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An Atom-Based Continuum Method for Multi-element
Crystals at Nano Scale

Xianqiao Wang1 and James D. Lee2

Abstract: This paper presents an atom-based continuum (ABC) method aim-
ing at a seamless transition from the atomistic to the continuum description of
multi-element crystalline solids (which has more than one kind of atom in the
unit cell). Contrary to many concurrent multiscale approaches, ABC method is
naturally suitable for the analysis of multi-element crystals within a finite element
(FE) framework. Taking both efficiency and accuracy into account, we adopt a
cluster-based summation rule for atomic force calculations in the FE formulations.
Single-crystals MgO, BaTiO3 and Cu under mechanical loading are modeled and
simulated. With a coarse-grained mesh, ABC method is shown to be able to simu-
late dynamic and nonlinear behaviors, such as wave propagation and polarization,
of multi-element crystalline materials. It is demonstrated that by reducing the finite
element mesh to the atomic scale, in other words, let the finite element size equal to
the size of a unit cell, critical phenomena at atomic scale such as crack propagation
can be successfully reproduced.

Keywords: Multiscale material modeling, Molecular dynamics, Finite element
method, Multi-element crystals, Critical phenomena

1 Introduction

For several decades continuum theory has been a dominating theoretical framework
for the analysis of materials and structures. It is realized that as technologies extend
to the nanometer range, continuum mechanics at this new arena is questionable.
While atomic-scale modeling and simulation methods, e.g., molecular dynamics
(MD), have provided a wealth of information for nano systems, these methods can
only handle problems limited in length/time scales. Yet, ultimately we aim at the
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design and manufacture of synthetic and hierarchical material systems or structures
in which the organization is designed and controlled on length scales ranging from
nanoscopic to microscopic, even to macroscopic. Therefore multiscale modeling,
from atom to continuum, is inevitably needed.

The past several years have witnessed the explosive growth of interest in theory and
modeling of microscale, nanoscale and multiscale material behaviors. One of the
most popular concurrent multiscale modeling approaches is to incorporate a hand
shaking region between the FE and the MD regions. To begin with, the coupling
of length scale method (CLSM) was a pioneering work developed by Abraham
et al. (1998), and by Rudd and Broughton (2001), which incorporated the cou-
pling of quantum mechanics approximation, MD, and FE method. Belytschko and
Xiao (2003), Xiao and Belytschko (2004) developed the bridging-domain method
(BDM), in which the continuum and molecular domains were overlapped in a
bridging subdomain, and the Hamiltonian was taken to be the linear combination
of the continuum and molecular parts. The compatibility in BDM was enforced by
Method of Lagrange multipliers. Wagner and Liu (2003) developed the bridging
scale method (BSM), in which the molecular displacements were decomposed into
fine and coarse scales. At the interface they used a form of the Langevin equation
to eliminate spurious reflections. Excellent result for one-dimensional problem
was obtained. The atomistic-to-continuum (AtC) method by Fish et al. (2007)
and by Parks et al. (2008) was a force-based method in which the coupling be-
tween atomistic and continuum regions was achieved by blending at the level of
forces. In these fashions, the computational power is harnessed, resulting in an
optimum compromise between numerical accuracy and computational overhead.
The multiscale simulation technique based on the meshless local Petrov-Galerkin
method was developed by Shen and Atluri (2004 a, b, c), in which several alter-
nate time-dependent interfacial conditions, between the atomistic and continuum
regions, are systematically studied, for the seamless multiscale simulation, by de-
composing the displacement of atoms in the equivalent continuum region into long
and short wave-length components. Ma et al. (2006) also developed a multiscale
simulation method using generalized interpolation material point method (GIMP)
and molecular dynamics. In their theory, a material point in the continuum is split
into smaller material points using multi-level refinement until it has nearly reached
the atom size to couple with atoms in the MD region. Consequently, coupling
between GIMP and MD is achieved by using compatible deformation, force, and
energy fields in the transition region between GIMP and MD. Raghavan and Ghosh
(2004) established an adaptive multiscale computational modeling of composite
materials that combines a conventional displacement based finite element model
with a microstructural Voronoi cell finite element model for multi-scale analysis
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of composite structures with non-uniform microstructural heterogeneities as ob-
tained from optical or scanning electron micrographs. Compared with direct atom-
istic simulation, these techniques have the potential to produce significant time and
length scale gains by treating smoothly varying regions of the configurational space
collectively. Generally speaking, however, in all those above-mentioned coupled
methods, the idea is to use a fully atomistic description in the critical regions and a
continuum description in other regions, thereby resulting in a phonon scattering and
wave reflection at the interface. Also, the detailed treatment of the material in the
‘transition region’ or the boundary between the atomistic and continuum regions is
a critical aspect of those approaches.

Another popular bottom-up approach is the Quasicontinuum (QC) method, devel-
oped by Tadmor et al. (1996) and extended by Knap and Ortiz (2001). In QC
method, triangular elements or tetrahedral elements are adopted in 2D or 3D sim-
ulations, respectively, thereby leading to a locally-uniform deformation gradient.
Linear interpolation functions in triangular or tetrahedral elements require only
one Gauss-point for numerical quadrature. As a consequence, the application of
the Cauchy-Born rule (CBR) implies that in the energy calculation the summation
over the number of lattice sites boils down to the number of finite elements. There-
fore, there will be a limitation for QC method due to the validity of the kinematic
assumption of CBR; in other words, QC method is unable to determine the state
when the non-affine deformation is possible due to instabilities or inhomogeneities
of the underlying atomic system (Stienmann et al., 2006). One has to mention that
Tadmor et al. (1999) extended the QC method to simulate materials with multiple
atoms in a unit cell. However, from the view point of practice and efficiency, we
have to say that the Cauchy-Born rule certainly is not appropriate for materials with
multiple atoms in a unit cell.

In this paper, we propose an atom-based continuum (ABC) method aiming at a
seamless transition from the atomistic to the continuum description of crystalline
solids and a general formulation for the analysis of multi-element crystals. Each
unit cell of a multi-element crystal has multiple discrete and distinct atoms. To
enhance the computational efficiency, we present a cluster-based force calculation
rule in the FE formulation. The organization of the remainder of the paper is as
follows: In Section 2, we briefly present basic concepts of lattice dynamics and de-
rive the governing equations of atomic system based on the generalized Lagrange
equation. By means of virtual work and kinematic constraints, in Section 3 we
formulate the atom-based continuum method and its derivative —-the concurrent
atomistic/continuum method. Coarse-grained and concurrent atomistic/continuum
simulation results are presented in Section 4 and 5, respectively. Finally we con-
clude this paper with a brief summary and discussion in Section 6.
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2 Lattice Dynamics

Note that a crystalline material is distinguished from other states of matter by a
periodic arrangement of the atoms, which can be represented as a collection of unit
cells and a group of discrete and distinct atoms situated within each unit cell as
depicted in Fig. 1. Consider a system consisting of Nl unit cells; each unit cell k
is composed of Na atoms with mass mα [α = 1,2,3, ....,Na], positions in the refer-
ence configuration Xkα , positions in the current configuration xkα(t), displacements
ukα(t) = xkα(t)−Xkα , and velocities u̇kα(t). Herein, the superscript kα refers to
the αth atom in the kth unit cell; and u̇kα ≡ dukα/dt. 
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Figure 1: Atomistic view of crystal structure
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Figure 2: Position descriptions in the reference configuration

The initial configuration of each unit cell in a single crystalline material can be
identified by its lattice coordinates k = (k1,k2, · · · ,kd) ∈ Zd , where d denotes the
dimensions of space. So the spatial initial position Xk of the kth unit cell is defined
as

Xk =
d

∑
a=1

kaBa (1)
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where Ba are the basis vectors spanning a simple d-dimensional Bravais lattice.

The positions, shown in Fig. 2, in the reference configuration, displacements and
velocities between atoms and the center of the unit cell are

Xkα = Xk +∆Xkα (2)

ukα(t) = uk(t)+∆ukα(t) (3)

u̇kα(t) = u̇k(t)+∆u̇kα(t) (4)

where ∆Xkα , ∆ukα , and ∆u̇kα are the internal positions, the internal displacements
and the internal velocities of the αth atom in the kth unit cell, respectively. The
unit cell deformation uk(t) is homogenous while the internal displacement ∆ukα(t)
contributes to inhomogeneous deformation.

It is assumed that the total potential energy V of the system mentioned above can
be additively computed as the sum of energies of each atom

V = ∑
k

∑
α

V kα (5)

where V kα is the sum of the energies due to any interatomic potential, such as pair-
wise interaction of the atoms, three-body potentials or other many-body potentials,
including the Tersoff and the Stillinger-Weber potentials. V kα can be expressed in
a general form

V kα =
1
2! ∑

l
∑
β

V2(xkα ,xlβ )+
1
3! ∑

l,m
∑
β ,γ

V3(xkα ,xlβ ,xmγ)+ · · · (6)

with the understanding (k,α) 6= (l,β ) 6= (m,γ) 6= .....

The particular form of the interatomic potential energy depends on the model of
atomic interactions. In this work, we assume pair potential is employed and the
potential energy of the atom kα is

V kα =
1
2 ∑

l
∑
β

V2(xkα ,xlβ )≡ 1
2 ∑

l
∑
β

V kα−lβ (xkα ,xlβ ) (7)

Let the kinetic energy and the dissipative energy of this system be

K =
1
2 ∑

k
∑
α

mα(ẋkα)2 (8)

D = {1
2 ∑

k
∑
α

mα(ẋkα)2}/τ (9)
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where D is ordinarily known as Rayleigh’s dissipation function and represents the
rate at which mechanical energy is converted to heat during a viscous process; τ is
a characteristic damping time (Goldstein, 1950).

We start from the generalized Lagrange equation for holonomic non-conservative
systems, in which non-potential forces exist:

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
+

∂D
∂ ẋ

= ϕ(x, ẋ, t) (10)

where L(x, ẋ, t) = K−V is the Lagrangian and ϕ(x, ẋ, t) is the generalized non-
potential forces.

Substituting Eqs. (7, 8, 9) into Eq. (10) and assuming that the forces on any atom
are additive, we have the governing equation of any atom kα in the system with
damping (see the details in Appendix A)

mα ükα + cα u̇kα = fkα +ϕ
kα (11)

where u̇kα = ẋkα ; ükα = ẍkα ; cα ≡ mα/τ; fkα = ∑l ∑β fkα−lβ ; ϕkα is the ex-
ternal force acting on the kα atom; fkα−lβ is the atomic force acting on the kα

atom due to the lβ atom, which is the negative derivative of the potential energy
V kα−lβ (xkα ,xlβ ) with respect to the atom’s current position vector xkα

fkα−lβ =−∂V kα−lβ (xkα ,xlβ )
∂xkα

(12)

and here we also assume that the potential energies depend only on the relative
interatomic distance dkα−lβ =

∥∥xkα −xlβ
∥∥, so

fkα−lβ =−∂V kα−lβ (dkα−lβ )
∂dkα−lβ

∂dkα−lβ

∂xkα
=−∂V kα−lβ (dkα−lβ )

∂dkα−lβ

xkα −xlβ

dkα−lβ =−flβ−kα

(13)

3 Atom-Based Continuum Method (ABC)

3.1 Kinematic constrains

For the purpose of large-scale simulation of collaborative material behavior, we
seek an approximation solution to Eq. (11). Therefore, following the work done
by Knap and Ortiz (2001) and the work done by Eidel and Stukowski (2009), the
reduction of degrees of freedom is accomplished by virtue of kinematic constrains.
i.e., the shape functions in FE method. Some judiciously selected unit cells, called
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FE nodes, retain their independent degrees of freedom. Z is the set of all unit cells;
ZN is the set of all FE nodes; ZN ⊆ Z. The nodal displacements together with
shape functions are employed to determine a displacement field, in other words, all
other unit cells are forced to follow the motion of the nodes – this is what we called
“kinematic constraint”, which is the practice in every FE analysis. The most general
requirements to the discretization are first, to reduce the number of FE node, and
second, to ensure high density of FE nodes up to fully atomic resolution in critical
regions, where defects nucleate and evolve, like dislocation cores, crack tips. When
coarse mesh is used, the majority of the degrees of freedom can be eliminated,
hence, the computational cost can be reduced. When the finest mesh is used, any
lattice site is a finite element node, and the model becomes identical to a full-blown
MD model. The compromise is a trade-off between efficiency and accuracy (Eidel
and Stukowski, 2009). The density of FE nodes is controlled by a criterion that
measures how strong the deformation varies spatially. The displacement ukα is
approximated by finite element interpolation from its nodal values Uα

I as

ukα = ∑
I

ΦI(k)Uα
I (14)

where ΦI(k) is I-th shape function of the kth unit cell; Uα
I is the displacements of

the α atom of the I-th node of the element in which the kth unit cell resides. The
finite element shape functions exhibit the properties

∑
I

ΦI(k) = 1 (15)

ΦI( j) = δI j ∀ j ∈ ZN (16)

According to Eq. (15) shape functions are a partition of unity over Z, which ensures
the exact representation of constant fields.

Following the standard procedure of Galerkin method, we have the weak form of
Eq. (11) as follows

∑
k

∑
α

mα ükα
δukα +∑

k
∑
α

cα u̇kα
δukα = ∑

k
∑
α

∑
l

∑
β

fkα−lβ
δukα +∑

k
∑
α

ϕ
kα

δukα

(17)

In light of fkα−lβ =−flβ−kα , we rewrite Eq. (17) as

∑
k

∑
α

mα ükα
δukα +∑

k
∑
α

cα u̇kα
δukα

=
1
2 ∑

k
∑
α

∑
l

∑
β

{fkα−lβ − flβ−kα}δukα +∑
k

∑
α

ϕ
kα

δukα (18)
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which can also be written as

∑
k

∑
α

mα ükα
δukα +∑

k
∑
α

cα u̇kα
δukα

=
1
2 ∑

k
∑
α

∑
l

∑
β

fkα−lβ{δukα −δulβ}+∑
k

∑
α

ϕ
kα

δukα (19)

By virtue of δukα = ∑I ΦI(k)δUα
I , the governing equations for nodal displace-

ments Uα
I can be expressed(see the detail in Appendix B)(

∑
J

Mα
IJ

)
Üα

J +

(
∑
J

Cα
IJ

)
U̇α

J = Fα
I +ϕ

α
I (20)

where

Mα
IJ = ∑

k
mα

ΦJ(k)ΦI(k) = Mα
JI (21)

Cα
IJ = ∑

k
cα

ΦJ(k)ΦI(k) = Cα
JI (22)

Fα
I =

1
2 ∑

k
∑

l
∑
β

fkα−lβ
ΦI(k)−

1
2 ∑

k
∑

l
∑
γ

fkγ−lα
ΦI(l) (23)

ϕ
α
I = ∑

k
ϕ

kα
ΦI(k) (24)

The existence of superscript α in Eq. (20) implies that the atomic information is
naturally built in ABC method and the internal relaxation is allowed in each node
to represent an atomistic multi-element system, thereby eliminating the mismatch
of phonon descriptions in atomic and continuum regions. Hence ABC is inherently
suitable for the study of polarizations and phase transformations in multi-element
crystals at continuum level. This is distinctively different from the classical con-
tinuum field theory. It is also noticed that, in Eqs. (23, 24), full-blown nonlocality,
nonlinearity and atom-based constitutive relation are automatically rooted in the
force calculation. So we have proposed a fully nonlocal ABC formulation.

In practice, the consistent mass matrix is commonly replaced by a lumped matrix
for computational convenience. Here we utilize the ‘row-sum’ lumping technique,
then Eq. (20) can be rewritten as

M̃α
I Üα

I +

(
∑
J

Cα
IJ

)
U̇α

J = Fα
I +ϕ

α
I (25)
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Figure 3: Schematic picture of ABC model with force distributions

If we consider that the specimen has two regions: continuum region (Nl unit cells;
each unit cell has Na atoms) with finite element meshes and atomic region (N
atoms), as shown in Fig. 3 (here a 2D picture is shown for the purpose of illustra-
tion), we can extend ABC method to a concurrent atomistic/continuum method.
Then the governing equations of this composite system can be expressed as:

Continuum region [α = 1,2,3, · · · ,Na]

M̃α
I Üα

I +

(
∑
J

Cα
IJ

)
U̇α

J = Fα
I +ϕ

α
I (26)

where the interatomic force Fα
I is a little bit different from Eq. (23) because we

should include the interaction with atoms in the atomic region:

Fα
I =

1
2 ∑

k
∑

l
∑
β

fkα−lβ
ΦI(k)−

1
2 ∑

k
∑

l
∑
γ

fkγ−lα
ΦI(l)+∑

k

N

∑
η=1

fkα−η
ΦI(k) (27)

The diagonalized mass matrix M̃α
I , the damping matrix Cα

IJ and the external force
ϕα

I are the same as Eqs. (21, 22, 24).

Atomic region [η = 1,2,3, · · · ,N]

mη üη(t) = Fη(t)+ΦΦΦ
η(t) (28)

where ΦΦΦη(t) is the external force acting on the η th atom; and the interatomic force
acting on the η th atom Fη(t) is

Fη = ∑
k

∑
α

fη−kα +∑
ξ

fη−ξ (29)
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3.2 Summation rule for force calculation

All summations in Eqs. (21-24, 27, 29) are normally carried out by numerical
quadrature. In Fig. 3, it is seen that around each node (an open circle), say the kth
node, there is a cluster (a shaded area), named ψk. From now on, force calculation
is no longer performed for all unit cells in the entire system but for all clusters.
A representative unit cell (a black solid square) is the one within one of ψk = {l :
|Xl−Xk| ≤ Rk}. Notice that there is no overlapping of clusters. Xl is the position
of the lth unit cell and Rk is the radius of the cluster ψk centered at the kth unit cell,
which happens to be a FE node. We postulate that the cluster summation rule for
Eq. (27) reads:

Fα
J =

1
2 ∑

k
∑

l
∑
β

fkα−lβ
ΦΦΦJ(k)−

1
2 ∑

k
∑

l
∑
γ

fkγ−lα
ΦΦΦJ(l)+∑

k

N

∑
η=1

fkα−η
ΦΦΦJ(k)

≈ 1
2

wi

∑
i∈ZN

∑
j∈ψi

Nl

∑
l=1

Na

∑
β=1

f jα−lβ
ΦΦΦJ( j)− 1

2

wi

∑
i∈ZN

∑
j∈ψi

Nl

∑
l=1

Na

∑
γ=1

f jγ−lα
ΦΦΦJ(l)

+

wi ∑
j∈ψi

∑
i∈ZN

N

∑
η=1

f jα−η
ΦΦΦJ( j)

(30)

where wi(i ∈ ZN), the weight of the ith cluster, is calculated under the requirement
that the summation over all linear interpolation functions must be exact, see Knap
and Ortiz (2001); Eidel and Stukowski (2009). When the clusters shrink to nodes,
i.e., ψi = {i} ∀ i ∈ ZN , it holds ΦΦΦI(i) = δIi, and the cluster summation rule boils
down to a node-based summation rule

Fα
J ≈

1
2

wi

∑
i∈ZN

Nl

∑
l=1

Na

∑
β=1

δJifiα−lβ − 1
2

wi

∑
i∈ZN

Nl

∑
l=1

Na

∑
γ=1

fiγ−lα
ΦΦΦJ(l)+

wi

∑
i∈ZN

N

∑
η=1

fiα−η
δJi (31)

In this case the weighting factor wi is the number of unit cells represented by ith
node, thus wi = ∑

Nl
j=1 ΦΦΦi( j) ∀i ∈ ZN . On the other extreme, wi = 1∀ i ∈ ZN implies

all pairs of interatomic forces are calculated. In all cases ∑i∈ZN ∑ j∈ψi w j = Nl holds.

Fig. 3 shows the numerical procedures to calculate the interatomic force between
any two atoms. The force between any two atoms in the atomic region is treated
exactly the same way as in MD simulation. In the continuum region the force be-
tween any two atoms in different or same unit cells should be distributed to all the
nodes of the elements, in which the two unit cells reside. For example, there is a
unit cell l located in cluster ψH with weighting factor wH and another generic unit
cell k; {fkα−lβ , flβ−kα} represents a pair of interatomic forces acting on the kαth
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atom and the lβ th atom, fkα−lβ = −flβ−kα ; through shape function ΦΦΦkI = ΦΦΦI(k),
force wHΦΦΦkIfkα−lβ is distributed to the αth atom of node I; similarly, wHΦΦΦkJfkα−lβ ,
wHΦΦΦkKfkα−lβ , and wHΦΦΦkLfkα−lβ are distributed to the αth atom of nodes J, K, and
L; in the same way, wHΦΦΦlJflβ−kα , wHΦΦΦlKflβ−kα , wHΦΦΦlGflβ−kα and wHΦΦΦlHflβ−kα

are distributed to the β th atom of nodes J, K, G, and H. Let {fmα−η , fη−mα} rep-
resent a pair of interatomic forces acting on the mαth atom in the continuum region
and the η th atom in the atomic region.

In this work, we investigate the mechanical behaviors of single-crystals MgO,
BaTiO3, and Cu (Fig. 4) in the following sections. For the ionic MgO and BaTiO3
crystals, the Coulomb-Buckingham potentials listed in Table 1 and 2 (Grimes,
1994; Woodley, 1999) are adopted to derive the interatomic force, respectively,
while the Lennard-Jones potential listed in Table 3 is used for Cu.

 

(a) (b) (c) 
Figure 4: Crystal structures: (a) MgO; (b)BaTiO3; (c)Cu

Table 1: Short-range interaction parameters for different pairs in MgO

Species Species A (eV) ρ (
o
A) C (eV(

o
A)6)

O2− O2− 9547.96 0.2192 32.0
Mg2+ O2− 1284.38 0.2997 0.00
Mg2+ Mg2+ 0.00000 0.0000 0.00

4 Coarse-scale simulations of ABC method

4.1 Wave propagation

Consider that a uniaxial compressive loading is applied on both two ends of a Cu
specimen (2.9 nm×2.9 nm×22 nm, 19,764 atoms) along the z-direction (cf. Fig.
5). The displacement Uzspecified at the boundary is increased to 0.9nm in a linear
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          0.9 

            4 ps Time

Uz 

           0.4 ps 
 Figure 5: Computational model of Cu specimen under a compressive loading

Table 2: Short-range interaction parameters for different pairs in BaTiO3

Species Species A (eV) ρ (
o
A) C (eV(

o
A)6)

O2− O2− 25.4100 0.6937 32.32
Ba2+ O2− 4818.42 0.3067 0.000
Ti2+ O2− 4545.82 0.2610 0.000

Ba2+/Ti2+ Ba2+/Ti2+ 0.00000 0.0000 0.000

Table 3: Short-range interaction parameters for Cu

Species Species ε (eV) σ (
o
A)

Cu Cu 0.415 2.277

ramp over 0.4 ps. Thereafter, the displacements on the two ends are held as con-
stant at 0.9 nm. Fig. 5 shows the computational model, loading history and the
boundary conditions. Uniform 3D 8-node brick-type elements are employed, and
there are 480 elements and 775 nodes in the FE model. Approximately, the number
of degrees of freedom involved in ABC is about 4% of that of MD.

Fig. 6 shows the contour plots of displacement Ux in deformed shape as well as
in atomic arrangement. Wave propagation along the zdirection is clearly observed.
It is also seen that, under the compressive loading, the bulging in x-direction de-
velops just beneath the boundaries. The bulging originates from two ends, propa-
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 Figure 6: Distribution of Ux in deformed shape and in atomic arrangement

 

(a) Finte Element Mesh 

       0.5 

          50 psTime

Uz

(b) Loading history and boundary  Figure 7: Computational model of MgO specimen under uniaxial tension

gate to the middle of specimen, and then they meet and separate. In this example,
through the simulations of a complete circle of wave propagation (meeting, separa-
tion and reflection) the robustness and stability of the finite element implementation
is demonstrated.
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Figure 8: Stress-strain curve of MgO specimen under tension

 

 Figure 9: Polarization in BaTiO3 under compressive strain

4.2 Uniaxial tension

Under uniaxial tension, a small MgO specimen (1.6 nm× 1.6 nm× 5 nm, 2600
atoms) is discretized into 24 elements. There are 63 FE nodes in the computational
model. Thus the number of the degrees of freedom involved in ABC method is
about 2.4% of that in MD. In the simulation of MgO under tension, displacement
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controlled boundary conditions with a constant velocity 10m/s are applied on the
two ends and the total loading time is 50 ps (Fig. 7 b). The stress-strain curve
obtained is plotted in Fig. 8. Here, the stress is calculated as the average of all
unit cells. Fig. 8 shows a rapid stress increase up to the maximum tensile strength
followed by a drop when the specimen is going to fail; notice that the applied
elongation is still increasing. This is similar to the conventional tensile testing: the
stress-strain curve is essentially smooth with a linear slope within elastic range.
Both the linear elastic range and the yield point are visible. Young’s modulus can
be estimated as 260 GPa, which is higher than the bulk experimental value or the
first principle value of 250 GPa. Yield strength is about 11.8 GPa and the yield
strain is about 0.08. Those values are close to what have been reported in previous
MD simulation (Xiong et al., 2006).

4.3 Polarization

Piezoelectric materials at nanoscale have attracted increasing attention due to their
promising applications in piezoelectric motors, nanoactuators, nanogenerators, etc.
Nanogenerators (Wang and Song, 2006) offer the potential of harvesting energy
from the environment for self-powered nanosystems based on the piezoelectric ef-
fect, i.e., a mechanical stress/strain can be converted into polarizations in the mate-
rial, thereby inducing an electric voltage.

The piezoelectric material BaTiO3 has a centrosymmetric cubic crystal structure as
a reference nonpolar state, and polarization is defined with respect to the nonpolar
state (Fig. 9) and is a function of internal atomic displacements. It is noticed in
Fig.9 that the unit cell becomes tetragonal structure under the compressive strain.
When the interior atoms are allowed to move independently, one may encounter a
non-centrosymmetric structure which gives a polarization (Fig. 9a). On the other
hand, if we follow Cauchy-Born rule strictly, then the tetragonal structure is still
centrosymmetric and hence it yields no polarization (Fig. 9b). From Eq. (25),
which governs the motion of every atom in unit cells, it is seen that the internal
atomic displacements have been naturally incorporated in our formulations. In our
ABC method, it is straightforward to show the polarization density Pk(t) of a lattice
point as

Pk(t) =
1

∆V

Na

∑
α=1

qkαxkα(t) =
1

∆V

Na

∑
α=1

qkα(Xk+ukα(t)) =
1

∆V

Na

∑
α=1

qkαukα(t) (32)

where ∆V is the volume of a unit cell, qkα is the charge of atom kα .

In this numerical simulation, a nanosize BaTiO3 specimen (1.6 nm× 1.6 nm×
3.2 nm) subject to a compressive loading is modeled with 128 finite elements and
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225 nodes. The displacement controlled boundary conditions with a constant ve-
locity 30m/s are applied on the top end and the total loading time is 10 ps (Fig. 10).
As shown in Fig. 9, when the specimen is subject to a compressive loading in the
z-direction, an expected polarization will appear in the x-y plane. Here we define
P⊥ =

√
Px ·Px +Py ·Pyto characterize the magnitude of the polarization on the x-y

plane. Fig. 11 shows the contour plots of polarization P⊥ with time evolution. It is
seen that the polarization P⊥ become more pronounced as time goes. It is observed
that the polarizations P⊥easily appear at the edges since the symmetry of unit cell
is more vulnerable to break under the compression loading. Also, polarizations
accompany the phenomenon of bulging.

 

 

0.3 nm 

10 ps Time

Uz 

Figure 10: Computation model: (a) Finite element mesh; (b) Boundary conditions;
(c) Loading history

5 Concurrent atomistic/continuum simulation

In this section, we simulate 3D dynamic fracture as a benchmark problem for con-
current atomistic/continuum modeling and simulation in order to show the advan-
tage of our method. Dynamic crack propagation is a paradigm for concurrent mul-
tiscale methods, since it contains a critical region of confined size, that requires
fully atomistic resolution enabling crack initiation and, on the other hand, a coarse-
graining for an efficient representation of continuum region in the crystal. A spec-
imen (cf. Fig. 12) made of MgO (25.2 nm× 0.9 nm× 15.1 nm, 54,048atoms)
consists of two parts: continue region (234 FE elements and 444 FE nodes) and
atomic region (6216 atoms). Thus the number of the degrees of freedom involved
in continuum region is about 1% of that in MD. The line crack extends from x = 0
to x = 2.3 nm at z = 0 through y∈ (0, 0.9 nm); and the separation of crack surfaces
is 0.9 nm. This means, in order to simulate the crack, two planes of atoms parallel
to the crack surfaces are eliminated from the compact tension specimen. In the
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 Figure 11: Polarization P⊥ evolution with time
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         7.7 psT

Uz 

(a) (b) 
Figure 12: Computational model of MgO specimen for dynamic crack: (a) FE and
Atom arrangement model; (b) loading history

simulation, displacement controlled boundary conditions with a constant loading
rate 50m/s are applied on the two surfaces z =−7.55 nm and z = 7.55 nm and the
total loading time is 7.7 ps (Fig.12).

Fig. 13 shows the process of dynamic crack propagation in the neighborhood of
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Figure 13: Crack initiation and propagation in MgO specimen

crack-tip. It is noticed that the crack propagates along the direction of the orig-
inal line crack self-similarly, in other words, it propagates along the same crys-
tallographic planes. This observation agrees with experimental studies by Cramer
(2000). This is mainly because MgO is in the cubic phase and this specimen and
the loading condition have a nearly perfect mirror symmetry with respect to the
x-y plane. We also observe that the formation of secondary cracks in front of the
primary crack. Similar phenomena in silicon have been reported by Buehler et al.
(2006).

6 Summary

We have presented an atom-based continuum (ABC) method aiming at a seamless
transition from atomistic to the continuum description of multi-element crystalline
solids. The finite element implementation and numerical procedure have been de-
veloped with a cluster-based summation rule in interatomic force calculation.

Compared with many other concurrent multiscale approaches, ABC method is nat-
urally suitable for the analysis of multi-element crystals. The fundamental inde-
pendent unknown variables are the displacements of all atoms within the FE nodes.
Notice that there is a superscript α in the governing equation, Eq. (25). It is the
very superscript that makes our ABC method quite different from the classical con-
tinuum field theories.
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To consolidate the competition between efficiency and accuracy just like many
other multiscale approaches, we adopt a cluster-based summation rule for force
calculation in the FE formulation. Notice that our summation rule is a general one,
which enables one to choose the weighting factor from one extreme to the other.

The robustness and stability of the coarse-graining method by employing a nodal
integration scheme have been demonstrated through the simulation of dynamic
wave propagation.

In the coarse-scale simulations, the majority of degrees of freedom are eliminated
and the computation cost is largely reduced. Nevertheless, the essential dynamic,
nonlinear, nonlocal, and large-deformation material behaviors have been success-
fully presented.

Polarization has been reported in the coarse-scale simulations of BaTiO3 under
compressive loading. This shows an advantage of ABC over classical continuum
mechanics and other multiscale approaches in capturing the critical material behav-
iors such as polarization.

In a dynamic crack simulation, we have demonstrated that the ABC method can be
extended to the level of concurrent atomistic/continuum modeling. Crack initiation
and propagation have been captured in the atomic region. This indicates that our
approach can be utilized to investigate critical phenomena in material bodies with
finite sizes.
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Appendix A

The Lagrange equation of the atomic systems is written as

d
dt

(
∂L

∂ ẋmγ

)
− ∂L

∂xmγ
+

∂D
∂ ẋmγ

= ϕ
mγ (A1)

It is straightforward to obtain

∂L
∂ ẋmγ

=
∂K

∂ ẋmγ
=

1
2

∂

∂ ẋmγ
{∑

k
∑
α

mα(ẋkα)2}

= ∑
k

∑
α

mα ẋkα
δkmδαγ

= mγ ẋmγ

(A2)

d
dt

(
∂L

∂ ẋmγ

)
= mγ ẍmγ (A3)

− ∂L
∂xmγ

=
∂V

∂xmγ
=

∂

∂xmγ
{1

2 ∑
k

∑
α

∑
l

∑
β

V kα−lβ (xkα ,xlβ )}

=
1
2 ∑

k
∑
α

∑
l

∑
β

{∂V kα−lβ

∂xkα
δmkδγα +

∂V kα−lβ

∂xlβ δmlδγβ}

=
1
2 ∑

l
∑
β

∂V mγ−lβ

∂xmγ
+

1
2 ∑

k
∑
α

∂V kα−mγ

∂xmγ

=−1
2 ∑

l
∑
β

{fmγ−lβ − flβ−mγ}

(A4)
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∂D
∂ ẋmγ

=
1
2

∂

∂ ẋmγ
{∑

k
∑
α

mα(ẋkα)2}/τ

= mγ ẋmγ/τ

(A5)

Finally one has

mγ ẍmγ +
mγ

τ
ẋmγ =

1
2 ∑

l
∑
β

{fmγ−lβ − flβ−mγ}+ϕ
mγ (A6)

Appendix B

The weak form of the atomic system is given as

∑
k

∑
α

mα ükα
δukα +∑

k
∑
α

cα u̇kα
δukα

=
1
2 ∑

k
∑
α

∑
l

∑
β

fkα−lβ{δukα −δulβ}+∑
k

∑
α

ϕ
kα

δukα

A+B = C +D

(B1)

A = ∑
I

∑
J

∑
k

∑
α

mα
ΦΦΦJ(k)Üα

J ΦΦΦI(k)δUα
I

= ∑
I

∑
α

δUα
I {∑

J
∑
k

mα
ΦΦΦJ(k)ΦΦΦI(k)Üα

J }

= ∑
I

∑
α

δUα
I {∑

J
∑
k
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ΦΦΦJ(k)ΦΦΦI(k)}Üα

J

≡∑
I

∑
α

δUα
I {∑

J
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IJ}Üα
J

(B2)

B = ∑
I

∑
J

∑
k

∑
α

cα
ΦΦΦJ(k)U̇α

J ΦΦΦI(k)δUα
I
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I

∑
α

δUα
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J
∑
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C =
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I ∑
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Then the governing equations for nodal displacements Uα
I can be expressed(

∑
J

Mα
IJ

)
Üα

J +

(
∑
J

Cα
IJ

)
U̇α

J = Fα
I +ϕ

α
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