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Explicit Solutions of Stresses for a Three-Phase Elliptic
Inclusion Problem Subject to a Remote Uniform Load

Ching Kong Chao1,2, Chin Kun Chen3 and Fu Mo Chen4

Abstract: A general solution to a three-phase elliptic inclusion problem sub-
jected to a remote uniform load is provided in this paper. Analysis of the present
elasticity problem is rather tedious due to the presence of material inhomogeneities
and complex geometric configurations. Based on the technique of conformal map-
ping and the method of analytical continuation in conjunction with the alternating
technique, the general expressions of the displacement and stresses in each layer
medium are derived explicitly in a series form. The effects of the material com-
binations and geometric configurations on the interfacial stresses are discussed in
detail and shown in graphic form.
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Nomenclature

a1,a2 semimajor of the two confocal ellipses
b1,b2 semiminor of the two confocal ellipses
L1,L2 boundaries of the coated layer in the ζ -plane

l
√

a2
2−b2

2

R
√

a2+b2
a2−b2

S1 the matrix in the ζ -plane
S2 the intermediate layer in the ζ -plane
T magnitude of a remote uniform load
U21 2G1(G1 +G2)−1

V21 (G1−G2)(G1 +G2)−1
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z Cartesian coordinates

Greek symbols

Ω1 the matrix in the z-plane
Ω2 the intermediate layer in the z-plane
Γ1,Γ2 boundaries of the coated layer in the z-plane
Π12

G1−G2
κ2G1+G2

Λ12
G1κ2−G2κ1
G1+G2κ1

ζ polar coordinates
ρ1,ρ2 ρi = ai+bi

a2+b2
, i = 1,2

φ(ζ ),ω(ζ ) the stress functions

1 Introduction

The determination of the elastic field in a heterogeneous material is an important
topic in solid mechanics. The exact solution of the three-dimensional elasticity
problem of multiple elastic inclusions embedded in an infinite elastic matrix ap-
pears unobtainable. However, some insight into the response of the composite solid
may be gained by idealizing the medium as two-dimensional and the various phases
as homogeneous. The solution of this related two-dimensional elasticity problem
would become useful in engineering applications. The elastic interaction of dislo-
cations with inhomogeneities is important in studying the mechanical behaviour of
many materials. [Dundurs and Mura (1964)] solved the problem of an edge dislo-
cation in an infinite elastic medium containing a circular inclusion with different
elastic properties. Airy stress functions were presented for Burger’s vectors in both
the x−and y-directions. The limiting cases of a void, a rigid inclusion and identi-
cal materials were also considered. Additionally, the degenerate case of two joined
elastic half-planes was examined both with the dislocation at the interface, and with
the dislocation near the interface. The Airy stress functions for both radial and tan-
gential Burger’s vectors were presented by [Dundurs and Sendeckyj (1965)], for
the case of an edge dislocation inside a circular elastic inclusion embedded within
an unbounded elastic matrix. In the last of the series of related problems, [Dundurs
and Gangadharan (1969)] considered the interaction between an edge dislocation
and a circular inclusion with a slipping interface. In their paper, the slipping in-
terface was modelled by requiring continuity of normal displacements and normal
tractions across the interface, while allowing no transmission of tangential traction
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between the matrix and interface. The above mentioned works are related to a cir-
cular shaped inclusion. For the problem with an elliptical shaped inclusion, the
details of the stress field around the elliptical cavity under uniform loading for an
isotropic and homogeneous material was given by [Muskhelishvili (1953)]. The
problem of an infinite elastic region containing an elliptical shaped inclusion with
different elastic properties, and an edge dislocation at an arbitrary point within the
inclusion was solved by [Warren (1983)], through conformal mapping, and the use
of Muskhelishvili’s complex potentials taken in the form of Laurent’s series ex-
pansions. [Stagni (1982)] and [Stagni and Lizzio (1983)] solved the problem for
the interaction of an edge dislocation outside of an elliptical inhomogeneity, where
the properties of the inhomogeneity range from those of a void to those of a rigid
inclusion. The solution of a rigid elliptical inhomogeneity was also considered by
[Santare and Keer (1986)]. Special care was taken in their work to include the
rigid-body rotation of the inhomogeneity with respect to the dislocation.

The above work on interaction between dislocations and inhomogeneities involves
an isolated inhomogeneity only. For multiple-phase materials, the dislocations in-
teract not only with the nearest inclusion but also with the surrounding ones. [Luo
and Chen (1991)] studied the problem of an edge dislocation located in the inter-
mediate matrix phase based on the three-phase composite cylinder model. An exact
solution of heat conduction problem (or antiplane elasticity problem) for a three-
phase elliptical composite has been provided by [Chao, Chen and Chen (2009)].
Based on the method of conformal mapping and the method of analytical continu-
ation, an analytical solution for a reinforced elliptical hole embedded in an infinite
matrix subjected to a point heat source was provided by [Chao, Chen and Chen
(2010)]. In this work, we consider a three-phase elliptical inclusion in an infi-
nite plate subject to a remote uniform load. The proposed method is based on the
method of conformal mapping and the technique of analytical continuation that is
alternatively applied across two concentric circles. The plan of this paper is as fol-
lows. The general formulation for plane elasticity and the method of conformal
mapping are provided in Section 2. The series form solutions of the complex po-
tentials of the stresses are given in Section 3. Some numerical examples are solved
in Section 4. Finally, Section 5 concludes the article.

2 Problem Formulation

Consider a reinforced elliptical hole in an unbounded matrix subjected to a remote
uniform load (see Fig. 1). Let Ω¸1 denote the matrix, Ω¸2 denote the interface layer
and Ω¸3 denote the inner core respectively. The boundaries of the reinforced layer
are two confocal ellipses Γ1, Γ2 with a1, a2 and b1, b2being the semimajor and
semiminor, respectively.
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Figure 1: A coated elliptic inclusion in an infinite plate subjected to a remote uni-
form stress.
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Figure 2: The problem in ζ -plane.
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It is well known that for plane deformations, the displacement components (ux, uy),
stress components (σxx, σyy, σxy) and the components of the resultant force (X , Y )
are given in terms of two holomorphic functions φ(z) and ψ(z)by [Muskhelishvili
(1963)]

2G(ux + iuy) = κφ(z)− zφ ′(z)−ψ(z) (1)

σxx +σyy = 2
[
φ
′(z)+φ ′(z)

]
(2)

σyy−σxx +2iσxy = 2
[
zφ
′′(z)+ψ

′(z)
]

(3)

−Y + iX = φ(z)+ zφ ′(z)+ψ(z) (4)

where G is the shear modulus, κ = 3− 4ν for plane strain and κ = (3− ν)/(1 +
ν)for plane stress with ν being the Poisson’s ratio. Here a superimposed bar repre-
sents the complex conjugate.

The boundary stresses are written in normal-tangential ((n,t)-) coordinates as:

σnn + iσnt = φ
′(z)+φ ′(z)−

[
zφ ′′(z)+ψ ′(z)

]
e−2iα(z) (5)

where n is the outward unit normal at the boundary which is also represented, in
complex form, by eiα(z) (where α defines the angle between the normal direction n
and the positive x-axis).

Now we introduce the following mapping function

z = m(ζ ) =
l
2

[
Rζ +

1
Rζ

]
, Rζ =

z
l

{
1+
[

1− (
l
z
)2
]1/2

}
, ζ = ξ + iη = reiθ

(6)

where R =
√

a2+b2
a2−b2

=
√

1+ε

1−ε
, ε = b2

a2
and l =

√
a2

2−b2
2.

This mapping function maps the confocal ellipses Γ1, Γ2 in the z-plane onto the
concentric circles L1, L2 in theζ -plane with radii ρ1, ρ2 (see Fig.2)

ρi =
ai +bi

a2 +b2
i = 1,2

For convenience of calculation, we write φ(ζ ) = φ(m(ζ )) and ψ(ζ ) = ψ(m(ζ )) so
that in the mapped ζ−plane, the displacements, stresses and resultant forces take
the form

2G(ux + iuy) = κφ(ζ )− m(ζ )

m′(ζ )
φ ′(ζ )−ψ(ζ ) (7)
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σxx +σyy = 2

{
φ ′(ζ )
m′(ζ )

+
φ ′(ζ )

m′(ζ )

}
(8)

σyy−σxx +2iσxy = 2

[
m(ζ )
m′(ζ )

d
dζ

{
φ ′(ζ )
m′(ζ )

}
+

ψ ′(ζ )
m′(ζ )

]
(9)

−Y + iX = φ(ζ )+
m(ζ )

m′(ζ )
φ ′(ζ )+ψ(ζ ) (10)

In the mapped plane, noting the following relation from [England (1971)],

ei2α(z) =
ζ

ζ

m(ζ )

m′(ζ )

Eq. (5) becomes

σnn + iσnt =

{
φ ′(ζ )
m′(ζ )

+
φ ′(ζ )

m′(ζ )

}
−

[
m(ζ )

m′(ζ )

d
dζ

{
φ ′(ζ )
m′(ζ )

}
+

ψ ′(ζ )

m′(ζ )

]
ζ m′(ζ )
ζ m′(ζ )

(11)

3 Stress field

In this section we will derive the stress fields for a reinforced elliptic hole in an in-
finite plate subjected to a remote uniform tension. The solution for a homogeneous
infinite plate subjected to a remote uniform tension T acting with an angle λ to the
x-axis can be trivially given as

φ0(ζ ) =
T
4

ζ (12)

ψ0(ζ ) =−Te−2iλ ζ

2
(13)

For a region bounded by a circle, say c = |ζ |, we introduce an auxiliary stress
function ω(ζ ) such that

ω(ζ ) =
m( c2

ζ
)

m′(ζ )
φ
′(ζ )+ψ(ζ ) (14)

Unlike the standard Muskhelishvili complex functions φ(ζ ) and ψ(ζ ), the function
ω(z) is dependent on the radius of any circular interface.
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The stress functions can be assumed as

φ(ζ ) =


φ0(ζ )+

∞

∑
n=1

φ
(1)
bn (ζ ) z ∈ S1

∞

∑
n=1

φ
(2)
an (ζ )+

∞

∑
n=1

φ
(2)
bn (ζ ) z ∈ S2

∞

∑
n=1

φ
(3)
an (ζ )+

∞

∑
n=1

φ
(3)
bn (ζ ) z ∈ S3

(15)

ω(ζ ) =


ω0(ζ )+

∞

∑
n=1

ω
(1)
bn (ζ ) z ∈ S1

∞

∑
n=1

ω
(2)
an (ζ )+

∞

∑
n=1

ω
(2)
bn (ζ ) z ∈ S2

∞

∑
n=1

ω
(3)
an (ζ )+

∞

∑
n=1

ω
(3)
bn (ζ ) z ∈ S3

(16)

The alternating technique and the analytical continuation method are applied to
derive the unknown stress functions as follows.

Step 1: Analytical continuation acrossL1

Two pairs of stress functions ϕ
(2)
a1 (ζ ), ω

(2)
a1 (ζ ) holomorphic in |ζ | ≤ ρ1 and φ

(1)
b1 (ζ ),

ω
(1)
b1 (ζ ) holomorphic in |ζ | ≥ ρ1 are introduced to satisfy the continuity conditions

along L1 that

φ
(1)
b1 (σ)+ω

(1)
b1 (σ)+φ0(σ)+ω0(σ) = φ

(2)
a1 (σ)+ω

(2)
a1 (σ) σ ∈ L1 (17)

κ1

G1

[
φ

(1)
b1 (σ)+φ0(σ)

]
− 1

G1

[
ω

(1)
b1 (σ)+ω0(σ)

]
=

κ2

G2
φ

(2)
a1 (σ)− 1

G2
ω

(2)
a1 (σ) (18)

By the standard analytical continuation arguments, it follows that

ϕ
(1)
b1 (ζ )+ω0(

ρ2
1

ζ
)−ω

(2)
a1 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

(c(2)
a1 − c0) = 0 |ζ | ≥ ρ1 (19)

ϕ
(2)
a1 (ζ )−ϕ0(ζ )−ω

(1)
b1 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

(c(2)
a1 − c0) = 0 |ζ | ≤ ρ1 (20)

κ1

G1
ϕ

(1)
b1 (ζ )− 1

G1
ω0(

ρ2
1

ζ
)+

1
G2

ω
(2)
a1 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

(
c0

G1
−

c(2)
a1

G2
) = 0 |ζ | ≥ ρ1

(21)
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κ2

G2
ϕ

(2)
a1 (ζ )− κ1

G1
ϕ0(ζ )+

1
G1

ω
(1)
b1 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

(
c0

G1
−

c(2)
a1

G2
) = 0 |ζ | ≤ ρ1

(22)

where c0 = ϕ ′0(
1
R), c(2)

a1 = φ
(2)′
a1 ( 1

R).
Solve Eqs. (19) - (22) to yield

ϕ
(1)
b1 (ζ ) = Π21ω0(

ρ2
1

ζ
)−Π21

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

c0 ζ ∈ S1 (23)

φ
(2)
a1 (ζ ) = (1+Λ21)φ0(ζ )+Π12

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

c(2)
a1 ζ ∈ S2 (24)

ω
(2)
a1 (ζ ) = (1+Π21)ω0(ζ )+

( 1
R4ρ4

1
+1)ρ2

1
ζ

1− 1
R2ζ 2

(
c(2)

a1 − (1+Π21)c0

)
ζ ∈ S2 (25)

ω
(1)
b1 (ζ ) = Λ21ϕ0(

ρ2
1

ζ
)+
(

(1+Π12)c
(2)
a1 − c0

) ( 1
R4ρ4

1
+1)ρ2

1
ζ

1− 1
R2ζ 2

ζ ∈ S1 (26)

where Π12 = G1−G2
κ2G1+G2

and Λ12 = G1κ2−G2κ1
G1+G2κ1

.

Step 2: Analytical continuation across L2

Since φ
(2)
a1 (ζ ) and ω

(2)
a1 (ζ ) can not satisfy the continuity conditions at L2, two pairs

of stress functions φ
(2)
b1 (ζ ), ω

(2)
b1 (ζ )and φ

(3)
a1 (ζ ), ω

(3)
a1 (ζ ) respectively holomorphic

in |ζ | ≥ ρ2 and |ζ | ≤ ρ2 are introduced that

φ
(2)
a1 (σ)+ω

(2)∗
a1 (σ)+φ

(2)
b1 (σ)+ω

(2)
b1 (σ) = φ

(3)
a1 (σ)+ω

(3)
a1 (σ) σ ∈ L2 (27)

κ2

G2

[
φ

(2)
a1 (σ)+φ

(2)
b1 (σ)

]
− 1

G2

[
ω

(2)∗
a1 (σ)+ω

(2)
b1 (σ)

]
=

κ3

G3
φ

(3)
a1 (σ)− 1

G3
ω

(3)
a1 (σ)

σ ∈ L2 (28)

where

ω
(2)∗
a1 (ζ ) =

R
ζ
(ρ2

2 −ρ2
1 )+ ζ

R( 1
ρ2

2
− 1

ρ2
1
)

R− 1
Rζ 2

φ
(2)′
a1 (ζ )+ω

(2)
a1 (ζ )
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By the analytical continuation method, we have

φ
(2)
a1 (ζ )−φ

(3)
a1 (ζ )+ω

(2)
b1 (

ρ2
2

ζ
)+

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a1 −

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a1 = 0 |ζ | ≤ ρ2

(29)

ω
(3)
a1 (

ρ2
2

ζ
)−ω

(2)∗
a1 (

ρ2
2

ζ
)−ϕ

(2)
b1 (ζ )+

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a1 −

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a1 = 0 |ζ | ≥ ρ2

(30)

κ2

G2
φ

(2)
a1 (ζ )− κ3

G3
φ

(3)
a1 (ζ )− 1

G2
ω

(2)
b1 (

ρ2
2

ζ
)−

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a1

G2
+

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a1

G3
= 0

|ζ | ≤ ρ2 (31)

1
G2

ω
(2)∗
a1 (

ρ2
2

ζ
)− 1

G3
ω

(3)
a1 (

ρ2
2

ζ
)−

κ2ϕ
(2)
b1 (ζ )
G2

−
( 1

R4ρ4
2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a1

G2
+

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a1

G3
= 0

|ζ | ≥ ρ2 (32)

Solve Eqs. (29) - (32) to yield

ϕ
(3)
a1 (ζ ) = (1+Λ32)ϕ

(2)
a1 (ζ )+Π23

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a1 ζ ∈ S3 (33)

ω
(2)
b1 (ζ ) = Λ32ϕ

(2)
a1 (

ρ2
2

ζ
)−

( 1
R4ρ4

2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(2)
a1 +(1+Π23)

( 1
R4ρ4

2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(3)
a1 ζ ∈ S2

(34)

φ
(2)
b1 (ζ ) = Π32ω

(2)∗
a1 (

ρ2
2

ζ
)−

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

Π32c(2)
a1 ζ ∈ S2 (35)
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ω
(3)
a1 (ζ ) = (1+Π32)ω

(2)∗
a1 (ζ )−

( 1
R4ρ4

2
+1)ρ2

2
ζ

1− 1
R2ζ 2

(1+Π32)c
(2)
a1 +

( 1
R4ρ4

2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(3)
a1

ζ ∈ S2 (36)

where c(3)
a1 = φ

(3)′
a1 ( 1

R).
Step 3: Analytical continuation across L3

Since the points σ = 1
R eiθ and σ̄ = 1

R e−iθ correspond to the same points of the
segment from −(a2

2− b2
2)

1
2 to (a2

2− b2
2)

1
2 in the z-plane. The following conditions

must be satisfied

φ
(3)(σ) = φ

(3)(σ̄) (37)

ψ
(3)(σ) = ψ

(3)(σ̄) (38)

The functions φ
(3)
b1 (ζ ) and ω

(3)
b1 (ζ ) holomorphic in |ζ | ≥ 1

R is introduced to satisfy
this conditions that

φ
(3)
a1 (σ)+φ

(3)
b1 (σ) = φ

(3)
a1 (σ)+φ

(3)
b1 (σ) σ ∈ L3 (39)

ω
(3)∗
a1 (σ)− (

1
Rσ

+Rσ

R− 1
Rσ2

)φ (3)′
a1 (σ)+ω

(3)
b1 (σ)− (

1
Rσ

+Rσ

R− 1
Rσ2

)φ (3)′
b1 (σ)

= ω
(3)∗
a1 (σ)− (

1
Rσ

+Rσ

R− 1
Rσ

2

)ϕ(3)′
a1 (σ)+ω

(3)
b1 (σ)− (

1
Rσ

+Rσ

R− 1
Rσ

2

)ϕ(3)′
b1 (σ) σ ∈ L3 (40)

where ω
(3)∗
a1 (ζ ) = ω

(3)
a1 (ζ )+

R
ζ
( 1

R2−ρ2
2 )+ ζ

R (R2− 1
ρ2

2
)

R− 1
Rζ 2

φ
(3)′
a1 (ζ )

By the analytical continuation method, we have

φ
(3)
b1 (ζ ) = φ

(3)
a1 (

1
R2ζ

) ζ ∈ S3 (41)

ω
(3)
b1 (ζ ) = ω

(3)∗
a1 (

1
R2ζ

) ζ ∈ S3 (42)

Step 4: Analytical continuation across L1

Since φ
(2)
b1 (ζ ),ω(2)

b1 (ζ ) can not satisfy the continuity condition at L1, two pairs of
stress functions φ

(1)
b2 (ζ ), ω

(1)
b1 (ζ ) and φ

(2)
a2 (ζ ), ω

(2)
a2 (ζ ) respectively holomorphic in

|ζ | ≥ ρ1 and |ζ | ≤ ρ1 are introduced that

ϕ
(1)
b2 (σ)+ω

(1)
b2 (σ) = ϕ

(2)
b1 (σ)+ω

(2)∗
b1 (σ)+ϕ

(2)
a2 (σ)+ω

(2)
a2 (σ) σ ∈ L1 (43)
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κ1

G1
φ

(1)
b2 (σ)− 1

G1
ω

(1)
b2 (σ) =

κ2

G2
φ

(2)
b1 (σ)− 1

G2
ω

(2)∗
b1 (σ)+

κ2

G2
φ

(2)
a2 (σ)− 1

G2
ω

(2)
a2 (σ)

σ ∈ L1 (44)

where

ω
(2)∗
b1 (ζ ) = ω

(2)
b1 (ζ )+

R(ρ2
1−ρ2

2 )
ζ

+ ζ

R( 1
ρ2

1
− 1

ρ2
2
)

R− 1
Rζ 2

φ
(2)′
b1 (ζ )

By the standard analytical continuation arguments, it follows that

φ
(1)
b2 (ζ )−φ

(2)
b1 (ζ )−ω

(2)
a2 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

c(2)
a2 = 0 ζ ∈ S1 (45)

φ
(2)
a2 (ζ )+ω

(2)∗
b1 (

ρ2
1

ζ
)−ω

(1)
b2 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

c(2)
a2 = 0 ζ ∈ S2 (46)

κ1

G1
φ

(1)
b2 (ζ )− κ2

G2
φ

(2)
b1 (ζ )+

1
G2

ω
(2)
a2 (

ρ2
1

ζ
)−

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

c(2)
a2

G2
= 0 ζ ∈ S1 (47)

κ2

G2
φ

(2)
a2 (ζ )− 1

G2
ω

(2)∗
b1 (

ρ2
1

ζ
)+

1
G1

ω
(1)
b2 (

ρ2
1

ζ
)−

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

c(2)
a2

G2
= 0 ζ ∈ S2 (48)

where c(2)
a2 = ϕ

(2)′
a2 ( 1

R).
Solve Eqs. (45)-(48) to yield

φ
(1)
b2 (ζ ) = (1+Λ12)φ

(2)
b1 (ζ ) ζ ∈ S1 (49)

ω
(1)
b2 (ζ ) = (1+Π12)ω

(2)∗
b1 (ζ )+(1+Π12)

( 1
R4ρ4

1
+1)ρ2

1
ζ

1− 1
R2ζ 2

c(2)
a2 ζ ∈ S1 (50)

φ
(2)
a2 (ζ ) = Π12ω

(2)∗
b1 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ζ

1− ζ 2

R2ρ4
1

Π12c(2)
a2 ζ ∈ S2 (51)

ω
(2)
a2 (ζ ) = Λ12φ

(2)
b1 (

ρ2
1

ζ
)+

( 1
R4ρ4

1
+1)ρ2

1
ζ

1− 1
R2ζ 2

c(2)
a2 ζ ∈ S2 (52)
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Step 5: Analytical continuation across L2

Since φ
(2)
a2 (ζ ) and ω

(2)
a2 (ζ ) can not satisfy the continuity conditions at L2, two pairs

of stress functions φ
(2)
b2 (ζ ), ω

(2)
b2 (ζ )andφ

(3)
a2 (ζ ), ω

(3)
a2 (ζ ) respectively holomorphic

in |ζ | ≥ ρ2 and |ζ | ≤ ρ2 are introduced that

φ
(2)
a2 (σ)+ω

(2)∗
a2 (σ)+φ

(2)
b2 (σ)+ω

(2)
b2 (σ) = φ

(3)
a2 (σ)+ω

(3)
a2 (σ)+φ

(3)
b1 (σ)+ω

(3)
b1 (σ)

σ ∈ L2 (53)

κ2

G2

[
φ

(2)
a2 (σ)+φ

(2)
b2 (σ)

]
− 1

G2

[
ω

(2)∗
a2 (σ)+ω

(2)
b2 (σ)

]
=

κ3

G3
φ

(3)
a2 (σ)− 1

G3
ω

(3)
a2 (σ)

+
κ3

G3
φ

(3)
b1 (σ)− 1

G3
ω

(3)∗
b1 (σ) σ ∈ L2 (54)

where ω
(3)∗
b1 (ζ ) = ω

(3)
b1 (ζ )+

R(ρ2
2−

1
R2 )

ζ
+ ζ

R ( 1
ρ2

2
−R2)

R− 1
Rζ 2

φ
(3)′
b1 (ζ )

ω
(2)∗
a2 (ζ ) =

R
ζ
(ρ2

2 −ρ2
1 )+ ζ

R( 1
ρ2

2
− 1

ρ2
1
)

R− 1
Rζ 2

φ
(2)′
a2 (ζ )+ω

(2)
a2 (ζ )

By the standard analytical continuation arguments, it follows that

ϕ
(2)
a2 (ζ )+ω

(2)
b2 (

ρ2
2

ζ
)−ϕ

(3)
a2 (ζ )−ω

(3)∗
b1 (

ρ2
2

ζ
)+

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a2 −

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a2 = 0

|ζ | ≤ ρ2 (55)

ω
(3)
a2 (

ρ2
2

ζ
)−ω

(2)∗
a2 (

ρ2
2

ζ
)+φ

(3)
b1 (ζ )−φ

(2)
b2 (ζ )+

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a2 −

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a2 = 0

|ζ | ≥ ρ2 (56)

κ2ϕ
(2)
a2 (ζ )
G2

−
ω

(2)
b2 (ρ2

2
ζ

)

G2
−

κ3ϕ
(3)
a2 (ζ )
G3

+
ω

(3)∗
b1 (ρ2

2
ζ

)

G3
−

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a2

G2

+
( 1

R4ρ4
2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a2

G3
= 0 |ζ | ≤ ρ2 (57)
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κ3φ
(3)
b1 (ζ )
G3

−
κ2φ

(2)
b2 (ζ )
G2

−
ω

(3)
a2 (ρ2

2
ζ

)

G3
+

ω
(2)∗
a2 (ρ2

2
ζ

)

G2
−

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a2

G2

+
( 1

R4ρ4
2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a2

G3
= 0 |ζ | ≥ ρ2 (58)

Solve Eqs. (55)-(58) to yield

ϕ
(3)
a2 (ζ ) = (1+Λ32)ϕ

(2)
a2 (ζ )+Π23ω

(3)∗
b1 (

ρ2
2

ζ
)+Π23

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(3)
a2 ζ ∈ S3 (59)

ω
(2)
b2 (ζ ) = Λ32ϕ

(2)
a2 (

ρ2
2

ζ
)+(1+Π23)ω

(3)∗
b1 (ζ )−

( 1
R4ρ4

2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(2)
a2

+
(1+Π23)( 1

R4ρ4
2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(3)
a2 ζ ∈ S2 (60)

ϕ
(2)
b2 (ζ ) = (1+Λ23)ϕ

(3)
b1 (ζ )+Π32ω

(2)∗
a2 (

ρ2
2

ζ
)−Π32

( 1
R4ρ4

2
+1)ζ

1− ζ 2

R2ρ4
2

c(2)
a2 ζ ∈ S2 (61)

ω
(3)
a2 (ζ ) = (1+Π32)ω

(2)∗
a2 (ζ )+Λ23ϕ

(3)
b1 (

ρ2
2

ζ
)− (1+Π32)

( 1
R4ρ4

2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(2)
a2

+
( 1

R4ρ4
2
+1)ρ2

2
ζ

1− 1
R2ζ 2

c(3)
a2 ζ ∈ S3 (62)

By repetitions of the previous three steps to get the results of which the continuity
condition and the boundary condition are satisfied, one can obtain the full field
stress functions as

φ
(1)
b1 (ζ ) = Π21T

4 ( 1
R2ζ
−2e2iλ ρ2

1
ζ

)

ω
(1)
b1 (ζ ) = Λ21φ0(

ρ2
1

ζ
)− T R

4 (
ρ2

1 + 1
R4ρ2

1
Rζ− 1

Rζ

)+(1+Π12)d1(
ρ2

1
ζ

)c(2)
a1

(63)
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ϕ
(2)
a1 (ζ ) = (1+Λ21)ϕ0(ζ )+Π12d1(ζ )c(2)

a1

ω
(2)
a1 (ζ ) = (1+Π21)T

4 ( ζ

R2ρ2
1
−2e−2iλ ζ )+d1(

ρ2
1

ζ
)c(2)

a1

ϕ
(2)
b1 (ζ ) = Π32

[
ω

(2)
a1 (ρ2

2
ζ

)+ t12(
ρ2

2
ζ

)ϕ(2)′
a1 (ρ2

2
ζ

)
]
−Π32d2(ζ )c(2)

a1

ω
(2)
b1 (ζ ) = Λ32ϕ

(2)
a1 (ρ2

2
ζ

)−d2(
ρ2

1
ζ

)c(2)
a1 +(1+Π23)d2(

ρ2
1

ζ
)c(3)

a1

(64)



ϕ
(3)
a1 (ζ ) = (1+Λ32)ϕ

(2)
a1 (ζ )+Π23d2(ζ )c(3)

a1

ω
(3)
a1 (ζ ) = (1+Π32)

[
ω

(2)
a1 (ζ )+ t12(ζ )ϕ(2)′

a1 (ζ )
]

−(1+Π32)d2(
ρ2

2
ζ

)c(2)
a1 +d2(

ρ2
2

ζ
)c(3)

a1

ϕ
(3)
b1 (ζ ) = (1+Λ32)ϕ

(2)
a1 ( 1

R2ζ
)+Π23d2( 1

R2ζ
)c(3)

a1

ω
(3)
b1 (ζ ) = ω

(3)
a1 ( 1

R2ζ
)+ t23( 1

R2ζ
)ϕ(3)′

a1 ( 1
R2ζ

)

(65)


φ

(1)
bn (ζ ) = (1+Λ12)φ

(2)
b(n−1)(ζ )

n = 2,3,4...

ω
(1)
bn (ζ ) = (1+Π12)

[
ω

(2)
b(n−1)(ζ )+ t21(ζ )φ (2)′

b(n−1)(ζ )
]
+(1+Π12)d1(

ρ2
1

ζ
)c(2)

an

n = 2,3,4...

(66)



ϕ
(2)
an (ζ ) = Π12

[
ω

(2)
b(n−1)(

ρ2
1

ζ
)+ t21(

ρ2
1

ζ
)ϕ(2)′

b(n−1)(
ρ2

1
ζ

)
]
+d1(ζ )Π12c(2)

an

n = 2,3,4...

ω
(2)
an (ζ ) = Λ12ϕ

(2)
b(n−1)(

ρ2
1

ζ
)+d1(

ρ2
1

ζ
)c(2)

an

n = 2,3,4...

ϕ
(2)
bn (ζ ) = (1+Λ23)ϕ

(3)
b(n−1)(ζ )+Π32Λ12ϕ

(2)
b(n−1)(

ρ2
1

ρ2
2
ζ )+Π32d1(

ρ2
1

ρ2
2
ζ )c(2)

an

−Π12Π32
ρ2

1 ζ 2

ρ4
2

t12(
ρ2

2
ζ

)
[
ω

(2)′

b(n−1)(
ρ2

1
ρ2

2
ζ )+ t ′21(

ρ2
1

ρ2
2
ζ )ϕ(2)′

b(n−1)(
ρ2

1
ρ2

2
ζ )+ t21(

ρ2
1

ρ2
2
ζ )ϕ(2)′′

b(n−1)(
ρ2

1
ρ2

2
ζ )
]

+Π12Π32t12(
ρ2

2
ζ

)d′1(
ρ2

2
ζ

)c(2)
an −Π32d2(ζ )c(2)

an

n = 2,3,4...

ω
(2)
bn (ζ ) = Λ32Π12

[
ω

(2)
b(n−1)(

ρ2
1

ρ2
2
ζ )+ t21(

ρ2
1

ρ2
2
ζ )ϕ(2)′

b(n−1)(
ρ2

1
ρ2

2
ζ )
]
+Λ32Π12d1(

ρ2
2

ζ
)c(2)

an

+(1+Π23)
[
ω

(3)
b(n−1)(ζ )+ t32(ζ )ϕ(3)′

b(n−1)(ζ )
]

−d2(
ρ2

2
ζ

)c(2)
an +(1+Π23)d2(

ρ2
2

ζ
)c(3)

an

n = 2,3,4...
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(67)



ϕ
(3)
an (ζ ) = (1+Λ32)Π12

[
ω

(2)
b(n−1)(

ρ2
1

ζ
)+ t21(

ρ2
1

ζ
)ϕ(2)′

b(n−1)(
ρ2

1
ζ

)
]

+(1+Λ32)Π12d1(ζ )c(2)
an

+Π23

[
ω

(3)
b(n−1)(

ρ2
2

ζ
)+ t32(

ρ2
2

ζ
)ϕ(3)′

b(n−1)(
ρ2

2
ζ

)
]
+Π23d2(ζ )c(3)

an

n = 2,3,4...

ω
(3)
an (ζ ) = (1+Π32)

[
Λ12ϕ

(2)
b(n−1)(

ρ2
1

ζ
)+d1(

ρ2
1

ζ
)c(2)

an + t12(ζ )d′1(ζ )Π12c(2)
an

]
−(1+Π32)Π12

ρ2
1

ζ 2 t12(ζ )
[

ω
(2)′
b(n−1)(

ρ2
1

ζ
)+ t ′21(

ρ2
1

ζ
)ϕ(2)′

b(n−1)(
ρ2

1
ζ

)+ t21(
ρ2

1
ζ

)ϕ(2)′′
b(n−1)(

ρ2
1

ζ
)
]

+Λ23ϕ
(3)
b(n−1)(

ρ2
2

ζ
)− (1+Π32)d2(

ρ2
2

ζ
)c(2)

an +d2(
ρ2

2
ζ

)c(3)
an

n = 2,3,4....

ϕ
(3)
bn (ζ ) = ϕ

(3)
an ( 1

R2ζ
)

n = 2,3,4....

ω
(3)
bn (ζ ) = ω

(3)
an ( 1

R2ζ
)+ t23( 1

R2ζ
)ϕ(3)′

an ( 1
R2ζ

)

n = 2,3,4...

(68)

where

t21(ζ ) =−t12(ζ ) =

R(ρ2
1−ρ2

2 )
ζ

+ ζ

R( 1
ρ2

1
− 1

ρ2
2
)

R− 1
Rζ 2

t23(ζ ) =−t32(ζ ) =
R
ζ
( 1

R2 −ρ2
2 )+ ζ

R(R2− 1
ρ2

2
)

R− 1
Rζ 2

di(ζ ) =
( 1

R4ρ4
i
+1)ζ

1− ζ 2

R2ρ4
i

i = 1,2

can = φ ′an(
1
R

).
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4 Some specific examples

4.1 Three-phase circularly cylindrical layered media

For a limiting case that the aspect ratio bi/ai equals one (1/R = 0), Eqs. (63)∼(64)
reduce to

ϕ(ζ ) =


ϕ0(ζ )+

∞

∑
n=1

ϕ
(1)
bn (ζ ) z ∈ S1

∞

∑
n=1

ϕ
(2)
an (ζ )+

∞

∑
n=1

ϕ
(2)
bn (ζ ) z ∈ S2

∞

∑
n=1

ϕ
(3)
an (ζ ) z ∈ S3

(69)

ω(ζ ) =


ω0(ζ )+

∞

∑
n=1

ω
(1)
bn (ζ ) z ∈ S1

∞

∑
n=1

ω
(2)
an (ζ )+

∞

∑
n=1

ω
(2)
bn (ζ ) z ∈ S2

∞

∑
n=1

ω
(3)
an (ζ ) z ∈ S3

(70)

where ω0a(ζ ) =−T
2 e−2iλ ζ and ω0b(ζ ) = T

4
ρ2

1
ζ

which are holomorphic in |ζ | ≤ ρ1

and |ζ | ≥ ρ1, respectively.
ϕ

(1)
b1 (ζ ) = Π21ω0a(

ρ2
1

ζ
) ζ ∈ S1

ω
(1)
b1 (ζ ) = Λ21ϕ0(

ρ2
1

ζ
)−ω0b(ζ )+(1+Π12)

ρ2
1

ζ
c(2)

a1 ζ ∈ S1

ϕ
(2)
a1 (ζ ) = (1+Λ21)ϕ0(ζ )+Π12ζ c(2)

a1 ζ ∈ S2

ω
(2)
a1 (ζ ) = (1+Π21)ω0a(ζ )+ ρ2

1
ζ

c(2)
a1 ζ ∈ S2

(71)



ϕ
(3)
a1 (ζ ) = (1+Λ32)ϕ

(2)
a1 (ζ )+Π23ζ c(3)

a1

ζ ∈ S3

ω
(3)
a1 (ζ ) = (1+Π32)

[
ω

(2)
a1 (ζ )+ t12(ζ )ϕ(2)′

a1 (ζ )
]
− (1+Π32)

ρ2
2

ζ
c(2)

a1 + ρ2
2

ζ
c(3)

a1

ζ ∈ S2

ϕ
(2)
b1 (ζ ) = Π32

[
ω

(2)
a1 (ρ2

2
ζ

)+ t12(
ρ2

2
ζ

)ϕ(2)′
a1 (ρ2

2
ζ

)
]
−Π32ζ c(2)

a1

ζ ∈ S2

ω
(2)
b1 (ζ ) = Λ32ϕ

(2)
a1 (ρ2

2
ζ

)− ρ2
2

ζ
c(2)

a1 +(1+Π23)
ρ2

2
ζ

c(3)
a1

ζ ∈ S2

(72)
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The recurrence formulae are

ϕ
(1)
bn (ζ ) = (1+Λ12)ϕ

(2)
b(n−1)(ζ )

ζ ∈ S1

ω
(1)
bn (ζ ) = (1+Π12)

[
ω

(2)
b(n−1)(ζ )+ t21(ζ )ϕ(2)′

b(n−1)(ζ )
]
+(1+Π12)

ρ2
1

ζ
c(2)

an

ζ ∈ S1

ϕ
(2)
an (ζ ) = Π12

[
ω

(2)
b(n−1)(

ρ2
1

ζ
)+ t21(

ρ2
1

ζ
)ϕ(2)′

b(n−1)(
ρ2

1
ζ

)
]
+Π12ζ c(2)

an

ζ ∈ S2

ω
(2)
an (ζ ) = Λ12ϕ

(2)
b(n−1)(

ρ2
1

ζ
)+ ρ2

1
ζ

c(2)
an

ζ ∈ S2

ϕ
(3)
an (ζ ) = (1+Λ32)ϕ

(2)
an (ζ )+Π23ζ c(3)

an

ζ ∈ S3

ω
(3)
an (ζ ) = (1+Π32)

[
ω

(2)
an (ζ )+ t12(ζ )ϕ(2)′

an (ζ )
]
− (1+Π32)

ρ2
2

ζ
c(2)

an + ρ2
2

ζ
c(3)

an

ζ ∈ S3

ϕ
(2)
bn (ζ ) = Π32

[
ω

(2)
an (ρ2

2
ζ

)+ t12(
ρ2

2
ζ

)ϕ(2)′
an (ρ2

2
ζ

)
]
−Π32ζ c(2)

an

ζ ∈ S2

ω
(2)
bn (ζ ) = Λ32ϕ

(2)
an (ρ2

2
ζ

)− ρ2
2

ζ
c(2)

an +(1+Π23)
ρ2

2
ζ

c(3)
an

ζ ∈ S2

(73)

for n = 2,3,4, ...

t21(ζ ) =−t12(ζ ) =
ρ2

1 −ρ2
2

ζ

t23(ζ ) =−t32(ζ ) =
ζ 2−ρ2

2
ζ

The results presented in Eqs. (67)∼(69) are the same as those provided by [Chao,
Chen and Shen (2006)].
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4.2 A reinforcement layer with an elliptic hole

For the second special case when the material S3 becomes a hole (Λ32 = Π32 =−1),
Eqs. (63) and (64) reduce to

ϕ(ζ ) =


ϕ0(ζ )+

∞

∑
n=1

ϕ
(1)
bn (ζ ) z ∈ S1

∞

∑
n=1

ϕ
(2)
an (ζ )+

∞

∑
n=1

ϕ
(2)
bn (ζ ) z ∈ S2

(74)

ω(ζ ) =


ω0(ζ )+

∞

∑
n=1

ω
(1)
bn (ζ ) z ∈ S1

∞

∑
n=1

ω
(2)
an (ζ )+

∞

∑
n=1

ω
(2)
bn (ζ ) z ∈ S2

(75)

where



ϕ
(1)
b1 (ζ ) = Π21ω0a(

ρ2
1

ζ
) ζ ∈ S1

ω
(1)
b1 (ζ ) = Λ21ϕ0(

ρ2
1

ζ
)−ω0b(ζ )+(1+Π12)d1(

ρ2
1

ζ
)c(2)

a1 ζ ∈ S1

ϕ
(2)
a1 (ζ ) = (1+Λ21)ϕ0(ζ )+Π12d1(ζ )c(2)

a1 ζ ∈ S2

ω
(2)
a1 (ζ ) = (1+Π21)ω0a(ζ )+d1(

ρ2
1

ζ
)c(2)

a1 ζ ∈ S2

ϕ
(2)
b1 (ζ ) =−

[
ω

(2)
a1 (ρ2

2
ζ

)+ t12(
ρ2

2
ζ

)ϕ(2)′
a1 (ρ2

2
ζ

)
]
+d1(ζ )c(2)

a1 ζ ∈ S2

ω
(2)
b1 (ζ ) =−ϕ

(2)
a1 (ρ2

2
ζ

)−d1(
ρ2

1
ζ

)c(2)
a1 ζ ∈ S2

(76)

The recurrence formulae are


φ

(1)
bn (ζ ) = (1+Λ12)φ

(2)
b(n−1)(ζ )

n = 2,3,4...

ω
(1)
bn (ζ ) = (1+Π12)

[
ω

(2)
b(n−1)(ζ )+ t21(ζ )φ (2)′

b(n−1)(ζ )
]
+(1+Π12)d1(

ρ2
1

ζ
)c(2)

an

n = 2,3,4...

(77)
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ϕ
(2)
an (ζ ) = Π12

[
ω

(2)
b(n−1)(

ρ2
1

ζ
)+ t21(

ρ2
1

ζ
)ϕ(2)′

b(n−1)(
ρ2

1
ζ

)
]
+d1(ζ )Π12c(2)

an

n = 2,3,4...

ω
(2)
an (ζ ) = Λ12ϕ

(2)
b(n−1)(

ρ2
1

ζ
)+d1(

ρ2
1

ζ
)c(2)

an

n = 2,3,4...

ϕ
(2)
bn (ζ ) =−

[
ω

(2)
an (ρ2

2
ζ

)+ t12(
ρ2

2
ζ

)ϕ(2)′
an (ρ2

2
ζ

)
]
+d2(ζ )c(2)

an

n = 2,3,4...

ω
(2)
bn (ζ ) =−ϕ

(2)
an (ρ2

2
ζ

)−d2(
ρ2

2
ζ

)c(2)
an

n = 2,3,4...

(78)

which are found to agree with the results given by [Chao, Chen and Chen (2009)].

4.3 A single elliptical hole under tension

When the regions S1 and S2 are made of the same material for the corresponding
an elliptical hole problem, Eqs. (73)∼(75) can be simplified to an exact form

ϕ(ζ ) =
T
4

ζ +
T
4

[
2e2iγ

ζ
− u

ζ

]
(79)

ψ(ζ ) =−T
2

e−2iγ
ζ − T

4
1
ζ
− (u2 +1)ζ

ζ 2−u
T
4
− ζ +uζ 3

ζ 2−u
(

u
ζ 2

T
4
− T

2
e2iγ 1

ζ 2 ) (80)

where u = a2−b2
a2+b2

, which are the same as the results provided by [England (1971)].

4.4 A rigid elliptical inhomogeneity

For the corresponding rigid elliptical inclusion problem, i.e., G3 = G2, and Π12 =
Λ12 =−1, Eqs. (63) and (64) reduce to

ϕ(ζ ) = ϕ0(ζ )+ϕ
(1)
b1 (ζ ) =

T
4

ζ +
1

κ1ζ

(
1

R2
T
4
− T

2
e2iλ
)

(81)

ψ(ζ ) = ψ0(ζ )+ω
(1)
b1 (ζ )−

m( 1
ζ
)

m′(ζ )
ϕ

(1)′
b1 (ζ )

=−T ζ

2
e−2iλ +

T
4

(
κ1

ζ
− R2ζ +R−2ζ

R2ζ 2−1
)+(

T
4R2 −

T
2

e2iλ )
R2 +ζ 2

R2ζ 2−1
1

κ1ζ
(82)

which are consistent with the solutions givens by [Muskhelishvili (1953)].
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Figure 3: Angular variations of the interfacial normal stress along Γ1 for differ-
ent shear modulus ratios(a1/b1 = 1.5,a2/a1 = 0.9,G3/G2 = 5,υ1 = υ2 = υ3 =
0.3,λ = π/2).

 

Figure 4: Angular variations of the interfacial shear stress along Γ1 for differ-
ent shear modulus ratios(a1/b1 = 1.5,a2/a1 = 0.9,G3/G2 = 5,υ1 = υ2 = υ3 =
0.3,λ = π/2).
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Figure 5: Angular variations of the interfacial normal stress along Γ1 for different
shear modulus ratios(a2/a1 = 0.9,G3/G2 = G1/G2 = 5,υ1 = υ2 = υ3 = 0.3,λ =
π/2).

 

Figure 6: Angular variations of the interfacial shear stress along Γ1 for different
shear modulus ratios(a2/a1 = 0.9,G3/G2 = G1/G2 = 5,υ1 = υ2 = υ3 = 0.3,λ =
π/2).
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5 Results and discussion

All the stress functions ϕ
(2)
an (ζ ), ϕ

(3)
an (ζ ), ϕ

(1)
bn (ζ ), ϕ

(2)
bn (ζ ), ϕ

(3)
bn (ζ ), ω

(2)
an (ζ ), ω

(3)
an (ζ ),

ω
(1)
bn (ζ ), ω

(2)
bn (ζ ), ω

(3)
bn (ζ ) in Eqs. (63) and (64) can be calculated from ϕ0(z) and

ϕ0(z) . The rate of the convergence depends on the two non-dimensional bimate-
rial constants Λ12 and Π12. Since Λ12 and Π12 are less than 1 and 0.5, respectively,
which guarantees rapid convergence. The angular variations of the interfacial nor-
mal stress and interfacial shear stress between the reinforcement layer and the ma-
trix, under the condition that a uniform tensile load is applied along the y axis, are
shown in Figures 3 and 4 respectively. As expected, the tangential normal stress is
symmetric about the y-axis while the tangential shear stress is asymmetric about the
y-axis. The magnitudes of both the normal stress and the shear stress decrease with
an increasing ratio of G1/G2. This is simply because that the interfacial stresses
can be further intensified (or diminished) by the adjacent material having a higher
(or lower) stiffness. The effects of the geometric configuration on the interfacial
stresses are displayed in Figures 5 and 6. It is clear to see that the magnitudes
of the interfacial stresses increase with the ratio a1/b1. Based on the above find-
ings, it allows us to find an optimum design of the intermediate layer such that the
magnitude of both stress concentration and the interfacial stresses could be fairly
reduced. Note that all these calculated results have been determined by summing
up the first ten terms in Eq. (63) and Eq. (64). A good accuracy for the current
problem can be demonstrated by the contribution of the leading terms appearing in
Eq. (15) and Eq. (16). The contribution of the stresses for the leading terms of a
series solution is 26.13% (first term), 11.24% (third term), 1.39% (fifth term) and
0.57% (tenth term), respectively. The contribution accounts for the ratio of each
term to the summation of the first ten terms of a series solution. The leading ten
terms have over 99% contribution, making the series solution rapidly convergent.
This demonstrates the accuracy and the efficiency of our proposed method. Note
that the convergence rate depends on the combinations of material properties and
geometric configurations. In general, the convergence rate becomes more rapid if
the differences of the elastic constants of the neighboring materials get smaller and
the ratio a1/b1 (or a2/b2) approaches one.

6 Conclusion

The explicit solutions for the three-phase elliptic inclusion problem subjected to a
remote uniform load are provided in this paper. Based on the method of conformal
mapping and the method of analytical continuation in conjunction with the alter-
nating technique, the elastic fields of the present problem are expressed in terms
of the solution to the corresponding homogeneous solution. The present proposed
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method can also be extended to the problem with any number of layers. Practically,
a graded interface can be achieved by multilayered materials with stepwise homo-
geneous elastic properties. Consequently, the problem with functionally graded
materials can be solved using the present proposed method.
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