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Quadrilateral Finite Element with Embedded Strong
Discontinuity for Failure Analysis of Solids

J. Dujc1,3, B. Brank1,2 and A. Ibrahimbegovic3

Abstract: We present a quadrilateral finite element with discontinuous displace-
ment fields that can be used to model material failure in 2d brittle and ductile solids.
The element provides mesh-objective results. The element’s kinematics can rep-
resent linear displacement jumps along the discontinuity line in both normal and
tangential directions to the line. The cohesive law in the discontinuity line is based
on rigid-plasticity model with softening. The material of the bulk of the element
is described by hardening plasticity model. Static condensation of the jump-in-
displacements kinematic parameters is made, which provides standard form of the
element stiffness matrix. However, in order to make the discontinuity growth al-
gorithm more robust, the continuity of the failure line between the elements is en-
forced. Several numerical tests show that the element can describe constant and
linear separation modes without spurious transfer of the stresses. Other numerical
examples represent failure of pure concrete, composite and metal 2d solids.

Keywords: embedded discontinuity, quadrilateral finite element, material failure,
softening

1 Introduction

Finite element analysis of structures, whose material response is characterized by
softening phenomena, such as cracking (in concrete and masonry) or shear bands
(in metals and soils), is a nontrivial task. It is well known that the standard fi-
nite element models of solids and structures lead to lack of invariance of the com-
puted numerical solution with respect to the mesh for stress-strain relationships
with strain-softening. This is due to the fact that the underlying mathematical
model, i.e. boundary value problem, is ill-posed and uniqueness of the solution
is lost. In the limiting case of very fine mesh, a material failure without any dis-
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sipation is obtained by the finite element analysis, which is physically impossible,
see e.g. [Armero and Ehrlich (2004)] . Different approaches have been proposed to
overcome these mathematical, physical and numerical deficiencies of the standard
finite element models of solids and structures to solve structural problems involv-
ing strain-softening, see e.g. [Jirasek (2000); Han and Atluri (2002)]. For recent
review see e.g. [Ibrahimbegovic (2009)].

In recent years, finite element formulations based on discontinuous displacement
fields have become very popular solution for the above mentioned deficiencies, see
e.g. [Jirasek (2000); Mosler (2004)]. The incorporation of strong discontinuities
into a continuous displacements is related to cohesive-zone models. There, the
softening is controlled by an evolution law for the normal traction at the crack sur-
face in terms of the crack width. The crack width represents a displacement jump
at the crack surface. When applying such a model to the finite element analysis
of material failure, mesh-independent results are obtained. The implementation of
displacement jumps into finite element models can be achieved by different con-
cepts. One of the concepts is to embedded the displacement jumps within a finite
element. Several frameworks can be used for this purpose. We show in this pa-
per that the convenient framework to embed displacement jumps into the standard
finite element is the incompatible mode method, see e.g. [Ibrahimbegovic and Wil-
son (1991)].

In this work we present a detailed derivation of a plane stress quadrilateral finite
element with embedded strong discontinuity in displacements. Its kinematics can
model linear jumps in both normal and tangential displacements along the discon-
tinuity line. Special attention is given to proper description of element separation
modes without spurious transfer of the stresses across the discontinuity line. It is
shown that this can be effectively accomplished in the framework of the incom-
patible mode method. The element can represent elasto-plastic material response,
which includes hardening plasticity for the bulk and softening plasticity at the dis-
continuity line. The latter is controlled by evolution laws for tractions in terms
of displacement jumps. The derived element is a refinement with respect to the
constant strain triangle that has been used in vast majority of works related to em-
bedded discontinuity finite element modeling of failure in 2d solids, e.g. [Ibrahim-
begovic and Brancherie (2003); Mosler (2005); Jirasek (2000); Oliver, Huespe,
Blanco, and Linero (2006)] and goes in line with the recent developments pre-
sented in [Linder and Armero (2007)] and [Manzoli and Shing (2006)]. In order
to keep the standard form of the element stiffness matrix, static condensation of
jump-in-displacement parameters is performed. Moreover, in order to make the
discontinuity growth algorithm more robust, the continuity of the failure line be-
tween the elements is enforced.
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The main novelty of our work pertains to building the finite elements for localized
failure with higher order interpolations and thus expanding the previous success-
ful elements limited to constant strain field (e.g. [Ibrahimbegovic and Brancherie
(2003); Brancherie and Ibrahimbegovic (2009)]). On top of that, the procedure to
build a higher order element for localized failure, which was here explained for
a 4-node element, can be directly applied to any other type of element with large
number of nodes.

The paper is organized as follows. In section 2 the element is derived, in section 3
the computational issues are addressed in detail, in section 4 numerical examples
are presented, and in section 5 conclusions are drawn.

2 An embedded discontinuity quadrilateral element for planar problems

In this section we present a two-dimensional quadrilateral element with embedded
strong discontinuity in displacements. The element can represent elasto-plastic
material response that includes localized material failure described by softening
plasticity.

2.1 Kinematic equations

2.1.1 Displacements

We consider a 4-node quadrilateral finite element occupying domain Ωe ⊂R2 (Fig-
ure 1). The element may be divided by a line Γe into two subdomains: Ωe+ and
Ωe− (Ωe = Ωe+∪Ωe−). Element’s geometry is defined by the bilinear mapping ξξξ

7→xxxh (ξξξ ∈ [−1,1]× [−1,1]; xxxh ∈Ωe), with

xxxh (ξξξ ) |Ωe=
4

∑
a=1

Na (ξξξ )xxxa; xxxa = [xa,ya]
T ; ξξξ = [ξ ,η ]T , (1)

where xxxa are coordinates of the finite element node a, and

Na (ξξξ ) =
1
4

(1+ξaξ )(1+ηaη) ;
a 1 2 3 4
ξa −1 1 1 −1
ηa −1 −1 1 1

. (2)

The superscript h denotes an approximation. Element’s displacement field is de-
fined by nodal displacements and jump-in-displacement parameters. The latter are
associated with the line Γe, which will be further called the discontinuity line.
Nodal displacements in x and y directions of the node a are denoted as uxa and
uya, Figure 1. To describe strong discontinuity in displacements, additional degrees
of freedom are introduced: parameters αn0 and αn1 define the displacement jump
in direction of unit vector nnn, and parameters αm0 and αm1 define the displacement
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Figure 1: Quadrilateral finite element with embedded discontinuity

jump in direction of unit vector mmm, Figure 1. We approximate the element’s dis-
placement field as:

uuuh(ξξξ ,Γe) |Ωe= [uh
x ,u

h
y ]

T =
4

∑
a=1

Na(ξξξ )ddda︸ ︷︷ ︸
uuuh

d

+

+ pppn0(ξξξ ,Γe)αn0 + pppn1(ξξξ ,Γe)αn1 + pppm0(ξξξ ,Γe)αm0 + pppm1(ξξξ ,Γe)αn0︸ ︷︷ ︸
uuuh

α

, (3)

where ddda = [uxa,uya]T , uuuh
d is standard displacement approximation, and uuuh

α is en-
riched displacement due to the introduction of strong discontinuity. The vectors
pppn0(ξξξ ,Γe), pppn1(ξξξ ,Γe), pppm0(ξξξ ,Γe) and pppm1(ξξξ ,Γe) will be derived below.

2.1.2 Separation modes along the discontinuity line

With the above introduced four discontinuity parameters, we are in a position to
model four independent modes of element separation along the line Γe (see Figure
2). These modes are named as:
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Figure 2: Element separation modes along the discontinuity line



228 Copyright © 2010 Tech Science Press CMES, vol.69, no.3, pp.223-258, 2010

1. "n0" - separation in direction of nnn = [nx,ny]
T ; separation is constant along

the line,

2. "n1" - separation in direction of nnn; separation is linear along the line,

3. "m0" - separation in direction of mmm = [mx,my]
T ; separation is constant along

the line,

4. "m1" - separation in direction of mmm; separation is linear along the line.

One can assume a situation, when the displacements of two parts of the finite el-
ement, Ωe+ and Ωe+, are defined only by a particular separation mode. The dis-
placement field (3) is then given as

uuuh = uuuh
mode = uuuh

d,mode +uuuh
α,mode; uuuh

α,mode = pppmodeαmode, (4)

where mode ∈ {n0,n1,m0,m1}. In view of (4), the interpolation vector pppmode is
defined as

pppmode =
uuuh

mode−uuuh
d,mode

αmode
. (5)

The vectors in (5) can be determined by examining separation modes on Figure 2,
and are given as follows:

1. For mode "n0":

ddda,n0 =
{

nnnαn0 if a ∈Ωe+

000 otherwise
,

uuuh
n0 = HΓ(xxx)nnnαn0,

uuuh
d,n0 = ∑

a∈Ωe+

Naddda,n0,

pppn0 =
uuuh

n0−uuuh
d,n0

αn0
=

(
HΓ(xxx)− ∑

a∈Ωe+

Na

)
nnn... (6)
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2. For mode "n1":

ddda,n1 =
{

ÎIIxxxaαn1 if a ∈Ωe+

000 otherwise
; xxxa = xxxa− xxxΓ,

uuuh
n1 = HΓ(xxx)̂IIIxxxαn1; xxx = xxx− xxxΓ,

uuuh
d,n1 = ∑

a∈Ωe+

Naddda,n1,

pppn1 =
uuuh

n1−uuuh
d,n1

αn1
= HΓ(xxx)̂IIIxxx− ∑

a∈Ωe+

NaÎIIxxxa. (7)

3. For mode "m0":

ddda,m0 =
{

mmmαm0 if a ∈Ωe+

000 otherwise
,

uuuh
m0 = HΓ(xxx)mmmαm0,

uuuh
d,m0 = ∑

a∈Ωe+

Naddda,m0,

pppm0 =
uuuh

m0−uuuh
d,m0

αm0
=

(
HΓ(xxx)− ∑

a∈Ωe+

Na

)
mmm... (8)

4. For mode "m1":

ddda,m1 =
{

(mmm · xxxa)mmmαm1 if a ∈Ωe+

000 otherwise
,

uuuh
m1 = HΓ(xxx)(mmm · xxx)mmmαm1,

uuuh
d,m1 = ∑

a∈Ωe+

Naddda,m1,

pppm1 =
uuuh

m1−uuuh
d,m1

αm1
=

(
HΓ(xxx)(mmm · xxx)− ∑

a∈Ωe+

Na (mmm · xxxa)

)
mmm... (9)

The following notation was used in the above equations: HΓ(xxx)=
{

1 for xxx ∈Ωe+

0 otherwise
,

ÎII =
[

[0,−1]T , [1,0]T
]
. The mid-point of the discontinuity line is denoted with

xxx
Γ
, see Figure 1. Modes "n0","n1" and "m0" represent rigid body motions of Ωe+,

while the mode "m1" represents a stretch of Ωe+.
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2.1.3 Strains

We determine the linear strain field as the symmetric gradient of (3), which can be
written in a vector form as

εεε |Ωe=

[
∂uh

x

∂x
,
∂uh

y

∂y
,
∂uh

x

∂y
+

∂uh
y

∂x

]T

, (10)

or yet as

εεε =
4

∑
a=1

BBBaddda +GGGn0αn0 +GGGn1αn1 +GGGm0αm0 +GGGm1αm1. (11)

Coefficients of matrices BBBa and GGGmode are derivatives of interpolation functions Na

and interpolation vectors pppmode:

BBBa =
[ [

∂Na
∂x ,0, ∂Na

∂y

]T
,
[
0, ∂Na

∂y , ∂Na
∂x

]T ]
, (12)

GGGn0 = − ∑
a∈Ωe+

BBBannn︸ ︷︷ ︸
GGGn0

+δΓ(xxx)BBBnnnn︸ ︷︷ ︸
GGGn0

, (13)

GGGn1 = − ∑
a∈Ωe+

BBBaÎIIxxxa︸ ︷︷ ︸
GGGn1

+δΓ(xxx)BBBnnnnξΓ (xxx)︸ ︷︷ ︸
GGGn1

, (14)

GGGm0 = − ∑
a∈Ωe+

BBBammm︸ ︷︷ ︸
GGGm0

+δΓ(xxx)BBBnmmm︸ ︷︷ ︸
GGGm0

, (15)

GGGm1 = HΓ(xxx)BBBmmmm− ∑
a∈Ωe+

BBBa(mmm · xxxa)mmm︸ ︷︷ ︸
GGGm1

+δΓ(xxx)BBBnmmmξΓ (xxx)︸ ︷︷ ︸
GGGm1

, (16)

where

δΓ (xxx) =
{

∞ for xxx ∈ Γe

0 otherwise
; BBBn =

[
[nx,0,ny]

T , [0,ny,nx]
T ] ;

BBBm =
[

[mx,0,my]
T , [0,my,mx]

T ] ,
and ξΓ ∈ [−lΓ/2, lΓ/2] is a coordinate along Γe, which is 0 at xxxΓ and positive in the
direction of mmm. To get the above equations, we have used the following derivation
rules ∂HΓ(xxx)

∂x = δΓ(xxx)nx, ∂HΓ(xxx)
∂y = δΓ(xxx)ny (see e.g. [Mosler (2004)] and references
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therein) and expressions xxx = xxx−xxxΓ = ξΓ (xxx)nnn, mmm ·xxx = ξΓ (xxx). We further divide the
strain field into a regular part εεε and a singular part εεε:

εεε = εεε + εεε, (17)

εεε =
4

∑
a=1

BBBaddda +GGGn0αn0 +GGGn1αn1 +GGGm0αm0 +GGGm1αm1, (18)

εεε = GGGn0αn0 +GGGn1αn1 +GGGm0αm0 +GGGm1αm1. (19)

The singular part is just a particular representation of localized deformation at the
discontinuity line.

2.1.4 Virtual strains

The interpolation of virtual strains, ε̂εε , which will be used when defining weak form
of equilibrium equations, is carried out according to

ε̂εε |Ωe=
4

∑
a=1

BBBad̂dda + ĜGGn0α̂n0 + ĜGGn1α̂n1 + ĜGGm0α̂m0 + ĜGGm1α̂m1, (20)

where (◦̂) defines a virtual parameter in contrast to the real one (◦). The kinematic
enrichment of the standard quadrilateral element, which leads to real strains (18),
(19) and virtual strains (20), is viewed here in the manner of the incompatible
modes (e.g. [Ibrahimbegovic and Wilson (1991)]). Therefore, the virtual strain
matrices in (20) are modified according to the incompatible mode concept as

ĜGGmode = GGGmode−
1

AΩe

∫
Ωe

GGGmodedΩ, (21)
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which ensures the convergence of the derived element in the spirit of the patch test.
AΩe is the area of the element. By using (21) in (13)-(16) we obtain

ĜGGn0 = GGGn0−
1

AΩe

∫
Ωe

GGGn0dΩ− lΓ
AΩe

BBBnnnn︸ ︷︷ ︸
ĜGGn0

+δΓ (xxx)BBBnnnn︸ ︷︷ ︸
ĜGGn0

, (22)

ĜGGn1 = GGGn1−
1

AΩe

∫
Ωe

GGGn1dΩ︸ ︷︷ ︸
ĜGGn1

+δΓ (xxx)BBBnnnnξΓ (xxx)︸ ︷︷ ︸
ĜGGn1

, (23)

ĜGGm0 = GGGm0−
1

AΩe

∫
Ωe

GGGm0dΩ− lΓ
AΩe

BBBnmmm︸ ︷︷ ︸
ĜGGm0

+δΓ (xxx)BBBnmmm︸ ︷︷ ︸
ĜGGm0

, (24)

ĜGGm1 = GGGm1−
1

AΩe

∫
Ωe

GGGm1dΩ︸ ︷︷ ︸
ĜGGm1

+δΓ (xxx)BBBnmmmξΓ (xxx)︸ ︷︷ ︸
ĜGGm1

. (25)

The modification (21) provides
∫

Ωe ĜGGmodedΩ = 0.

2.2 Constitutive equations

2.2.1 Material of the element bulk

We chose to model the material of the bulk of the element Ωe \Γe by classical plane
stress elastoplasticity with isotropic hardening (e.g. [Ibrahimbegovic, Gharzeddine,
and Chorfi (1998); Tonković, Sorić, and Skozrit (2008)]). Accordingly, the regular
strains εεε (18) at xxxh ∈ Ωe\Γe are additively decomposed into elastic part εεε

e and
plastic part εεε

p

εεε = εεε
e + εεε

p, (26)

and the free energy is a sum of the strain energy function W and the hardening
potential Ξ

Ψ(εεεe,ξ ) = W (εεεe)+ΞΞΞ(ξ ) =
t
2

εεε
eTCCCεεε

e +Ξ(ξ ), (27)

where

CCC =
E

1−ν2

[
[1,ν ,0]T , [ν ,1,0]T ,

[
0,0, 1−ν

2

]T ] , (28)
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E is elastic modulus, ν is Poisson’s ratio, t is thickness of 2d body, and ξ ≥ 0 is
strain-like hardening variable. We use the von Mises yield function, which can be
for the plane stress written in a non-dimensional form as

φ (σσσ ,q) = σσσ
T AAAσσσ −

(
1− q

σy

)2

, (29)

where σσσ = [σxx,σyy,σxy]
T is vector of stresses,

AAA =
1

2σ2
y

[
[2,−1,0]T , [−1,2,0]T , [0,0,6]T

]
, (30)

q is the stress like hardening variable related to ξ , and σy is the uniaxial yield
stress.

The remaining ingredients of the elastoplasticity with hardening can be obtained
by consideration of thermodynamics of associative plasticity and the principle of
maximum plastic dissipation (see e.g. [Ibrahimbegovic (2009); Simo and Hughes
(1998); Le van and Le Grognec (2001)]). By using (26) and (27), the mechanical
dissipation can be written as

0≤ D
de f .
= σσσ

T
ε̇εε− Ψ̇(εεεe,ξ ) = (σσσ − ∂Ψ

∂εεε
e )T

ε̇εε
e
+σσσ

T
ε̇εε

p− ∂Ψ

∂ξ
ξ̇ , (31)

where (ȯ) = ∂ (o)/∂τ and τ∈ [0,T ] is a pseudo-time. By assuming that the elastic
process is non-dissipative (i.e. D = 0), and that the plastic state variables do not
change, we obtain from (31) σσσ = ∂Ψ

∂εεε
e = CCCεεε

e. We can define the hardening variable

q by further considering (31) as q =− ∂Ψ

∂ξ
=− ∂Ξ

∂ξ
. Now, the plastic dissipation can

be written as

Dp = σσσ
T

ε̇εε
p
+qξ̇ . (32)

The principle of maximum plastic dissipation states that among all the variables (σσσ ,
q) that satisfy the yield criteria φ (σσσ ,q)≤ 0, one should choose those that maximize
plastic dissipation (at frozen rates ε̇εε

p
and ξ̇ ). This can be written as a constrained

optimization problem:

min
σσσ ,q

max
γ̇

[
Lp(σσσ ,q, γ̇) =−Dp(σσσ ,q)+ γ̇φ(σσσ ,q)

]
, (33)

where γ̇ ≥ 0 plays the role of Lagrange multiplier. By using (32) and (29), the last
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result can provide the evolution equations for internal variables

∂Lp

∂σσσ
=−ε̇εε

p
+ γ̇

∂φ

∂σσσ
= 0 =⇒ ε̇εε

p
= γ̇2AAAσσσ , (34)

∂Lp

∂q
=−ξ̇ + γ̇

∂φ

∂q
= 0 =⇒ ξ̇ = γ̇

2
σy

(
1− q

σy

)
(29)= γ̇

2
σy

√
σσσT AAAσσσ , (35)

along with the Kuhn-Tucker loading/unloading conditions and the consistency con-
dition

γ̇ ≥ 0, φ ≤ 0, γ̇φ = 0, γ̇ φ̇ = 0. (36)

2.2.2 Localized softening plasticity at the discontinuity line

We choose to model the material failure at the discontinuity line as plastic with
softening. The failure criterion at xxxh ∈ Γe is defined in terms of failure function

φ = φ(ttt,q), (37)

where ttt = [tn, tm]T are traction stresses, q(ξ ) is the stress-like softening variable,
and ξ is the strain-like softening variable. Definition of traction stresses, and re-
lationship between the traction stresses at Γe and the stresses in the bulk, will be
provided in next section. Also, some possible forms of φ will be used later. As
conjugent variables to the traction stresses ttt we choose jumps in displacements
uuu = [un,um]T (see Figure 3), which can be expressed by jump-in-displacement pa-
rameters introduced above. The strain energy function is assumed as Ψ(ξ ) = Ξ(ξ ),
where Ξ is the softening potential. The dissipation can be then written as:

0≤ D
de f .
= tttT u̇uu− ˙

Ψ(ξ ) = tttT u̇uu− ∂Ψ

∂ξ

˙
ξ . (38)

By defining q =− ∂Ψ

∂ξ
=− ∂Ξ

∂ξ
, the result in (38) can be rewritten as

D = D
p
= tttT u̇uu+q

˙
ξ . (39)

The principle of maximum plastic dissipation can then be defined as:

min
ttt,q

max
γ̇

[
L

p
(ttt,q, γ̇) =−D

p
(ttt,q)+ γ̇φ(ttt,q)

]
, (40)
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where γ̇ ≥ 0 is the Lagrange multiplier. By using (39) and (37), we get from (40)
above the following evolution equations:

∂L
p

∂ ttt
= −u̇uu+ γ̇

∂φ

∂ ttt
= 0 =⇒ u̇uu = γ̇

∂φ

∂ ttt
, (41)

∂L
p

∂q
= −

˙
ξ + γ̇

∂φ

∂q
= 0 =⇒

˙
ξ = γ̇

∂φ

∂q
. (42)

The Kuhn-Tucker loading/unloading conditions and the consistency condition also
apply:

γ̇ ≥ 0, φ ≤ 0, γ̇φ = 0, γ̇
˙
φ = 0. (43)

2.3 Equilibrium equations

2.3.1 Global equations

Let a 2d body be discretized by the finite element mesh of Nel quadrilateral elements
with embedded discontinuity in displacements. The weak form of the equilibrium
equations (the principle of virtual work) can be for such a discretization written as:

ANel
e=1

(
Gint,e−Gext,e)= 0, (44)

where A is the finite element assembly operator, Gext,e is the virtual work of external
forces that are acting on a finite element, and Gint,e is element’s virtual work of
internal forces, defined as

Gint,e = te
∫

Ωe
ε̂εε

T
σσσ dΩ. (45)

Here, te is element’s thickness (assumed as constant), and ε̂εε is vector of virtual
strains. By using (20), we can write (45) as:

Gint,e =
4

∑
a=1

te
∫

Ωe
d̂dda

T
BBBT

a σσσ dΩ︸ ︷︷ ︸
∑

4
a=1 d̂dda

T
fff int,e

a︸ ︷︷ ︸
standard part

+

te
∫

Ωe

(
α̂n0ĜGG

T
n0 + α̂n1ĜGG

T
n1 + α̂m0ĜGG

T
m0 + α̂m1ĜGG

T
m1

)
σσσ dΩ︸ ︷︷ ︸

additional part

. (46)
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From the term in (46), named "standard part", we obtain vector of element’s internal
nodal forces

fff int,e =
[

fff int,e,T
a

]T
; fff int,e

a = te
∫

Ωe
BBBT

a σσσ dΩ. (47)

From the virtual work of external forces Gext,e we get, by using standard procedure,
a vector of element’s external nodal forces fff ext,e

Gext,e =
4

∑
a=1

d̂dda
T

fff ext,e
a ; fff ext,e =

[
fff ext,e,T

a
]T

, (48)

that represents external loading applied to that element. The discontinuity line pa-
rameters do not contribute to the external load vector. The finite element assembly
of vectors fff int,e and fff ext,e leads, in view of (44), to the set of global equations that
are related to the nodes of the finite element mesh

ANel
e=1

(
fff int,e− fff ext,e)= 0. (49)

2.3.2 Local equations

We have not used the term in (46) named "additional part", when constructing the
set of global equations (49). We will rather treat the contribution of that term to
the internal virtual work locally, on an element-by-element level. We thus have to
consider the following equation

te
∫

Ωe

(
α̂n0ĜGG

T
n0 + α̂n1ĜGG

T
n1 + α̂m0ĜGG

T
m0 + α̂m1ĜGG

T
m1

)
σσσ dΩ = 0; e = 1,2, ...Nel,

(50)
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for each element of the chosen mesh, which can be transformed to four equivalent
expressions by using (22) to (25), and

∫
Ωe δΓ (◦)dΩ =

∫
Γe (◦)dΓ :

he
n0 = te

∫
Ωe

ĜGG
T
n0σσσdΩ︸ ︷︷ ︸

hΩe
n0

+ te
∫

Γe
nnnT BBBT

n σσσ︸ ︷︷ ︸
=tn

dΓ

︸ ︷︷ ︸
hΓe

n0

= 0, (51)

he
n1 = te

∫
Ωe

ĜGG
T
n1σσσdΩ︸ ︷︷ ︸

hΩe
n1

+ t(e)
∫

Γe
ξΓ nnnT BBBT

n σσσ︸ ︷︷ ︸
=tn

dΓ

︸ ︷︷ ︸
hΓe

n1

= 0, (52)

he
m0 = te

∫
Ωe

ĜGG
T
m0σσσdΩ︸ ︷︷ ︸

hΩe
m0

+ t(e)
∫

Γe
mmmT BBBT

n σσσ︸ ︷︷ ︸
=tm

dΓ

︸ ︷︷ ︸
hΓe

m0

= 0, (53)

he
m1 = te

∫
Ωe

ĜGG
T
m1σσσdΩ︸ ︷︷ ︸

hΩe
m1

+ t(e)
∫

Γe
ξΓ mmmT BBBT

n σσσ︸ ︷︷ ︸
=tm

dΓ

︸ ︷︷ ︸
hΓe

m1

= 0. (54)

In the above equations, the traction stresses at the discontinuity line were defined
as tn= nnnT BBBT

n σσσ |||
Γe and tm= mmmT BBBT

n σσσ |||
Γe , with tn and tm representing normal and

tangential components of ttt

ttt |||
Γe= [tn, tm]T . (55)

Equations (51)-(54) provide clear relationship between the traction stresses and the
stresses in the bulk. It is obvious from those equations that if one or both of the
traction stresses decreases, the stresses in the bulk will decrease as well. We may
gather the equations (51)-(54) in a vector form as

hhh(e) = hhhΩe
+hhhΓe

=
[
hΩe

n0 ,hΩe

n1 ,hΩe

m0,h
Ωe

m1

]T
+
[
hΓe

n0,h
Γe

n1,h
Γe

m0,h
Γe

m1

]T
= 000; (56)

e = 1,2, ...Nel.

In order to solve (44), the set of global equilibrium equations (49), related to the
nodes of the finite element mesh, has to be solved together with the set of local equi-
librium equations (56), related to the elements of the mesh. The solution consists
of nodal displacements of the mesh and discontinuity parameters of each finite el-
ement. Due to the chosen local treatment of displacement jumps, the displacement
jumps are not continuos across the finite element edges.
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2.3.3 Integration rules

The 2×2 Gauss integration scheme is used to evaluate area integrals
∫

Ωe g(x,y)dΩ,
and the 2-point Gauss integration scheme is used to evaluate line integrals

∫
Γe f (ξΓ)dΓ

in (51)-(54), see Figure 4. The integration along the discontinuity line is thus car-
ried out as

∫ lΓ
2

− lΓ
2

f (ξΓ)dξ =
2

∑
dip=1

f (ξ dip
Γ

)wdip lΓ
2

; ξ
dip
Γ

=± lΓ
2
√

3
; wdip = 1, (57)

where f (ξΓ) is a scalar function, f (ξ dip
Γ

) is its value at ξΓ = ξ
dip
Γ

, wdip is its corre-
sponding weight, and lΓ is length of the discontinuity line. By using (57), the hhhΓe

of (56) can be transformed to

hhhΓe
=

telΓ
2

[tn,1 + tn,2;ξΓ,1tn,1 +ξΓ,2tn,2; tm,1 + tm,2;ξΓ,1tm,1 +ξΓ,2tm,2]
T (58)

where

ξΓ,1 = ξ
1
Γ , ξΓ,2 = ξ

2
Γ

and

ttt1 = [tn,1, tm,1]T ; ttt2 = [tn,2, tm,2]T (59)

collect traction stresses at the first integration point and at the second integration
point, respectively.

3 Computational issues

In this section, we present computational details related to the solution of the set
of global equilibrium equations (49) along with the set of local equilibrium equa-
tions (56). The solution is searched for at discrete pseudo-time values 0,τ1,τ2, . . . ,
τn−1,τn,τn+1, . . . ,T by means of the incremental-iterative scheme. We will con-
sider a single-step scheme providing solution in a typical pseudo-time increment
from τn to τn+1. Let us assume that the following variables of an element e, its bulk
integration points bip = 1,2,3,4, and its discontinuity integration points dip = 1,2,
are given at τn, i.e.

given: ddde
n =

[
dddeT

a,n

]T
,αααe

n, εεε
p,bip
n , ξ

bip
n ,ξ

dip

n (and sometimes xΓS, xΓE); (60)

e = 1,2, ...Nel
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Here, (◦)n denotes value of (◦) at τn, αααe
n =

[
αe

n0,n,α
e
n1,n,α

e
m0,n,α

e
m1,n

]T
is vector of

discontinuity-line parameters, xΓS is the starting point of the discontinuity line, xΓE

is the end point of the discontinuity line. The other variables are described above.
We will then iterate in the pseudo-time step in order to compute the converged
values of the variables at τn+1, i.e.

find: ddde
n+1,ααα

e
n+1, εεε

p,bip
n+1 , ξ

bip
n+1, ξ

dip

n+1 (and, if necessary xΓS, xΓE). (61)

The computation of solution (61) is split into two phases:

a Global (mesh related) phase solves (49) for the current iterative values (with i as
the iteration counter) of nodal displacements at τn+1, while keeping the other
variables fixed, i.e.

global phase: ddde,i
n+1 = ddde,i−1

n+1 +∆ddde,i−1
n+1 . (62)

The computation of iterative update ∆ddde,i−1
n+1 will be explained further below.

b Local (element and integration point related) phase uses (56) and constitutive

equations to compute values of αααe
n+1, εεε

p,bip
n+1 , ξ

bip
n+1, and ξ

dip

n+1 at τn+1, while
keeping ddde,i

n+1 fixed. This computation procedure depends on weather the
softening in the discontinuity line has been activated in the considered ele-
ment or not. In the present approach, it can be based either on:

b1 hardening plasticity at Ωe \Γe or on

b2 localized softening plasticity at Γe.

In this work b1 and b2 procedures exclude each other.

3.1 Local computations at the discontinuity line

The softening plasticity procedure is carried out only in those finite elements where:

b2.1 discontinuity line has been active at the previous time step τn, i.e. xΓS and xΓE

are provided,

b2.2 discontinuity line has not been active in the previous time step but the discon-
tinuity line in one of the neighboring elements ends at the common edge, i.e.
xΓS is provided.
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3.1.1 Orientation of the discontinuity line

In the b2.2 case, we first compute orientation of the discontinuity line. Average
element stresses σσσavg are used to define unit vectors nnn and mmm

nnn = nnn
(

σσσ
avg(ddde

n+1,εεε
p,bip
n )

)
; mmm = mmm

(
σσσ

avg(ddde
n+1,εεε

p,bip
n )

)
. (63)

When analyzing cracking in brittle materials, the governing mode of separation
is assumed as mode I. Then the normal vector nnn is chosen to be parallel to the
direction of the maximum principal stress, and remains fixed. When analyzing
metals or soils, the governing mode of separation is assumed as mode II. Then the
tangential vector mmm is chosen to be parallel to one of two perpendicular directions
of maximum shear stress. It remains fixed as well. Once the discontinuity direction
is determined, we are able to obtain the end point of the discontinuity xΓE , which
completes geometric description (Ωe−, Ωe+ and lΓ) of a finite element with active
embedded discontinuity line.

3.1.2 Softening plasticity and jump-in-displacements parameters

The main part of the softening plasticity procedure is equal for both b2.1 and b2.2
cases. The local equilibrium equations (56) are solved together with the traction-
separation constitutive relations to compute jump-in-displacement parameters and
internal plasticity variables.

The procedure starts with computation of trial values of traction stresses in two
integration points at the discontinuity line. Local equilibrium equations (56) are
used for this purpose. We compute

hhhΩe,trial
n+1 =

[
hΩe,trial

n0,n+1 , hΩe,trial
n1,n+1 , hΩe,trial

m0,n+1, hΩe,trial
m1,n+1

]T
= (64)

hhhΩe
(

σσσ(ddde,i
n+1,εεε

p,bip
n ,αααn)

)
.

to get four algebraic equations for traction stresses at both integration points, which
can be expressed as

hhhΩe,trial
n+1 +hhhΓe

(ttt1,trial
n+1 , ttt2,trial

n+1 ) = 000, (65)

or yet as

ttt1,trial
n+1 =

[
t1,trial
n,n+1

t1,trial
m,n+1

]
=

2
(ξ 2

Γ
−ξ 1

Γ
)lΓ

[
hΩe,trial

n1,n+1 −hΩe,trial
n0,n+1 ξ 2

Γ

hΩe,trial
m1,n+1−hΩe,trial

m0,n+1ξ 2
Γ

]
; (66)

ttt2,trial
n+1 =

[
t2,trial
n,n+1

t2,trial
m,n+1

]
=

2
(ξ 1

Γ
−ξ 2

Γ
)lΓ

[
hΩe,trial

n1,n+1 −hΩe,trial
n0,n+1 ξ 1

Γ

hΩe,trial
m1,n+1−hΩe,trial

m0,n+1ξ 1
Γ

]
. (67)
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where ξ 1
Γ

and ξ 2
Γ

are values of ξΓ coordinate at both integration points. We are now
in position to check trial values of failure function (37) at the discontinuity line
integration points

φ
1,trial

= φ(ttt1,trial
n+1 ,q(ξ

1

n))≤ 0 or φ
2,trial

= φ(ttt2,trial
n+1 ,q(ξ

2

n))≤ 0︸ ︷︷ ︸
?

. (68)

If the criterion (68) is satisfied, i.e. if function φ is less or equal to zero in at least
one integration point, the values of local variables remain unchanged

φ
1,trial

≤ 0 or φ
2,trial

≤ 0 =⇒ ξ
1

n+1 = ξ
1

n; ξ
2

n+1 = ξ
2

n; ααα
e
n+1 = ααα

e
n. (69)

If the criterion (68) is violated, the backward Euler integration of (41) and (42) is
performed

uuu1
n+1 = uuu1

n + γ
1
n+1

∂φ

∂ ttt
|
ξ 1

Γ

; ξ
1

n+1 = ξ
1

n + γ
1
n+1

∂φ

∂q
|
ξ 1

Γ

; (70)

uuu2
n+1 = uuu2

n + γ
2
n+1

∂φ

∂ ttt
|
ξ 2

Γ

; ξ
2

n+1 = ξ
2

n + γ
2
n+1

∂φ

∂q
|
ξ 2

Γ

, (71)

where γ
1
n+1 = γ̇

1
n+1(τn+1− τn) and γ

2
n+1 = γ̇

2
n+1(τn+1− τn). The values of plastic

multipliers γ
1
n+1 and γ

2
n+1, which are not known in (70)-(71), are computed with an

iterative solution of the system of two nonlinear equations

φ
1
(

ttt1
n+1

(
γ

1
n+1,γ

2
n+1

)
,q
(

ξ
1

n+1

(
γ

1
n+1

)))
= φ

1(
γ

1
n+1,γ

2
n+1

)
= 0; (72)

φ
2
(

ttt2
n+1

(
γ

1
n+1,γ

2
n+1

)
,q
(

ξ
2

n+1

(
γ

2
n+1

)))
= φ

2(
γ

1
n+1,γ

2
n+1

)
= 0, (73)

where the tractions are expressed through four algebraic equations (in the same
manner as in the case of trial values)

hhhΩe
(

σσσ(ddde
n+1,εεε

p,bip
n ,αααe

n+1)
)

+hhhΓe
(ttt1

n+1, ttt
2
n+1) = 000 =⇒ (74)

ttt1
n+1

(
γ

1
n+1,γ

2
n+1

)
, ttt2

n+1

(
γ

1
n+1,γ

2
n+1

)
.

In (74), the following relations between the jumps in displacements and the kine-
matic discontinuity parameters are needed

ααα
e
n+1(uuu

1
n+1,uuu

2
n+1) = (75)[

u1
n,n+1 +u2

n,n+1

2
,
u1

n,n+1−u2
n,n+1

ξ 1
Γ
−ξ 2

Γ

,
u1

m,n+1 +u2
m,n+1

2
,
u1

m,n+1−u2
m,n+1

ξ 1
Γ
−ξ 2

Γ

]T

,
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where uuu1
n+1 =

[
u1

n,n+1,u
1
m,n+1

]T
and uuu2 =

[
u2

n,n+1,u
2
m,n+1

]T
. When converged val-

ues of γ
1
n+1 and γ

2
n+1 are obtained from (72)-(73), updated values uuu1

n+1, uuu2
n+1,

αααe
n+1,ξ

1

n+1 and ξ
2

n+1 are computed by (70), (71) and (75).

The main result of the above described softening plasticity procedure are new val-
ues of parameters αααe

n+1, which influence the stresses of the element bulk, since

σσσ
bip
n+1 = CCC

(
εεε(ddde,i

n+1,ααα
e
n+1)− εεε

p,bip
n+1

)
, (76)

where εεε
p,bip
n+1 = εεε

p,bip
n .

3.2 Hardening plasticity at the element bulk

The hardening plasticity procedure b1 is carried out at in a standard way (e.g.
see [Ibrahimbegovic (2009); Brank, Perić, and Damjanić (1997); Dujc and Brank
(2008)] for details) at each integration point ip in order to compute internal vari-
ables. We first provide the trial values of the stresses

σσσ
trial,bip
n+1 = CCC(εεε(ddde,i

n+1,ααα
e
n)− εεε

p,bip
n ), (77)

and the trial value of the yield function φ
trial,bip. If the trial yield criterion

φ
trial,bip(σσσ trial,bip

n+1 ,q(ξ
bip
n ))

?
≤ 0 (78)

is satisfied, the values of hardening plasticity local variables remain unchanged (the
step is elastic)

φ
trial,bip ≤ 0 =⇒ εεε

p,bip
n+1 = εεε

p,bip
n ; ξ

bip
n+1 = ξ

bip
n . (79)

In the case of violation of (78), we first provide the updated values of stresses

σσσ
bip
n+1 =

[
III3 + γ

bip
n+12CCCAAA

]−1
σσσ

trial,bip
n+1 . (80)

By using the backward Euler integration scheme we update values of internal vari-
ables as

εεε
p,bip
n+1 = εεε

p,bip
n + γ

bip
n+12AAAσσσ

bip
n+1; ξ

bip
n+1 = ξ

bip
n + γ

bip
n+1

2
σy

√(
σσσ

bip
n+1

)T
AAAσσσ

bip
n+1, (81)

where γ
bip
n+1 = γ̇

bip
n+1(τn+1− τn). The value of the plastic multiplier γ

bip
n+1, which is

unknown in (81), is obtained by solving nonlinear equation

φ
ip(σσσbip

n+1(ddd
e,i
n+1,εεε

p,bip
n+1 (γbip

n+1)),q(ξ
bip
n+1(γ

bip
n+1))) = φ

bip(γbip
n+1) = 0. (82)
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The main result of the above described procedure are the admissible values of the
stresses σσσ

bip
n+1

σσσ
bip
n+1 = CCC

(
εεε

bip,i
n+1 (ddde,i

n+1,ααα
e
n+1)− εεε

p,bip
n+1

)
, (83)

where the updated values of the discontinuity parameters are αααe
n+1 = αααe

n. The
elastoplastic tangent operator CCCep,bip,i

n+1 =dσσσ/dεεε |bip,i
n+1 is needed in global computa-

tions. To compute CCCep from (83), the chain rule is applied

dεεε
p

dεεε
|bip,i
n+1 =

dεεε
p

dγ
|bip
n+1

dγ

dεεε
|bip,i
n+1 , (84)

where derivative dγ/dεεε is computed from the consistency condition γ̇ φ̇ |bip
n+1= 0.

Since φ
ip = φ

ip
(

εεε
bip,i
n+1 ,γbip

n+1

)
and γ̇

bip
n+1 > 0, one has

φ̇
bip
n+1 =

(
dφ

dεεε

·
εεε

)
|bip,i
n+1 +

(
dφ

dγ

dγ

dεεε

·
εεε

)
|bip,i
n+1 (85)

=
(

dφ

dεεε
+

dφ

dγ

dγ

dεεε

)
|bip,i
n+1︸ ︷︷ ︸

0

·
εεε |bip,i

n+1︸ ︷︷ ︸
6=0

= 0.

It follows from (85)

dγ

dεεε
|bip,i
n+1 =

(
−
(

dφ

dγ

)−1 dφ

dεεε

)
|bip,i
n+1 , (86)

which leads to

CCCep,bip,i
n+1 =

dσσσ

dεεε
|bip,i
n+1 = CCC

(
I+

dεεε
p

dγ

(
dφ

dγ

)−1 dφ

dεεε

)
|bip,i
n+1 (87)

The derivatives in (87) can be computed with some manipulations from the above
equations.

3.3 Global computations

Once the local variables are computed by b procedure, we turn to the global phase
a of the iterative loop in order to provide, if needed, new iterative values of nodal
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displacements. First, the set of global equilibrium equations (49) is checked with
newly computed σσσ

bip
n+1 from the local phase∥∥∥ANel

e=1[ fff int,e
n+1− fff ext,e,i

n+1 ]
∥∥∥ ?

< tol. (88)

If the convergence criterion (88) is satisfied, we move on to the next pseudo-time
incremental step. If the convergence criterion fails, we perform a new iterative
sweep within the present pseudo-time incremental step. New iterative values of
nodal displacements of the finite element mesh are computed by accounting for
each element contribution. A single element contribution can be written as[

KKKe KKK f α

KKKhd KKKhα

]i

n+1

(
∆ddde,i

n+1
∆ααα

e,i
n+1

)
=
(

fff ext,e
n+1 − fff int,e,i

n+1
000

)
, (89)

where the parts of the element stiffness matrix can be formally written as

KKKe,i
n+1 =

(
∂ fff int,e

∂ddde

)i

n+1
; KKK f α,i

n+1 =
(

∂ fff int,e

∂αααe

)i

n+1
;

KKKhd,i
n+1 =

(
∂hhhe

∂ddde

)i

n+1
; KKKhα,i

n+1 =
(

∂hhhe

∂αααe

)i

n+1
.

(90)

where

∂ fff int,e

∂ddde = ∂ fff int,e

∂σσσ

dσσσ

dεεε

∂εεε

∂ddde ; ∂ fff int,e

∂αααe = ∂ fff int,e

∂σσσ

dσσσ

dεεε

∂εεε

∂αααe ;
∂hhhe

∂ddde = ∂hhhe

∂σσσ

dσσσ

dεεε

∂εεε

∂ddde ; ∂hhhe

∂αααe = ∂hhhe

∂ ttt
dttt

dαααe + ∂hhhe

∂σσσ

dσσσ

dεεε

∂εεε

∂αααe .
(91)

The static condensation in (89) above allows us to form the standard form of the
element stiffness matrix K̂KK

e,i
n+1 that contributes to the finite element assembly

ANel
e=1

(
K̂KK

e,i
n+1∆ddde,i

n+1

)
= ANel

e=1

(
fff ext,e

n+1 − fff int,e,i
n+1

)
, (92)

where

K̂KK
e,i
n+1 = KKKe,i

n+1−KKK f α,i
n+1

(
KKKhα,i

n+1

)−1
KKKhd,i

n+1. (93)

Solution of (92) gives the values of iterative update ∆ddde,i
n+1, which should be used

as indicated in (62).

4 Examples

The finite element code has been derived by the symbolic manipulation program
AceGen [Korelc (2010)], and incorporated into FE code AceFem [Korelc (2010)].
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Figure 6: Plastic cohesive law with linear softening in tension
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Figure 7: Reaction force versus imposed displacement curves

4.1 Tension test

In this example we consider a square block of 20 cm×20 cm×0.1 cm subjected to
uniaxial tension, see Figure 5. The block is made of elastic material with Young’s
modulus E = 3000 kN/cm2, Poisson′s ratio ν = 0.2 and the ultimate tensile strength
σu = 0.3 kN/cm2. The softening response is governed by the cohesive law at the
discontinuity presented in Figure 6. We can write the law in terms of failure crite-
rion

φ(ttt,q) = tn−
(
σu−q

)
≤ 0, (94)

and the linear softening

q = min
[
σu,−Ksξ

]
, (95)

where Ks = −45 kN/cm3 is the softening modulus. We model the block with one
finite element, which is supported at the left side and pulled, by imposing displace-
ments, at the right side (see Figure 5). Once the tensile strength of the material
is reached, the discontinuity appears in the direction perpendicular to the maxi-
mum principal stress. The behavior of the discontinuity is only defined for mode I,
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i.e. the equations for the traction in the tangential direction and the corresponding
jumps are not considered in the simulation. In Figure 7 we present the reaction
force versus imposed displacement diagram. The results of the present formula-
tion are in complete agreement with those obtained in [Linder and Armero (2007)],
apart the local unloading branch that our rigid-plastic formulation can capture.
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Figure 8: Geometry of the bending test of a square block (left). Imposed displace-
ment versus pseudo-time curves (right).
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Figure 9: Top reaction force versus imposed top displacement curves

4.2 Bending test

We consider bending test of the block with the same material and geometrical prop-
erties as in previous example. In Figure 8 we present the problem definition. In the
first part of loading process the displacement at the top uxT and the displacement at
the bottom uxB are applied with the same rate. The tensile strength of the material
is reached at uxT = uxB = 0.001 cm and at that point the discontinuity in mode I ap-
pears. This is followed by a non-uniform regime of loading with the rate of imposed
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displacement at the bottom being twice the rate of imposed displacement at the top,
see right side of Figure 8. In Figure 9 we present the results of our simulation along
with the results obtained in [Linder and Armero (2007)]. The differences in results
are hardly noticeable up until the point when the first fibers of the discontinuity fail
completely, resulting with tn = 0. After that the results no longer coincide, since the
integration scheme in [Linder and Armero (2007)] considers five integration points
along the discontinuity line and can therefore represent a smoother transition from
the softening regime to the complete failure.
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Figure 10: Partial tension test of a square block
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4.3 Partial tension test

In the above numerical examples we have evaluated the performance of the present
formulation for the normal opening response. To evaluate the performance of the
present formulation for the tangential response, i.e. the mode II response with lin-
ear softening at the discontinuity in its tangential direction, we consider the partial
tension test presented in Figure 10. The block is of the same dimensions as in the
previous examples, with the same value of Young’s modulus E = 3000 kN/cm2 but
with Poisson’s ratio ν = 0. We consider a pre-existing discontinuity at the center
of the block. From the beginning there is no resistance in the discontinuity line,
i.e. the discontinuity line provides no stiffness in the tangential direction and the
tangential traction is always zero (tm = 0). The equations involving the normal re-
sponse are simply left out in this simulation. Again, we model the block by using
only one finite element. The block is supported at the two nodes on the left side
and pulled apart at two nodes on the right side, thus causing a linear displacement
distribution along the height of the Ω+region. In this way the only stress that devel-
ops is σyy, which is only limited to Ω+region and all the other stresses remain zero
throughout the test (σxx = σxy = σΩ−

yy = 0). In Figure 11 we present the stresses
that develop in the element with the increase of imposed displacements. Again we
compare the results of the present work with the results obtained in [Linder and
Armero (2007)]. The results presented in Figure 11 are in complete agreement.
The stress σyy in the Ω− region is unaffected by the imposed displacements and is
always equal to zero, while the stress component σyy in the Ω+ changes with the
increase of imposed displacement according to σ+

yy = Euy
b .

99 cm 99 cm

2 cm 20 cm10 cm

Ry,uy

Figure 12: Three point bending test of a notched concrete beam

4.4 Three point bending test

We consider a classical benchmark problem of a notched concrete beam under three
point bending. In Figure 12 we present the geometry of the specimen, a 200 cm×
20 cm×5 cm simply supported concrete beam with a 2 cm×10 cm×5 cm notch
placed at the bottom of the beam. The beam is loaded by downward displacement
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Figure 13: Plastic cohesive law with exponential softening in tension

Figure 14: Coarse (top) and fine (bottom) finite element meshes for the three point
bending test
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times) deformed meshes
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imposed at the top in its center. The beam is made of material with Young’s mod-
ulus E = 3000 kN/cm2, Poisson’s ratio ν = 0.2 and the ultimate tensile strength
σu = 0.333 kN/cm2. The softening response is governed by the plastic cohesive
law at the discontinuity line, presented in Figure 13. The law in Figure 13 can be
also written in terms of failure criterion (94) and the exponential softening law

q = σu

(
1− exp

− ξ σu
G f

)
, (96)

where G f = 0.124 · 10−2 kN/cm is the fracture energy. The response of the dis-
continuity in the tangential direction is not considered in the simulations. In Figure
14 we present two different finite element meshes that were used in simulations.
The coarser mesh consists of 530 finite elements and the finer one of 2186 finite
elements. On the left side of Figure 15 we plot the reaction versus imposed dis-
placement diagrams computed for both meshes. The discontinuity starts at the
notch, when the tensile strength of the material is reached and propagates in the
direction perpendicular to the maximum principal stress, i.e. in the mode I fash-
ion. We have encountered a problem when using the above criterion to determine
the discontinuity direction, namely the direction of the maximum principal stress
at some point suddenly changes for 90 degrees. This causes a problem in conver-
gence in the simulation with the fine mesh and a non-physical response when using
the coarse mesh, see left side of Figure 15. The discontinuity direction problem
was also reported in [Mosler (2004)] and we direct the reader therein for further
discussion. Further reading on defining the crack-path in brittle and non-brittle ma-
terials one can find for example in [Ferretti (2004)]. To obtain the solution without
the discontinuity direction problem we considered a predetermined direction of the
discontinuity, i.e. discontinuity can only propagate perpendicular to the length of
the beam. With this modification we were able to obtain with both meshes the re-
sults that are within the experimentally established bounds, taken from [Linder and
Armero (2007)]. The results of all simulations are given in Figure 15 (left). In the
center and right side of Figure 15 we present the deformed configuration (scaled
100 times) of the area near the notch for both course and fine mesh.

4.5 Four point bending test

In this example we study the four point bending test on a beam with a notch. In Fig-
ure 16 we present the specimen geometry along with loading conditions and sup-
ports. The specimen is made of material with Young’s modulus E = 2880 kN/cm2,
Poisson’s ratio ν = 0.18 and the ultimate tensile strength σu = 0.28 kN/cm2. The
behavior of the discontinuity is governed by the failure criterion (94) and the soft-
ening law (95), with softening modulus being Ks = −39.2 kN/cm3. In Figure 17
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Figure 16: The four point bending test

Figure 17: Finite element mesh for the four point bending test
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Figure 18: Load versus crack mouth sliding displacement curves and the corre-
sponding crack paths
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Figure 19: Scaled deformed meshes: the "n0 + m0" (left), the "n0 + n1" (middle)
and the "n0" formulations

we present the mesh that we used in simulations. With respect to the description
of the displacements jumps along the discontinuity line we considered three cases:
(i) "n0 + m0" - the constant jump in displacements in both normal and tangential
direction, (ii) "n0 + n1" - linear jump in displacement in normal direction only and
(iii) "n0" - constant jump in displacements in normal direction only. In the mixed
mode case ("n0 + m0") we considered a reduced shear stiffness for the tangential
response according to relation

φ(tm) = tm− kmum = 0, (97)

where km = 2.88 kN/cm3. The results of the simulations are presented in Figures
18 and 19. On the left side of Figure 18 we plot the applied load - crack mouth
sliding displacements curves of our simulations along with the envelope of results
the we adopted from [Linder and Armero (2007)]. We can see that all the proposed
formulations give a good prediction of the limit load of the structure, while only the
mixed mode formulation can capture the true softening response of the structure.
On the right side of Figure 18 we plot the crack paths that correspond to curves on
the left side of the same figure. In Figure 19 we present the deformed (scaled 200
times) mesh of the area near the notch for all formulations.

4.6 Delamination of a plate

We consider a delamination test shown in Figure 20 as presented in [Manzoli and
Shing (2006)]. The properties of the material are: Young’s modulus E = 50 kN/cm2

and Poisson ratio ν = 0.3. We model the interface as an embedded discontinuity
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whose properties are determined with the failure criterion (94), the ultimate tension
stress σu = 10−1 kN/cm2 and the exponential softening law (96) with the fracture
energy G f = 5× 10−3 kN/cm. The simulations are performed by using a coarse
and a fine finite element mesh, as presented in Figure 21. The reaction force versus
imposed displacement diagrams are presented in Figure 22. One can see, that the
results of both coarse and fine mesh are in good agreement with the results obtained
in [Manzoli and Shing (2006)] by using a fine mesh. Figure 23 depicts the deformed
meshes that correspond to the imposed displacement uy = 0.2 cm. Note that the
deformed meshes are not scaled and one should for a more realistic representation
use a geometrically non-linear framework.

0.05 cm

0.45 cm

interface

Ry,uy

Ry,uy

Figure 20: Delamination test data

Figure 21: Coarse (top) and fine (bottom) finite element meshes for the delamina-
tion test

4.7 Elasto-plastic tension test

In the last example we consider a tension test of a metal strip. The geometry of the
strip is presented in Figure 24. Its thickness is 0.055 cm. One of the shorter edges is
built-in and the opposite edge is pulled by imposing the displacements as depicted
in Figure 24. In this example we consider the bulk material as elastoplastic with
the following properties: Young’s modulus E = 21000 kN/cm2, Poisson’s ratio
ν = 0.3, yield stress σy = 40 kN/cm2 and hardening modulus Kh = 1000 kN/cm2.
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Figure 22: Reaction force versus imposed displacement diagram

Figure 23: Deformed configurations: the coarse mesh (left) and the fine mesh
(right)
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Figure 24: Tension test of a metal strip
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Figure 25: Plastic cohesive law with linear softening
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Figure 26: Total reaction force versus imposed displacement curves

Figure 27: Discontinuity path for several meshes

Figure 28: Scaled deformed configurations
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We compute the stress-like variable related to isotropic hardening as

q =−Khξ . (98)

The softening response is activated once the ultimate shear stress τu = 21 kN/cm2 is
reached and then the mode II propagation of the discontinuity starts. The response
of the discontinuity is governed by the cohesive law depicted in Figure 25, which
can be also represented in the form of failure criterion

φ(ttt,q) = |tm|−
(
τu−q

)
≤ 0, (99)

and the stress like softening variable

q = max
[
τu,−Ksξ

]
, (100)

where Ks = −400 kN/cm3. In our simulations we only consider constant jumps
in the tangential direction. We assumed that there is a small imperfection in the
metal strip, which one can interpret as the starting point of the discontinuity (see
Figure 24). Several simulations were made with different mesh sizes ranging from
6 to 384 finite elements. The sum of reaction forces at the right edge versus im-
posed displacement diagrams are presented in Figure 26. One can see that the mesh
size has very little influence on the results. All the curves have three distinguished
phases, namely the linear elastic phase, which is followed by the isotropic harden-
ing phase and the final softening phase. Figure 27 depicts the discontinuity paths
for different meshes. In Figure 28 we present deformed configurations (scaled 10
times) for different meshes.

5 Conclusions

A planar finite element with embedded strong discontinuity in displacements has
been derived and used to model the fracture process in concrete solids, the delam-
ination in composite materials and the failure in ductile materials. The key feature
of the derived element is that it linearly interpolates the displacements jumps in
both normal and tangential directions of the discontinuity line. Simple tests show
that there is no transition of spurious stresses across the discontinuity line for basic
(constant and linear) separation modes. The element is effective for the implemen-
tation, since the displacement-jump-parameters are condensed on the element level.
However, in order to make the discontinuity propagation algorithm more robust, the
continuity of the discontinuity line between the elements is enforced.
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