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Calculation of Potential Second Derivatives by Means of a
Regularized Indirect Algorithm in the Boundary Element

Method

H.B. Chen1 and Masa. Tanaka2

Abstract: Highly accurate calculation of derivative values to the field variable
is a key issue in numerical analysis of engineering problems. The boundary inte-
gral equations (BIEs) of potential second derivatives are of third order singularities
and obviously the direct calculation of these high order singular integrals is rather
cumbersome. The idea of the present paper is to use an indirect algorithm which
is based on the regularized BIE formulations of the potential second derivatives,
following the work of the present first author and his coworkers. The regularized
formulations, numerical strategies and example tests are given for both potential
first and second derivatives to make this work systematic and easier to observe the
error sources. Numerical results show the validity of the newly proposed algorithm
in the calculation of potential second derivatives at the boundary in two dimensional
potential problems.

Keywords: boundary integral equation, potential second derivatives, regularized
formulation, third order singularities, boundary element method

1 Introduction

Derivative calculation to the field variable is commonly met in numerical analysis
of engineering problems. In elastic and elastoplastic problems, the displacement
derivative is calculated for the construction of stress field. In potential problems,
normal derivative at domain boundary is calculated for flux approximation. Espe-
cially in error estimation and the consequent adaptive mesh refinement, derivative
values are used to calculate various norms of numerical errors in the finite element
method (FEM) [Babuška and Yu (1987); Yu (1991a,b); Yazdani et al. (1997);
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Moore (2004); Zienkiewicz (2006)] and the boundary element method (BEM)
[Guiggiani (1996); Kita and Kamiya (2001); Chen et al. (2003); Martinez-Castro
and Gallego (2005)]. Furthermore, sensitivity analysis also requires nodal values
of the solution derivatives and the success or failure of such applications is to a
great extent dependent on the accuracy of the extracted boundary solution deriva-
tives [Guiggiani (1996); Zhang and Mukherjee (1991); Bonnet (1995); Bonnet and
Guiggiani (1998); Ilinca and Pelletier (2007); Hou and Sheen (1993); Kita et al.
(1999)]. In the context of BEM, derivative calculation generally induces increase
of singularity in the boundary integrals and special regularization treatment should
be applied. Specifically in BEM sensitivity analysis, material differentiation to sin-
gular BIEs [Kane et al. (1991); Bonnet (1997)] or regularized BIEs [Zhang and
Mukherjee (1991); Bonnet (1995); Matsumoto et al. (1993)], up to second-order
derivatives, does not increase the singularity order compared with their original
ones. While nodal sensitivity analysis [Guiggiani (1996); Bonnet and Guiggiani
(1998)] involves higher singularities which is the major concern of the present pa-
per. In most cases, first derivatives to the field variable are considered and the
relevant hypersingular integrals can be calculated by mean of reliable algorithms,
see e.g. [Chen et al. (2003); Guiggiani et al. (1992); Sladek et al. (2003); Sladek
and Sladek (1998); Chen et al. (1998); Chen et al. (2001); Chen et al. (2005a,b)].
Among them, a non-hyper-singular integral representation for displacement gradi-
ent was proposed by Okada et al. [Okada et al. (1988, 1989, 1990); Okada and
Atluri (1994)], which is characterized by the integral variables being the boundary
traction and displacement gradient. This algorithm was further developed to be
performed through Petrov-Galerkin approaches and to acoustic problems by Han,
et al. [Han and Atluri (2003, 2007); Atluri et al. (2003); Qian et al. (2004a,b); Han
et al. (2005)].

However, there are still the requirements to evaluate the second derivatives to the
field variable [Frangi and Guiggiani (2000); Guiggiani (1996)] and some attempts
have been performed [Frangi and Guiggiani (2000); Karami and Derakhshan (1999);
Chen (2004); Gallego and Martinez-Castro (2006); Gao (2006); Moore et al. (2007);
Atluri (2005); Schwab and Wendland (1999)]. The boundary integral equations of
potential second derivatives are of third order singularities; here the commonly-
met strong singularity is referred to as the first order singularity and the hyper-
singularity as the second order one. Obviously, such kind of high order singular
integrals pose great challenges for numerical integration. Karami and Derakhshan
(1999), Frangi and Guiggiani (2000) and Gallego and Martinez-Castro (2006) ex-
tended the direct approach, originally proposed for second order singular integrals
by Guiggiani et al. (1992), to the third order singular ones. Gao (2006) proposed
a new approach by simply removing the singular free terms, after expressing the



Calculation of Potential Second Derivatives 21

nonsingular parts of the kernels as polynomials of distance between source and
field points, and using the Gauss quadrature for the remaining nonsingular inte-
grals. Moore et al. (2007) calculated the second derivative values through ‘inte-
rior/exterior limit’ gradient algorithm in Galerkin BEM. The method of regular-
ization of the BIEs for the first derivative has been shown to be easily extended
to regularizing the BIEs for any order derivative of the primary variable by Atluri
(2005). In computational mathematics, a successful bootstrapping algorithm for all
derivatives was presented by Schwab and Wendland (1999), where (n+1)th order
derivatives are computed from nth order by solving a succession of boundary inte-
gral problems. So far notable improvements have been achieved in these attempts,
however the direct approach for second derivative calculation becomes more com-
plicated; algorithm of Moore et al. encountered great difficulty for points at and
near corners even for quadratic simple problem in a square domain; while Gao’s
algorithm and the others need more tests of practical problems.

The present work is an extension of the regularized indirect algorithm for the calcu-
lation of potential or displacement first derivatives proposed by Chen et al. [Chen
et al. (1998, 2001, 2005a,b, 2003, 2009); Jin and Chen (2004); Schnack and Chen
(2001)] and its basic idea and primary numerical results had been reported orally
by Chen (2004) in WCCM VI in conjunction with APCOM’04. The content of
this paper is confined to two-dimensional (2D) Laplacian potential problem and
the aim is to show how the potential second derivatives can be calculated by the
proposed algorithm in an agreeable accuracy. The following part of this paper is
organized as: first, the regularized formulation and numerical strategy for the calcu-
lation of potential first derivatives are presented; next come the corresponding parts
of the potential second derivatives; following are four numerical tests to validate
the present algorithms; at last come the discussions and conclusions.

2 Algorithm for potential first derivatives

2.1 Regularized Formulation

Consider a boundary value problem for a scalar variable u(x) in classical poten-
tial field theory. Assuming no sources exist inside the considered domain Ω, the
problem is governed by the Laplacian equation

∇
2u(x) = 0 in Ω (1)

and its boundary Γ = Γu +Γp is subject to the mixed boundary conditions:

u(x) = ū(x) x ∈ Γu

p(x) = ∂ u(x)
∂ n(x) = u,l(x)nl(x) = p̄(x) x ∈ Γp

}
(2)
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where the overbar denotes prescribed values on the boundary, nl(x) is the l-th Carte-
sian component of the outward normal at boundary point x; u,l(x) = ∂ u(x)

∂ xl
, xl is the

Cartesian coordinate in l direction; p(x) is the boundary flux. Here, l = 1 or 2 for
2D problem considered in this paper.

The potential integral equation for an internal point ξ is

u(ξ ) =
∫

Γ

u∗(ξ ,x)p(x)dΓ(x)−
∫

Γ

p∗(ξ ,x)u(x)dΓ(x) (3)

where u∗(ξ ,x) and p∗(ξ ,x) correspond to the usual free-space fundamental solu-
tions, i.e.

u∗(ξ ,x) =
1

2π
ln(

1
r
) , p∗(ξ ,x) =−

r,l nl

2π r
(4)

and

ri = ri(ξ ,x) = xi(x)− xi(ξ ), r =
√

riri, r,i =
∂ r

∂ xi(x)
=

ri

r
, nl = nl(x) (5)

x and ξ are the field and source points, respectively. Differentiating Eq. (3) with
respect to xi(ξ ) results in the integral representation of potential derivatives for
internal point ξ as

u,i(ξ ) =
∫

Γ

u∗,i(ξ ,x)p(x)dΓ(x)−
∫

Γ

p∗,i(ξ ,x)u(x)dΓ(x) (6)

where

u∗,i(ξ ,x) = ∂ u∗(ξ ,x)
∂ xi(ξ ) = r,i

2π r

p∗,i(ξ ,x) = ∂ p∗(ξ ,x)
∂ xi(ξ ) = ni−2 r,lnlr,i

2π r2

}
(7)

As the source point ξ moves to the boundary, u∗,i(ξ ,x) and p∗,i(ξ ,x) show first order
and second order singularities, respectively. To eliminate these singularities, a lin-
ear potential state is defined by the first two terms of the potential Taylor expansion
at the source point ξ as

uL(x) = u(ξ )+u,i(ξ )ri(ξ ,x) (8a)

The corresponding flux at the boundary is

pL(x) = u,i(ξ )ni(x) (8b)
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In this state, the boundary integral equation of potential first derivative is

u,i(ξ ) =
∫

Γ

u∗,i(ξ ,x)pL(x)dΓ(x)−
∫

Γ

p∗,i(ξ ,x)uL(x)dΓ(x) (9)

Subtracting Eq. (9) from Eq. (6), we get the regularized formulation of potential
first derivative integral equation as

0 =
∫

Γ

u∗,i(ξ ,x)[p(x)− pL(x)]dΓ(x)−
∫

Γ

p∗,i(ξ ,x)[u(x)−uL(x)]dΓ(x) (10)

Equation (10) is still valid (can be deduced in a similar way) for the source point
ξ locating at the boundary, if the potential first derivatives at point ξ , i.e. u,i(ξ ),
exists at least in the Hölder sense. In this case,

u(x)−uL(x) = 0[r(ξ ,x)]1+α

p(x)− pL(x) = 0[r(ξ ,x)]α

}
0 < α ≤ 1 (11)

Thus Formulation (10) is at most weakly singular and it is the start point of the reg-
ularized indirect algorithm for the calculation of potential first derivatives. Telles
and Prado (1993) presented a hyper-singular formulation for potential first deriva-
tives in two dimensional problem, which has been shown equivalent to formulation
(10) by Chen, et al. (2009).

2.2 Numerical Strategy

For 2D problem addressed in this paper, the matrix forms of uL(x) and pL(x) in Eq.
(8) can be written as

uL(x) = u(ξ )+ [r1(ξ ,x) r2(ξ ,x)]
{

u,1(ξ )
u,2(ξ )

}
= u(ξ )+Rξ

x U′
ξ

(12a)

pL(x) = [n1(x) n2(x)]
{

u,1(ξ )
u,2(ξ )

}
= NxU′

ξ
(12b)

For the regularized parts in Eq. (10), the standard interpolation scheme is given in
terms of the nodal values and the element shape functions Nα(η) by

u(x)−uL(x) = ∑
α

Nα(η)[uα −uL
α ] (13a)

p(x)− pL(x) = ∑
α

Nα(η)[pα − pL
α ] (13b)

where uα and pα are the values of u(x) and p(x) at node α , respectively; η = η(x)
is the element local coordinate for the field point x. Thus, with ξ = s and the
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component u,1 and u,2 equations written together, the discretized form of Eq. (10)
can be expressed as

0 =
n

∑
k=1

G′sk[pk−NkU′s]−
n

∑
k=1

H′sk[uk−us−Rs
kU′s] (14)

where n is the total number of discretization nodes, G′sk =
{

G′sk1
G′sk2

}
, H′sk =

{
H ′sk1
H ′sk2

}
,

G′ski =
∫ 1
−1 u∗,i(s,x(η))Nk(η)Jk(x(η))dη , H ′ski =

∫ 1
−1 p∗,i(s,x(η))Nk(η)Jk(x(η))dη ,

Nk(η) is the shape function of node k at the calculating element, Jk(x(η)) is the
related Jacobian function. In this paper, for non-simple problems only the mid-
node of quadratic element is considered in order to retain enough continuity of the
integrand during discretization, the same when calculating potential second deriva-
tives.

Noting that Rs
s = 0 and ps = NsU′s, we have

n

∑
k = 1
k 6= s

[G′skNk−H′skRs
k]U
′
s =

n

∑
k = 1
k 6= s

[G′sk pk−H′sk(uk−us)] (15)

Equation (15) is the discretized formulation for the calculation of potential first
derivatives at boundary nodes. Due to the at most weak singularity character for
the integrals in Eq. (10), in the calculation of coefficients G′ski and H ′ski (k 6= s)
only Gaussian quadrature is required, thus this integration is as simple as doing a
quadrature on a nonsingular integrand. Further comments on this algorithm will be
given in Discussions. This algorithm has been reported in Chen et al. (2009) and
used for calculating a reference solution for error estimation in Chen et al. (2005b).
One can also refer to the corresponding algorithms in elasticity [Chen et al. (1998,
2001, 2003)].

3 Algorithm for potential second derivatives

3.1 Regularized Formulation

The potential second derivative integral equation can be given by differentiating
Eq. (6) with respect to x j(ξ )as

u,i j(ξ ) =
∫

Γ

u∗,i j(ξ ,x)p(x)dΓ(x)−
∫

Γ

p∗,i j(ξ ,x)u(x)dΓ(x) (16)
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where

u∗,i j(ξ ,x) = ∂ u∗i (ξ ,x)
∂ x j(ξ ) = 2r,ir, j−δi j

2π r2

p∗,i j(ξ ,x) = ∂ p∗i (ξ ,x)
∂ x j(ξ ) = 1

π r3 [r,in j + r, jni + r,lnl(δi j−4r,ir, j)]

 (17)

Similarly as the source point ξ moves from domain to the boundary, u∗,i j(ξ ,x)and
p∗,i j(ξ ,x) show second order (hyper-) and third order singularities, respectively. To
eliminate these singularities, a quadratic potential state is defined by the first three
terms of the potential Taylor expansion at the source point ξ as

uQ(x) = u(ξ )+u,i(ξ )ri(ξ ,x) +
1
2

u,i j(ξ )ri(ξ ,x)r j(ξ ,x) (18a)

The corresponding flux at the boundary is

pQ(x) = u,i(ξ )ni(x) + u,i j(ξ )r j(ξ ,x)ni(x) (18b)

In this state, the boundary integral equation of potential second derivative is

u,i j(ξ ) =
∫

Γ

u∗,i j(ξ ,x)pQ(x)dΓ(x)−
∫

Γ

p∗,i j(ξ ,x)uQ(x)dΓ(x) (19)

Subtracting Eq. (19) from Eq. (16), we get the regularized formulation of potential
second derivative integral equation as

0 =
∫

Γ

u∗,i j(ξ ,x)[p(x)− pQ(x)]dΓ(x)−
∫

Γ

p∗,i j(ξ ,x)[u(x)−uQ(x)]dΓ(x) (20)

The above formulation is still valid for the source point ξ locating at the boundary,
if the potential second derivatives at point ξ , i.e. u,i j(ξ ), exists at least in the Hölder
sense. In this case,

u(x)−uQ(x) = 0[r(ξ ,x)]2+α

p(x)− pQ(x) = 0[r(ξ ,x)]1+α

}
, 0 < α ≤ 1 (21)

Thus formulation (21) is at most weakly singular and it is the start point of the
newly proposed Regularized Indirect Algorithm for the calculation of potential sec-
ond derivatives.
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3.2 Numerical Strategy

For 2D potential problem, noting that u,12(ξ ) = u,21(ξ ) and u,11(ξ ) = −u,22(ξ ),
the matrix forms of the expressions in Eq. (18) can be written as

uQ(x) =u(ξ )+ [r1(ξ ,x) r2(ξ ,x)]
{

u,1(ξ )
u,2(ξ )

}
+[

1
2
{r2

1(ξ ,x)− r2
2(ξ ,x)} r1(ξ ,x)r2(ξ ,x)]

{
u,11(ξ )
u,12(ξ )

}
=u(ξ )+Rξ

x U′
ξ
+ R̄ξ

x U
′′

ξ

(22a)

pQ(x) =[n1(x) n2(x)]
{

u,1(ξ )
u,2(ξ )

}
+[n1(x)r1(ξ ,x)−n2(x)r2(ξ ,x) n1(x)r2(ξ ,x)+n2(x)r1(ξ ,x)]

{
u,11(ξ )
u,12(ξ )

}
=NxU′

ξ
+ N̄ξ

x U
′′

ξ

(22b)

Similar to Expression (13), the regularized parts in Eq. (20) are interpolated by

u(x)−uQ(x) = ∑
α

Nα(η)[uα −uQ
α ]

p(x)− pQ(x) = ∑
α

Nα(η)[pα − pQ
α ]

 (23)

Thus, with ξ = s and the component u,11 and u,12 equations written together, the
discretized form of Eq. (20) can be expressed as

0 =
n

∑
k=1

G
′′
sk[pk−NkU′s− N̄s

kU
′′
s ]−

n

∑
k=1

H
′′
sk[uk−us−Rs

kU′s− R̄s
kU

′′
s ] (24)

where G′′
sk =

{
G
′′
sk11

G
′′
sk12

}
, H′′

sk =
{

H
′′
sk11

H
′′
sk12

}
, G

′′
ski j =

∫ 1
−1 u∗,i j(s,x(η))Nk(η)Jk(x(η))dη ,

H
′′
ski j =

∫ 1
−1 p∗,i j(s,x(η))Nk(η)Jk(x(η))dη .

Noting that Rs
s = N̄s

s = R̄s
s = 0 and ps = NsU′s, we have

n

∑
k = 1
k 6= s

[G
′′
skN̄s

kk−H
′′
skR̄s

k]U
′′
s =

n

∑
k = 1
k 6= s

[G
′′
sk(pk−NkU′s)−H

′′
sk(uk−us−Rs

kU′s)]
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(25)

Equation (25) is the discretized formulation of present algorithm for the calculation
of potential second derivatives at boundary nodes. Similar to the case in poten-
tial first derivative calculation, due to the at most weak singularity character, the
calculation of G

′′
ski j and H

′′
ski j (k 6= s) only requires a Gaussian quadrature. When

implementing this equation, the potential first derivative vector U′s should be given
in advance, which can be calculated through the regularized algorithm presented in
last section.

4 Numerical examples

In all examples, quadratic continuous isoparametric boundary element and 10 point
Gaussian quadrature are employed. For 2D Laplacian potential problem, as men-
tioned above, u,12(ξ ) = u,21(ξ ) and u,11(ξ ) = −u,22(ξ ). Therefore, a relative er-
ror for the evaluated nodal potential second derivatives can be defined as ε

′′
i =√

(ũi
,11−ui

,11)2+(ũi
,12−ui

,12)2

1
n

n
∑

k=1

√
(uk

,11)2+(uk
,12)2

×100%, where ũi
,11 and ũi

,12 are the calculated potential sec-

ond derivatives at node i; ui
,11 and ui

,12 are the respective exact values; n is the
total number of the calculated nodes. The corresponding nodal relative error for

potential first derivatives is defined as ε ′i =

√
(ũi

,1−ui
,1)2+(ũi

,2−ui
,2)2

1
n

n
∑

k=1

√
(uk

,1)2+(uk
,2)2
×100%. The above

relative errors are in fact scaled local nodal errors. They are different from the
conventional nodal relative error which is usually defined by the nodal error nor-
malized by the local exact solution. The reason we adopt this new definition is
that BEM solution has a global effect and for some local small values which might
be around zero, a big conventional relative error might correspond to a very small
local nodal error and it is of course meaningless, however present error definition
can avoid this misleading.

Example 1: A square area of side length 8 is analyzed, as shown in Fig. 1. The
potential distribution is u = x2

1 + 3x1x2− x2
2 + 4 and the problem is defined as the

potential at sides AD and BC and the flux at the other two sides are prescribed.
This problem is analyzed with one quadratic element each side. The nodal poten-
tial second derivatives calculated by the present algorithm are almost the same with
the exact solutions, i.e. six significant digits the same with the exact solutions, for
all the eight nodes in this discretization. While the nodal potential first derivatives
calculated are of seven significant digits the same with the exact solutions. There-
fore, it can be concluded that the present indirect algorithm passes the numerical
patch test.
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Figure 1: A square area and its discretization for analysis

Example 2: The warping function of an elliptical bar under torsion is analyzed,
which is a Laplacian problem with exact solution u = b2−a2

b2+a2 x1x2 +C and boundary

condition ∂u
∂n = b2−a2√

a4x2
2+b4x2

1
x1x2, where C is a constant and a and b are respectively

the longer and shorter semidiameters of the elliptical area. The dimensions are as-
sumed to be a=10, b=5 and C=20. By use of symmetry, one quarter of the elliptical
section is analyzed. As shown in Fig. 2, the domain in the first quadrant of the el-
liptical section is considered for analysis, where the two sides along the coordinate
axes are potential prescribed and the curve side flux prescribed.

 

Figure 2: Geometrical definitions of an elliptical bar under torsion

Two meshes, as shown in Fig. 3, are considered for comparing the results. In order
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Figure 3: Mesh definition of the one quarter area

to satisfy the continuity condition of the regularized formulations, hereafter only
the element mid-nodes are adopted in calculation. It can be seen from Fig. 4 that
the nodal relative errors of potential first derivatives are in low level even in the
coarser Mesh 1 and the errors reduce significantly and consistently when the mesh
is subdivided to Mesh 2. The horizontal axes shows the Calculation Node numbers
in Mesh 2 and the calculation nodes in Mesh 1 have been renumbered accordingly
so as to plot them in one figure, the same treatment hereafter. For the calculation
of potential second derivatives, from Fig. 5 we can see that relatively larger errors
happen around the two corners in Mesh 1. In Mesh 2, the numerical results improve
significantly and the maximum error is no more than 2.5%. These results show that
both potential first and second derivatives can be well calculated by means of the
present regularized indirect algorithms and the results are convergent as the mesh
is subdivided.

Example 3: The third example consists of an L shaped domain shown in Fig. 6,
with p̄ and ū taking values such that the analytical solution is u = r

2
3 sin(2θ

3 ), where
r and θ are the cylindrical co-ordinates with respect to the origin of the Cartesian
axes. The prescribed boundary conditions and the symmetry axis of the problem
are also shown in Fig. 6.

This problem was analyzed in the Cartesian co-ordinate system and two of its dis-
cretizations are shown in Fig.7, a further uniform subdivision from Mesh 2 to a
128 element discretization called Mesh 3 is also used for accuracy comparison.
The exact solutions of this problem are u,1 = 2

3 r−
1
3 sin(−θ

3 ), u,2 = 2
3 r−

1
3 cos(−θ

3 )
and u,11 = 2

9 r−
4
3 sin(4θ

3 ), u,12 = −2
9 r−

4
3 cos(4θ

3 ). It can be seen that, at the reen-
trant corner, weak and strong singularities happen for the potential first and second
derivatives, respectively. Therefore, it is a problem with relatively strong variation
of the field variables. Like some stress singularity problems in linear elasticity,
most algorithms including the present one do not work at the singularity point, but
work for nodes with a distance of a few elements to the reentrant corner.
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Figure 4: Relative error of potential first derivatives in Example 2

Due to symmetry, only half of the nodal errors are given. Fig. 8 shows that the nu-
merical errors increase significantly as the calculation point closes to the reentrant
corner from a certain distance. This is due to the strong variation of the potential
first derivatives near the reentrant corner and larger interpolation errors thereby.
Whereas the overall errors are in low level, i.e. lower than 0.7%, from the third el-
ement mid-nodes for all the three discretizations and the calculation errors reduce
consistently as the mesh is subdivided. Fig. 9 presents the nodal errors of potential
second derivatives for the three meshes; similar phenomena can be observed as in
the first derivative calculation, except now with higher error levels. The higher er-
rors in second derivative calculation are correspondent with the higher singularities
in the kernel and the higher variation of physical value, furthermore the errors of
first derivatives will be introduced in during this calculation.

Example 4: This example is of the same physical problem with Example 3, how-
ever with different boundary contour by consisting of a 3/4 circular domain as
shown in Fig. 10. The prescribed boundary conditions and the symmetry axis of
the problem are also shown in Fig.10. This example is designed to compare with
Example 3 for observing the influence of different boundary contour on the numer-
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Figure 5: Relative error of potential second derivatives in Example 2

ical results. Example 3 consists of only straight boundaries, while this example
composes of both straight and curve boundaries.

This problem was also analyzed in the Cartesian co-ordinate system and two of its
discretizations are shown in Fig. 11, a further uniform subdivision from Mesh 2 to
a 128 element discretization called Mesh 3 is also used for accuracy comparison.
Figs. 12 and 13 show that errors near the reentrant corner are similar to those in
Example 3 and, in the curve parts, the errors reduce consistently with respect to the
distance between the calculation point and the convex corner. The consistent error
reduction with respect to mesh subdivision and higher errors for second derivatives
are the same as in Example 3. However, carefully comparing the respective fig-
ures in these two examples, we can find that the errors in Example 4 are smaller
than those in Example 3 for both first and second derivative results. The reason
of this phenomenon is that, for this physical problem and boundary contours, the
interpolation error of the field variables has bigger influence than that of geometry.
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Figure 6: An L shape domain with reentrant corner singularity

         
 

Figure 7: Two discretization schemes of the L shape domain

5 Discussions

5.1 On the treatment of singular integrals in the regularized indirect algorithm

The main feature of the regularized indirect algorithm presented in this paper is its
simple implementation, where all numerical integrations are performed by Gaus-
sian quadrature as done for non-singular integrals. The nodal coefficients of in-
accurate integrations near the source point are manipulated and the errors reduce
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Figure 8: Relative error of potential first derivatives in Example 3

to an agreeable degree according to the relationship of the discretized form of the
regularized formulations. For the isoparametric quadratic element used in this pa-
per, during interpolation the continuity of integrand at element mid-node will retain
to a degree to mathematically ensure the existence of all the singular integrals. If
there are explicit expressions for the regularized parts in the integration space, the
product of singular kernel and the regularized parts will become nonsingular and,
of course, only Gaussian quadrature is needed in numerical integration. However,
present case is that the regularized parts contain derivative unknowns and the in-
tegrand is the product of singular kernel and the interpolation shape function. Al-
though Gaussian quadrature can not integrate precisely these highly singular inte-
grands, the singularity elimination function of the regularized parts retains through
the post treatments to the inaccurate coefficients, in which the utmost inaccurate
coefficients related to the potential and flux at the singular point are eliminated.
Furthermore, from the last calculating formulations (15) and (25), we can find that
the non-eliminated inaccurate coefficients remain in the two sides of the formu-
lations and they possess the same influence in each side. Therefore, the present
indirect algorithm is much different from the direct ones by doing the regulariza-
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Figure 9: Relative error of potential second derivative in Example 3

 

Figure 10: A 3/4 circular domain with reentrant corner singularity for derivative
values

tion after integration.
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Figure 11: Two discretization schemes of the 3/4 circular domain
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Figure 12: Relative error of potential first derivatives in Example 4
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Figure 13: Relative error of potential second derivatives in Example 4

5.2 On the influence of interpolation errors

Compared with the calculation of first derivative values, the second derivative cal-
culation is more sensitive to the interpolation error and the primary solution error.
Example 1 is a simple problem with straight domain boundary and quadratic po-
tential variation (constant second derivatives) . No error occurs in the interpolation
of boundary geometry and variables (potential and flux), and numerical test shows
that the third order singularity in BIE formulation can be completely eliminated by
the present algorithm. The second example is also with a quadratic potential varia-
tion, however one side of its boundary is elliptic. When applying the isoparametric
quadratic element, interpolation error on this boundary is unavoidable. On the other
hand, Example 3 has a simple domain boundary, however the field potential varies
sharply near the reentrant corner and thus error is again unavoidable in the interpo-
lation of boundary variables. In these two examples, potential second derivatives
at element end nodes are basically incorrect even in the refined meshes, thus only
the element mid-node results are presented. This shows that the interpolation error
of boundary geometry or field variables is magnified to a much larger extent, com-
pared with those in the calculation of potential first derivatives. A similar situation
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was also found in the work of Martinez-Castro and Gallego (2005) and Gallego
and Martinez-Castro (2006), where the tangential BIE residual are collocated only
at the quadratic element mid-nodes. Therefore, for the element interpolation func-
tion higher continuity is required in the calculation of second derivative values.

Example 4 is designed to compare with Example 3 for careful observation of the
influences of different kinds of interpolation errors. Example 4 is defined from
Example 3 by replacing the outer straight boundaries, other than the two connected
to the reentrant corner, with a 3/4 circle line. There is no interpolation error in the
approximation of boundary contour for Example 3, however there is for Example 4.
Observing the numerical results, for points far away from the reentrant corner, both
the first and second derivative errors for Example 4 are lower than those of Example
3, with more obvious for second derivative errors. Thus in this test the interpolation
errors for physical values have bigger influence to the final results than those for
boundary contours (co-ordinates). For these examples, it should be noted that non-
uniform distribution of nodes, with more locating near the singularity point, is quite
possible to further improved the numerical results.

5.3 On the validity of the present indirect algorithm

Here we discussed the validity of the present indirect algorithm for the calcula-
tion of potential first and second derivatives, especially in comparison with other
parallel algorithms. For most commonly used isoparametric quadratic element, nu-
merical tests in this paper have shown that the potential first derivatives at element
mid-nodes can be calculated with excellent accuracy, it has also been shown that
the results at element end-nodes are still of good accuracy compared with those
obtained by the conventional treatment which differentiates the interpolation func-
tion [Schnack and Chen (2001); Chen et al. (2005b)]. The same situation has been
observed in elastic BEM for the calculation of displacement first derivatives and
boundary nodal stresses [Chen et al. (1998, 2001)], which were further used for er-
ror estimations [Chen et al. (2003)]. For the indirect algorithm for potential second
derivatives, numerical tests in this paper have shown its correctness for quadratic
element mid-nodes. The numerical accuracy should be further improved by adopt-
ing some careful treatments, e.g. using the singularity treatment proposed by Gao
(2006), and the results at element end nodes might reach an acceptable range by
further averaging the normal vector components from the two adjacent elements in
curve smooth boundary. However, the success of those treatments needs further in
depth research.

Comparing the present indirect algorithm with the direct ones [Frangi and Guig-
giani (2000); Karami and Derakhshan (1999); Gallego and Martinez-Castro (2006)],
we find that both of them are based on the integral representations of the second



38 Copyright © 2010 Tech Science Press CMES, vol.69, no.1, pp.19-42, 2010

derivatives of field variables, therefore a full integration to the problem boundary is
needed. Furthermore, the first derivative values at the source point are used for the
regularization procedure in these two algorithms. However, the direct algorithms
regularize the singular integrals before integration and the regularization procedure
relates to the local variation of the field variable only, thus they seem to be more
general than the present indirect one. The bootstrapping algorithm proposed by
Schwab and Wendland (1999) and the limiting formulation proposed by Moore et
al. (2007) are seminal contributions in this research, however they should be further
developed for realistic problem solving. Furthermore, a number of existing algo-
rithms are of the potential to be extended to the calculation of field variable second
derivatives. Atluri (2005) has shown that the method of regularization of the BIE
for the first derivative values [Okada et al. (1988, 1989, 1990); Okada and Atluri
(1994)] can be easily extended to regularizing the BIEs for any order derivative of
the primary variable. The multi-variable algorithm [Chen et al. (2005a); Schnack
and Chen (2001)] could also be extended to combine together the boundary integral
equations of the primary variable and its first and second derivatives. It would be
significant to carefully compare the validities of the above diverse algorithms and
to make clear the boundary a method is suitable for application.

6 Conclusions

A simple but effective algorithm is presented in this paper for the calculation of
potential second derivatives at the boundary in 2D potential BEM. This algorithm
is based on the regularized BIE formulation of potential second derivatives. The
direct discretizations to the regularized formulations are implemented, where the
original boundary values and the quadratic regularized function are interpolated
completely in the same way to ensure the elimination of the singularities occurred
in the potential second derivative BIEs. Numerical results show the validity of the
present algorithm.
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