2, H = e+ p/ρ is the enthalpy, and c is the sound
speed, c = (κ p/ρ)1/2.
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Table 1: Comparisons with the present and the exact solutions

x Density Velocity Pressure Momentum Entalpy Total energy
Present Exact Present Exact Present Exact Present Exact Present Exact Present Exact

1.0 0.4450 0.4450 0.6989 0.6990 3.528 3.528 0.3110 0.3110 27.99 27.99 8.928 8.928
2.0 0.4450 0.4450 0.7014 0.6990 3.524 3.528 0.3119 0.3110 27.98 27.99 8.919 8.928
2.1 0.4443 0.4450 0.7038 0.6990 3.520 3.528 0.3127 0.3110 27.98 27.99 8.911 8.928
2.2 0.4438 0.4450 0.7080 0.6990 3.514 3.528 0.3142 0.3110 27.97 27.99 8.897 8.928
2.3 0.4429 0.4450 0.7148 0.6990 3.504 3.528 0.3166 0.3110 27.95 27.99 8.874 8.928
2.4 0.4415 0.4450 0.7250 0.6990 3.489 3.528 0.3201 0.3110 27.92 27.99 8.839 8.928
2.5 0.4396 0.4450 0.7394 0.6990 3.468 3.528 0.3251 0.3110 27.88 27.99 8.790 8.928
2.6 0.4371 0.4450 0.7585 0.6990 3.440 3.528 0.3315 0.3110 27.84 27.99 8.727 8.928
2.7 0.4340 0.4437 0.7823 0.7089 3.406 3.513 0.3395 0.3145 27.77 27.97 8.648 8.895
2.8 0.4303 0.4382 0.8107 0.7501 3.365 3.453 0.3488 0.3287 27.70 27.86 8.554 8.756
2.9 0.4260 0.4328 0.8433 0.7913 3.319 3.393 0.3593 0.3425 27.62 27.75 8.449 8.619
3.0 0.4214 0.4275 0.8794 0.8325 3.269 3.335 0.3706 0.3559 27.53 27.65 8.335 8.485
3.2 0.4111 0.4169 0.9605 0.9150 3.158 3.220 0.3949 0.3814 27.34 27.45 8.084 8.225
3.4 0.4010 0.4066 1.042 0.9974 3.049 3.109 0.4179 0.4055 27.16 27.26 7.841 7.974
3.6 0.3913 0.3964 1.122 1.080 2.947 3.001 0.4390 0.4280 26.98 27.08 7.613 7.733
3.8 0.3820 0.3865 1.199 1.162 2.849 2.896 0.4582 0.4492 26.82 26.90 7.398 7.501
4.0 0.3732 0.3768 1.275 1.245 2.757 2.794 0.4758 0.4689 26.67 26.73 7.197 7.278
4.1 0.3690 0.3720 1.312 1.286 2.714 2.745 0.4839 0.4783 26.60 26.65 7.102 7.169
4.2 0.3649 0.3672 1.347 1.327 2.672 2.696 0.4916 0.4873 26.54 26.58 7.011 7.063
4.3 0.3610 0.3625 1.382 1.368 2.632 2.648 0.4987 0.4960 26.47 26.50 6.924 6.959
4.4 0.3573 0.3579 1.414 1.409 2.595 2.600 0.5053 0.5044 26.41 26.43 6.844 6.856
4.5 0.3540 0.3533 1.444 1.451 2.561 2.554 0.5111 0.5125 26.36 26.35 6.771 6.756
4.6 0.3510 0.3487 1.471 1.492 2.531 2.508 0.5162 0.5202 26.32 26.28 6.707 6.657
4.7 0.3485 0.3446 1.493 1.529 2.506 2.467 0.5205 0.5270 26.28 26.22 6.653 6.570
4.8 0.3465 0.3446 1.512 1.529 2.486 2.467 0.5238 0.5270 26.25 26.22 6.610 6.570
4.9 0.3451 0.3446 1.525 1.529 2.471 2.467 0.5262 0.5270 26.23 26.22 6.578 6.570
5.0 0.3441 0.3446 1.534 1.529 2.461 2.467 0.5278 0.5270 26.21 26.22 6.558 6.570
6.0 0.3439 0.3446 1.536 1.529 2.459 2.467 0.5282 0.5270 26.21 26.22 6.553 6.570
7.0 0.3442 0.3446 1.533 1.529 2.463 2.467 0.5276 0.5270 26.21 26.22 6.561 6.570
8.0 0.3443 0.3446 1.532 1.529 2.463 2.467 0.5275 0.5270 26.21 26.22 6.562 6.570
9.0 0.3443 0.3446 1.532 1.529 2.463 2.467 0.5274 0.5270 26.22 26.22 6.562 6.570

10.0 0.3443 0.3446 1.532 1.529 2.464 2.467 0.5274 0.5270 26.21 26.22 6.563 6.570
11.0 0.6879 0.3446 1.532 1.529 2.464 2.467 1.054 0.5270 13.71 26.22 6.966 6.570
11.1 0.8729 1.304 1.532 1.529 2.464 2.467 1.337 1.994 11.05 7.789 7.183 7.692
11.5 1.257 1.304 1.532 1.529 2.464 2.467 1.926 1.994 8.031 7.789 7.634 7.692
12.0 1.294 1.304 1.532 1.529 2.464 2.467 1.981 1.994 7.839 7.789 7.677 7.692
12.5 1.295 1.304 1.532 1.529 2.464 2.467 1.983 1.994 7.834 7.789 7.678 7.692
12.6 1.294 1.304 1.531 1.529 2.463 2.467 1.982 1.994 7.834 7.789 7.676 7.692
12.7 1.292 1.304 1.529 1.529 2.457 2.467 1.975 1.994 7.825 7.789 7.652 7.692
12.8 1.249 1.304 1.463 1.529 2.329 2.467 1.827 1.994 7.597 7.789 7.159 7.692
12.9 0.9313 1.304 0.9702 1.529 1.512 2.467 0.9035 1.994 6.151 7.789 4.217 7.692
13.0 0.5824 1.304 0.2153 1.529 0.7203 2.467 0.1254 1.994 4.351 7.789 1.814 7.692
13.1 0.5063 0.5000 0.0159 0.0000 0.5811 0.5710 0.0080 0.0000 4.018 3.997 1.4529 1.4275
13.2 0.5003 0.5000 0.0007 0.0000 0.5715 0.5710 0.0004 0.0000 3.998 3.997 1.4287 1.4275
13.3 0.5000 0.5000 0.0000 0.0000 0.5710 0.5710 0.0000 0.0000 3.997 3.997 1.4275 1.4275
13.4 0.5000 0.5000 0.0000 0.0000 0.5710 0.5710 0.0000 0.0000 3.997 3.997 1.4275 1.4275
14.0 0.5000 0.5000 0.0000 0.0000 0.5710 0.5710 0.0000 0.0000 3.997 3.997 1.4275 1.4275
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(a) Density (b) Velocity

(c) Pressure (d) Momentum

(e) Entalpy (f) Total energy

Figure 2: Numerical results
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3.3.4 Numerical example

Let us now consider a Riemann problem, namely the shock-tube problem, for the
above Euler system of equations in order to demonstrate the workability and the
validity of the present approach. The initial data in a field {x|0 < x < 14} is given
as follows :

UUU(x,0) =
{

UUUL i f x < 8
UUUR i f x > 8

(127)

where UUUL = (0.445,0.311,8.928)T , UUUR = (0.5,0.0,1.4275)T .

In Fig. 2 and the corresponding data of Tab. 1, we show the numerical results ob-
tained by the scheme of Eq. 122 with the Harten’s limiter [Harten (1983)] and the
Roe’s linearization [Roe (1981)]. The calculations were performed with 100 time
steps under the CFL restriction of 0.95. The number of elements is 140. The
agreement between the present results and the exact solutions shown by the solid
line[Toro (1997)] appears satisfactory.

4 Conclusions

We have presented a high-resolution TVD finite element scheme for solving nu-
merically the hyperbolic systems of conservation laws. The numerical flux was
formulated by the weighted integral system using exponential weighting functions.
The numerical results for the shock-tube problem demonstrated that the approach
was capable of solving accurately and in a stable manner the hyperbolic systems of
conservation laws in comparison with the exact solutions.

Acknowledgement: The authors would like to thank Professor T.J.R. Hughes
for helpful suggestions.
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