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Crack Analysis in Piezoelectric Solids with Energetically
Consistent Boundary Conditions by the MLPG
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Abstract: A meshless method based on the local Petrov-Galerkin approach is
proposed to solve initial-boundary value crack problems of piezoelectric solids
with nonlinear electrical boundary conditions on crack faces. Homogeneous and
continuously varying material properties of the piezoelectric solid are considered.
Stationary governing equations for electrical fields and the elastodynamic equa-
tions with an inertial term for mechanical 2-D fields are considered. Nodal points
are spread on the analyzed domain, and each node is surrounded by a small cir-
cle for simplicity. The spatial variation of displacements and electric potential are
approximated by the Moving Least-Squares (MLS) scheme. After performing the
spatial integrations, one obtains a system of ordinary differential equations for cer-
tain nodal unknowns. That system is solved numerically by the Houbolt finite-
difference scheme as a time-stepping method. An iterative solution algorithm is
developed to consider the energetically consistent crack-face boundary conditions.
The accuracy of the present method for computing the stress intensity factors (SIF)
and electrical displacement intensity factor (EDIF) are discussed by comparison
with available analytical or numerical solutions.

Keywords: Meshless local Petrov-Galerkin method (MLPG), Moving least-squares
(MLS) interpolation, piezoelectric solids, functionally graded materials, intensity
factors, dynamic loading

1 Introduction

Modern smart structures, made of piezoelectric materials, offer certain potential
performance advantages over conventional ones, due to their capability of convert-
ing the mechanical energy to electric one and vice versa. They are extensively
utilized as transducers, sensors and actuators in many engineering fields. Piezo-
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electric ceramics are very brittle and susceptible to fracture during service. To
prevent failure, the fracture behaviour of these materials must be well understood.
Recently, the study of singular stress and electric fields in cracked piezoelectric
materials has attracted the attention of many researchers. Pak (1990) obtained the
closed form solutions for an infinite piezoelectric medium under anti-plane load-
ing by using a complex variable approach. Later, Park and Sun (1995) obtained
closed form solutions for all three fracture modes for a crack in an infinite piezo-
electric medium. They investigated the effect of the electric field on the fracture
of piezoelectric ceramics. A review and other literature sources on the fracture of
piezoelectric materials can be found in McMeeking (1999) and Kuna (2006).

Functionally graded materials (FGMs) have demonstrated that they have a poten-
tial to reduce the stress concentration and increase the fracture toughness [Suresh
and Mortensen (1998); Paulino et al. (2003)]. Consequently, the concept of FGMs
can be extended to the piezoelectricity to obtain piezoelectric materials with high
strength, high toughness, low thermal expansion coefficient and low dielectric con-
stant. Devices such as actuators based on functionally graded piezoelectric materi-
als (FGPMs) were given by Zhu et al. (1995, 1999). The fracture of FGPMs under
a thermal load has been studied by Wang and Noda (2001). An anti-plane crack
problem is described by relatively simpler governing equations than for in-plane
problems [Li and Weng (2002)]. Recently, the in-plane crack problem in FGPMs
has been analyzed by Chen et al. (2003) and Ueda (2003).

The electric boundary condition on the piezoelectric crack-surfaces comes in differ-
ent degrees of shielding the electric induction defined by the electric permeability.
The permeable crack does not shield the electric induction. The second extreme
case, the impermeable crack shields the electric induction completely. If the crack
is closed, the permeable boundary conditions are correct, while the impermeable
conditions are every time incorrect, since the assumption of the vanishing permit-
tivity of the crack medium is not applicable. The permittivity of the vacuum is a
finite value of 8.854 ·10−12C/V m. If the crack opening displacement is extremely
small (at low mechanical load), the permeable boundary condition may provide a
good approximation despite its inconsistency [Denda (2008)]. The semi-permeable
boundary conditions proposed by Hao and Shen (1994) consider finite value of the
permittivity and crack opening displacement. The electrical field in the crack gap
is approximated as the potential drop divided by the crack opening displacement.
This model is leading to a problem with nonlinear boundary conditions. It is as-
sumed here that the crack-faces are traction-free like in the previous two models.
Recently, McMeeking (2004) investigated the energy release rates for a Griffith
crack for all three models and found that there exists a discrepancy between the to-
tal energy release rate from the entire system and the crack-tip energy release rate.
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Landis (2004) considered energetically consistent boundary conditions on crack-
faces, where additional closing traction is added to well known semi-permeable
boundary conditions. He showed that his modified crack conditions are leading to
consistency of total and crack tip energy release rates.

The solution of the boundary value problems for continuously nonhomogeneous
piezoelectric solids requires advanced numerical methods due to the high mathe-
matical complexity. The governing equations are more complicated than in a ho-
mogeneous counterpart and the electric and mechanical fields are coupled each
other. Therefore, a variety of different crack problems in piezoelectric medium has
been studied only in homogeneous or multi-layered bodies. Modern computational
methods like the finite element method (FEM) [Gruebner et al. (2003); Govorukha
and Kamlah (2004) ; Enderlein et al. (2005), Kuna (1998, 2006)] and the boundary
element method (BEM) [Pan (1999); Davi and Milazzo (2001); Gross et al. (2005);
Garcia-Sanchez et al. (2005, 2007); Sheng and Sze (2006); Denda (2008); Wün-
sche et al. (2010)] have to be applied for general crack analyses in piezoelectric
homogeneous solids. In spite of the great success on these effective numerical tools
for the solution of boundary value problems in piezoelectric solids, there is still a
growing interest in the development of new advanced methods. In recent years,
meshless formulations are becoming popular due to their high adaptivity and low
costs to prepare input and output data for numerical analyses. A variety of meshless
methods has been proposed so far and some of them also applied to piezoelectric
problems [Ohs and Aluru (2001); Liu et al. (2002)]. They can be derived either
from a weak-form formulation on the global domain or a set of local subdomains.
In the global formulation, background cells are required for the integration of the
weak-form. In the methods based on the local weak-form formulation no back-
ground cells are required and therefore they are often referred to as truly meshless
methods. The meshless local Petrov-Galerkin (MLPG) method is a fundamental
base for the derivation of many meshless formulations, since trial and test func-
tions can be chosen from different functional spaces. Recently, the MLPG method
with a Heaviside step function as the test functions [Atluri et al. (2003); Atluri
(2004); Sladek et al. (2004)] has been applied to solve two-dimensional (2D) ho-
mogeneous piezoelectric problems by the authors [Sladek et al. (2006)] and later
also to crack problems in continuously nonhomogeneous medium [Sladek et al.
(2007a)]. In previous MLPG applications to crack problems only impermeable or
permeable crack conditions are considered.

In the present paper, the MLPG is extended to crack analysis in continuously non-
homogeneous piezoelectric solids with energetically consistent crack-face bound-
ary conditions. The electrical displacements on both crack-surfaces are propor-
tional to the ratio of the potential jump and the distance of the crack-surfaces (crack-
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opening-displacement). Similarly, the traction on the crack-faces is proportional to
the quadratic value of the same ratio. Since the crack-opening-displacement is de-
pendent on the value of the electrical displacement, the problem has to be solved
iteratively. The coupled governing partial differential equations are satisfied in a
weak-form on small fictitious subdomains. Nodal points are introduced and spread
on the analyzed domain and each node is surrounded by a small circle for simplic-
ity, but without loss of generality. If the shape of subdomains has a simple form,
numerical integrations over them can be easily carried out. The integral equations
have a very simple nonsingular form. The spatial variations of the displacements
and the electric potential are approximated by the Moving Least-Squares (MLS)
scheme [Belytschko et al. (1996); Zhu et al. (1998)]. After performing the spatial
MLS approximation, a system of ordinary differential equations for certain nodal
unknowns is obtained. Then, the system of the ordinary differential equations of
the second order resulting from the equations of motion is solved by the Houbolt
finite-difference scheme (Houbolt 1950) as a time-stepping method. Influence of
energetically consistent, semi-permeable, permeable and impermeable crack-face
boundary conditions is investigated in numerical examples.

2 Local integral equations for 2D problems

The governing equations for continuously nonhomogeneous piezoelectric solids are
given by the equations of motion for the mechanical displacements and by the first
Maxwell equation for the vector of electric displacements [Parton and Kudryavtsev
(1988)]

σi j, j +Xi = ρ üi, (1)

D j, j−R = 0, (2)

where üi , σi j , Di , Xi, R and ρ denote the acceleration, stress tensor, electric dis-
placements, body force vector, volume density of free charges and mass density,
respectively.

The constitutive relations represent the coupling of the mechanical and the elec-
trical fields. They can be obtained as derivatives of the electric enthalpy density
W = W (εi j,Ei,xi) [Parton and Kudryavtsev (1988)] in the following manner

W (εi j,Ei,x) =
1
2

ci jkl(x)εi j(x)εkl(x)−eikl(x)Ei(x)εkl(x)− 1
2

hi j(x)Ei(x)E j(x) , (3)

σi j(x) =
∂W
∂εi j

= ci jkl(x)εkl(x)− eki j(x)Ek(x), (4)
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D j(x) =− ∂W
∂E j

= e jkl(x)εkl(x)+h jk(x)Ek(x), (5)

where ci jkl(x) , e jkl(x) and h jk(x) are the elastic, piezoelectric and dielectric mate-
rial tensors in a continuously nonhomogeneous piezoelectric medium, respectively.
The strain tensor εi j and the electric field vector E j are related to the displacements
ui and the electric potential ψ , respectively, as

εi j =
1
2

(ui, j +u j,i) , (6)

E j =−ψ, j . (7)

In the case of some crystal symmetries, one can formulate also the plane-deformation
problems (Patron and Kudryavtsev 1988). For instance, in the crystals of hexago-
nal symmetry (class6mm) with x3 being the 6-order symmetry axis and assuming
u2 = 0 as well as the independence of the field quantities on x2, i.e. (·),2 = 0, we
have ε22 = ε23 = ε12 = E2 = 0. Then, the constitutive equations (4) and (5) are
reduced to the following formsσ11

σ33
σ13

=

c11 c13 0
c13 c33 0
0 0 c44

 ε11
ε33
2ε13

−
 0 e31

0 e33
e15 0

[E1
E3

]

= C(x)

 ε11
ε33
2ε13

−L(x)
[

E1
E3

]
, (8)

[
D1
D3

]
=
[

0 0 e15
e31 e33 0

] ε11
ε33

2ε13

+
[

h11 0
0 h33

][
E1
E3

]

= G(x)

 ε11
ε33
2ε13

+ H(x)
[

E1
E3

]
, (9)

Recall that σ22 does not influence the governing equations, although it is not van-
ishing in general, since σ22 = c21ε11 + c23ε33.

The following essential and natural boundary conditions are assumed for the me-
chanical field

ui(x) = ũi(x), on Γu,

ti(x) = σi jn j = t̃i(x) , on Γt ,
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and for the electrical field

ψ(x) = ψ̃(x), on Γp,

niDi(x) = Q̃(x) , on Γq,

where Γu is the part of the global boundary with prescribed displacements, and
on Γt , Γp and Γq the traction vector, the electric potential and the surface charge
density are prescribed, respectively.

On the upper and the lower crack-face Γ+
c and Γ−c , self-equilibrated generalized

tractions are considered. Let‘s define the crack-opening displacement

∆u3(x,τ) = u3(x ∈ Γ
+
c ,τ)−u3(x ∈ Γ

−
c ,τ).

Further, four different kinds of the electrical boundary conditions are considered
on the crack-faces. The impermeable electrical crack-face condition

Di(x ∈ Γ
+
c ,τ) = Di(x ∈ Γ

−
c ,τ) = 0 (10)

denotes in a physical sense that both crack-faces are free of electrical displace-
ments. This would be correct for a medium inside the crack with electrical permit-
tivity κc of zero. In contrast, the permeable electrical crack-face condition,

Di(x ∈ Γ
+
c ,τ) = Di(x ∈ Γ

−
c ,τ)

ψ(x ∈ Γ
+
c ,τ)−ψ(x ∈ Γ

−
c ,τ) = 0, (11)

implies identical potentials on both crack-faces and as a consequence the electrical
crack-tip field vanishes. This condition would be correct either for a closed crack
with an infinitely thin dielectric medium between the crack-faces or for an open
crack with an infinite electrical permittivity. Since the impermeable as well as
the permeable crack-face conditions are physically not consistent and the crack-tip
fields have a major influence on the fracture parameters, Hao and Shen (1994) have
introduced the more realistic semi-permeable crack-face condition

D3(x ∈ Γ
+
c ,τ) = D3(x ∈ Γ

−
c ,τ) =−κc

ψ(x ∈ Γ+
c ,τ)−ψ(x ∈ Γ−c ,τ)

u3(x ∈ Γ
+
c ,τ)−u3(x ∈ Γ

−
c ,τ)

, (12)

where both opposite crack-faces are considered as a set of corresponding parallel
capacitors. In eq. (12), the electrical permittivity of the medium inside the crack
is described by κc = κr ·κ0, where κ0 = 0.854 · 10−12C/V m is the permittivity of
the vacuum and κr is a relative permittivity inside the crack. In contrast to the
impermeable and permeable crack-face conditions a non-linear relation between
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mechanical displacements, electrical displacements and electrical potential is now
present.

Landis (2004) considered energetically consistent boundary conditions on the crack-
faces, where an additional closing traction is added to the well-known semi-permeable
crack-face boundary conditions

D3(x ∈ Γ
+
c ,τ) = D3(x ∈ Γ

−
c ,τ) =−κc

ψ(x ∈ Γ+
c ,τ)−ψ(x ∈ Γ−c ,τ)

u3(x ∈ Γ
+
c ,τ)−u3(x ∈ Γ

−
c ,τ)

,

t3(x ∈ Γ
+
c ,τ) =−t3(x ∈ Γ

−
c ,τ) =

1
2

κc

[
ψ(x ∈ Γ+

c ,τ)−ψ(x ∈ Γ−c ,τ)
u3(x ∈ Γ

+
c ,τ)−u3(x ∈ Γ

−
c ,τ)

]2

. (13)

To solve the corresponding initial-boundary value problem, we apply the local in-
tegral equation method with meshless approximations. The MLPG method con-
structs a weak-form over the local fictitious subdomains such as Ωs, which is a
small region taken for each node inside the global domain [Atluri (2004)]. The
local subdomains overlap each other, and cover the whole global domain Ω. The
local subdomains could be of any geometrical shape and size. In the present paper,
the local subdomains are taken to be of a circular shape for simplicity. The local
weak-form of the governing equations (1) can be written as∫
∂Ωs

σi j(x, t)n j(x)u∗ik(x)dΓ−
∫
Ωs

σi j(x, t)u∗ik, j(x)dΩ

+
∫
Ωs

[−ρ üi(x, t)+Xi(x, t)]u∗ik(x)dΩ = 0, (14)

where ∂Ωs is the boundary of the local subdomain which consists of three parts
∂Ωs = Ls∪Γst ∪Γsu [Atluri, (2004)]. Here, Ls is the local boundary that is totally
inside the global domain, Γst is the part of the local boundary which coincides
with the global traction boundary, i.e., Γst = ∂Ωs∩Γt , and similarly Γsu is the part
of the local boundary that coincides with the global displacement boundary, i.e.,
Γsu = ∂Ωs∩Γu.

By choosing a Heaviside step function as the test function u∗ik(x) in each subdomain

u∗ik(x) =

{
δik at x ∈Ωs

0 at x /∈Ωs
,

the local weak-form (14) is converted into the following local boundary-domain
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integral equations∫
Ls+Γsu

ti(x,τ)dΓ−
∫
Ωs

ρ üi(x,τ)dΩ =−
∫

Γst

t̃i(x,τ)dΓ−
∫
Ωs

Xi(x,τ)dΩ. (15)

Equation (15) is recognized as the overall force equilibrium conditions on the sub-
domain Ωs. Note that the local integral equations (15) are valid for both the ho-
mogeneous and continuously nonhomogeneous solids. Nonhomogeneous material
properties are included in eq. (15) through the elastic and piezoelectric coefficients
involved in the traction components

ti(x,τ) =
[
ci jkl(x)uk,l(x,τ)+ eki j(x)ψ,k(x,τ)

]
n j(x).

Similarly, the local weak-form of the governing equation (2) can be written as∫
Ωs

[D j, j(x,τ)−R(x,τ)] v∗(x) dΩ = 0, (16)

where v∗(x) is a test function.

Applying the Gauss divergence theorem to the local weak-form (16) and choosing
the Heaviside step function as the test function v∗(x), one can obtain∫

Ls+Γsp

Q(x,τ)dΓ =−
∫

Γsq

Q̃(x,τ)dΓ+
∫
Ωs

R(x,τ)dΩ, (17)

where

Q(x,τ) = D j(x,τ)n j(x) =
[
e jkluk,l(x,τ)−h jkψ,k(x,τ)

]
n j.

In the MLPG method the test and the trial functions are not necessarily from the
same functional spaces. For internal nodes, the test function is chosen as a unit
step function with its support on the local subdomain. The trial functions, on the
other hand, are chosen to be the MLS approximations by using a number of nodes
spreading over the domain of influence. According to the MLS [Belytschko et al.,
(1996)] method, the approximation of the displacement field can be given as

uh(x) =
m

∑
i=1

pi(x)ai(x) = pT (x)a(x), (18)

where pT (x) = {p1(x), p2(x), ...pm(x)} is a vector of complete basis functions of
order m and a(x) = {a1(x),a2(x), ...am(x)} is a vector of unknown parameters
which depend on x. For example, in 2-D problems
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pT (x) = {1,x1,x3} for m=3

and

pT (x) =
{

1,x1,x3,x2
1,x1x3,x2

3
}

for m=6

are linear and quadratic basis functions, respectively. The basis functions are not
necessary to be polynomials. It is convenient to introduce r−1/2 - singularity for
secondary fields at the crack-tip vicinity for modelling of fracture problems [Flem-
ing et al., (1997)]. Then, the basis functions can be considered in the following
form

pT (x)= {1,x1,x3,
√

r cos(θ/2),
√

r sin(θ/2),
√

r sin(θ/2)sinθ ,
√

r cos(θ/2)sinθ}
for m=7,

where r and θ are polar coordinates with the crack-tip as the origin. The upper
given enriched basic functions represent all occurring terms in the asymptotic ex-
pansion of displacements at the crack-tip vicinity. Then, the density of the node
distribution in such a case can be lower than in the case of pure polynomial basis
functions in order to receive the same accuracy of results.

The approximated functions for the mechanical displacements and the electric po-
tential can be written as [Atluri, (2004)]

uh(x,τ) = ΦΦΦ
T (x) · û =

n

∑
a=1

φ
a(x)ûa(τ),

ψ
h(x,τ) =

n

∑
a=1

φ
a(x)ψ̂a(τ), (19)

where the nodal values ûa(τ) = (ûa
1(τ), ûa

3(τ))T and ψ̂a(τ) are fictitious parame-
ters for the displacements and the electric potential, respectively, and φ a(x) is the
shape function associated with the node a. The number of nodes n used for the
approximation is determined by the weight function wa(x). A 4th order spline-type
weight function is applied in the present work

wa(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
, 0≤ da ≤ ra

0, da ≥ ra
, (20)

where da = ‖x−xa‖ and ra is the size of the support domain. It is seen that the
C1−continuity is ensured over the entire domain, and therefore the continuity con-
ditions of the tractions and the electric charge are satisfied. In the MLS approx-
imation the rates of the convergence of the solution may depend upon the nodal
distance as well as the size of the support domain [Wen and Aliabadi (2007, 2008),
Wen et al., (2008)]. It should be noted that a smaller size of the subdomains may
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induce larger oscillations in the nodal shape functions [Atluri (2004)]. A necessary
condition for a regular MLS approximation is that at least m weight functions are
non-zero (i.e. n≥ m ) for each sample point x ∈Ω . This condition determines the
size of the support domain.

Then, the traction vector ti(x,τ) at a boundary point x ∈ ∂Ωs is approximated in
terms of the same nodal values ûa(τ) as

th(x,τ) = N(x)C(x)
n

∑
a=1

Ba(x)ûa(τ) +N(x)L(x)
n

∑
a=1

Pa(x)ψ̂a(τ), (21)

where the matrices C(x), L(x) are defined in eq. (8) and the matrix N(x) is related
to the normal vector n(x) on ∂Ωs by

N(x) =
[

n1 0 n3
0 n3 n1

]
,

and finally, the matrices Ba and Pa are represented by the gradients of the shape
functions as

Ba(x) =

φ a
,1 0
0 φ a

,3
φ a

,3 φ a
,1

 , Pa(x) =
[

φ a
,1

φ a
,3

]
.

Similarly the normal component of the electric displacement vector Q(x,τ)can be
approximated by

Qh(x,τ) = N1(x)G(x)
n

∑
a=1

Ba(x)ûa(τ)−N1(x)H(x)
n

∑
a=1

Pa(x)ψ̂a(τ), (22)

where the matrices G(x), H(x)are defined in eq. (9) and

N1(x) =
[
n1 n3

]
.

Satisfying the essential boundary conditions and making use of the approximation
formulae (19), one obtains the discretized form of these boundary conditions as

n
∑

a=1
φ a(ζζζ )ûa(τ) = ũ(ζζζ ,τ) for ζζζ ∈ Γu,

n

∑
a=1

φ
a(ζζζ )ψ̂a(τ) = ψ̃(ζζζ ,τ) for ζζζ ∈ Γp. (23)
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Furthermore, in view of the MLS-approximations (21) and (22) for the unknown
quantities in the local boundary-domain integral equations (15) and (17), we obtain
their discretized forms as

n

∑
a=1

 ∫
Ls+Γst

N(x)C(x)Ba(x)dΓ

 ûa(τ)−

∫
Ωs

ρ(x)ϕadΩ

 ¨̂ua
(τ)

+

+
n

∑
a=1

 ∫
Ls+Γst

N(x)L(x)Pa(x)dΓ

 ψ̂
a(τ) = −

∫
Γst

t̃(x,τ)dΓ−
∫
Ωs

X(x,τ)dΩ, (24)

n

∑
a=1

 ∫
Ls+Γsq

N1(x)G(x)Ba(x)dΓ

 ûa(τ)−
n

∑
a=1

 ∫
Ls+Γsq

N1(x)H(x)Pa(x)dΓ

 ψ̂
a(τ)

= −
∫

Γsq

Q̃(x,τ)dΓ +
∫
Ωs

R(x,τ)dΩ, (25)

which are considered on the sub-domains adjacent to the interior nodes as well as
to the boundary nodes on Γst and Γsq.

Collecting the discretized local boundary-domain integral equations together with
the discretized boundary conditions for the displacements and the electrical poten-
tial results in a complete system of ordinary differential equations and it can be
rearranged in such a way that all known quantities are on the r.h.s. Thus, in matrix
form the system becomes

Aẍ+Cx = Y. (26)

There are many time integration procedures for the solution of this system of
ordinary differential equations. In the present work, the Houbolt method is ap-
plied. In the Houbolt finite- difference scheme [Houbolt (1950)], the “acceleration”
(ü = ẍ) is expressed as

ẍ=
τ+∆τ

2xτ+∆τ −5xτ +4xτ−∆τ −xτ−2∆τ

∆τ2 , (27)

where ∆τ is the time-step.

Substituting eq. (27) into eq. (26), we get the following system of algebraic equa-
tions for the unknowns xτ+∆τ[

2
∆τ2 A+C

]
xτ+∆τ =

5A
∆τ2 xτ +A

1
∆τ2 {−4xτ−∆τ +xτ−2∆τ}+Y. (28)
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The value of the time-step has to be appropriately selected with respect to material
parameters (wave velocities) and time dependence of the boundary conditions.

3 Numerical procedure for non-linear crack-face boundary conditions

There are more possibilities to solve the boundary value problem with non-linear
crack-face boundary conditions. The simplest way is to use an iterative algorithm
at each time-step for electrical displacement in n-th iteration [Enderlein et al. 2005]

D(n)
3 (x,τ) =−κc

∆ψ(n−1)(x,τ)

∆u(n−1)
3 (x,τ)

. (29)

In the first iteration step impermeable boundary conditions are considered on the
crack-faces. This approach requires a lot of iteration steps if the crack opening
displacement is small at a low load level. More efficient is the Newton-Raphson
scheme. If the residuum of the electrical displacement expression is denoted as

R(D3) = D3(x, t)+κc
∆ψ(x,τ,D3)
∆u3(x,τ,D3)

the electrical displacement value at (n+1)-th iteration step is given by the Newton-
Raphson scheme as

D(n+1)
3 = D(n)

3 −

[
∂R(D(n)

3 )

∂D(n)
3

]−1

R(D(n)
3 ).

Replacing the differentiation by the ratio of differences, one obtains

D(n+1)
3 = D(n)

3 −

1+κc
∆u(n−1)

3 ∆ψ(n)−∆u(n)
3 ∆ψ(n−1)(

∆u(n)
3

)2(
D(n)

3 −D(n−1)
3

)

−1(

D(n)
3 +κc

∆ψ(n)

∆u(n)
3

)
.

(30)

Denda (2008) suggested a numerical procedure based on the knowledge that the
semi-permeable solution is somewhere in between the impermeable and permeable
crack solutions. The iteration procedure has the following steps applied in each
time-step (not distinguished in the notations):

1. compute the electrical potential jump ∆ψ(0)(x) on the crack for given prob-
lem with impermeable boundary conditions
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2. in the k-th iteration step, slightly reduce the value of the electrical potential
jump by a control parameter pk, ∆ψ(x, pk) = pk∆ψ(x, pk−1), where pk ∈
(0,1) and ∆ψ(x, p0) = ∆ψ(0)(x)

3. solving the problem with prescribed ∆ψ(x, pk), compute the electrical dis-
placement D3(x, pk) and ∆u3(x, pk)

4. calculate the crack permittivity κc(x, pk) =−D3(x, pk)∆u3(x,pk)
∆ψ(x,pk)

5. calculate the average value of the crack permittivity κ̄c(pk) from all nodal
values computed in the previous step

6. repeat the steps b) to f) for progressively reduced value of the control param-
eter pk+1 to plot κ̄c(pk)- pk curve

7. the intersection of the κ̄c(pk)- pk curve and the horizontal line with pre-
scribed crack permittivity κc gives the control parameter value pc for which
the semi-permeable solution can be obtained easily.

The Denda’s approach can be easily extended to the model with energetically con-
sistent boundary conditions on the crack-faces. In numerical examples, we have
used the Newton-Raphson scheme.

4 Computation of the dynamic intensity factors

Jin and Noda (1994), and Eischen (1987) showed that the nature of the stress singu-
larity in continuously nonhomogeneous solids has precisely the same well-known
form applicable to homogeneous elastic materials. Later Sladek et al. (2007b)
extended that validity to piezoelectric materials too. In the crack-tip vicinity, the
displacements as well as the electric potential show the classical

√
r asymptotic

behaviour. Hence, correspondingly, the stresses and the electrical displacements
exhibit a 1/

√
r -behaviour, where r is the radial polar coordinate with the origin

at the crack-tip. For cracks in homogeneous piezoelectric media the asymptotic
behaviour of the field quantities has been given by Sosa (1991) and Pak (1992).
If polar coordinates (r,θ) with the origin at the crack-tip are used, the electrome-
chanical fields can be written as

σi j(r,θ) =
1√
2πr

4

∑
N=1

KN f N
i j (θ), Di(r,θ) =

1√
2πr

4

∑
N=1

KNgN
i (θ), (31)

ui(r,θ) =

√
2r
π

4

∑
N=1

KNdN
i (θ), ψ(r,θ) =

√
2r
π

4

∑
N=1

KNν
N(θ), (32)
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where KI , KII and KIII denote the well-known mechanical stress intensity factors
(SIF) and KIV is the electrical displacement intensity factor (EDIF). The angular
functions f N

i j (θ), gN
i (θ), dN

i (θ) and νN(θ) are dependent on the material proper-
ties only and given by

f N
i1 =−

4

∑
α=1

Re
{

MiαNαN pα√
cosθ + pα sinθ

}
, f N

i2 =
4

∑
α=1

Re
{

MiαNαN√
cosθ + pα sinθ

}
,

gN
1 =−

4

∑
α=1

Re
{

M4αNαN pα√
cosθ + pα sinθ

}
, gN

2 =
4

∑
α=1

Re
{

M4αNαN√
cosθ + pα sinθ

}
,

dN
i =

4

∑
α=1

Re
{

AiαNαN
√

cosθ + pα sinθ

}
,

ν
N =

4

∑
α=1

Re
{

A4αNαN
√

cosθ + pα sinθ

}
,

where pα are eigenvalues of the characteristic equations for an anisotropic body
and the matrices Aiα , Miα and NαN are defined in the work [Park and Sun (1995].
From equations (32) one can derive the expressions for the generalized intensity
factorsKII

KI

KIV

= lim
r→0

√
2π

r
H

u1
u3
ψ

 , (33)

where the matrix H is determined by the material properties (Suo et al. 1992,
Wünsche et al. 2010) and/or

KI = lim
r→0

√
2πrσ33(r,0),

KII = lim
r→0

√
2πrσ13(r,0),

KIV = lim
r→0

√
2πrD3(r,0).
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5 Numerical examples

5.1 A central crack in a finite homogeneous strip

In the first example a straight central crack in a homogeneous finite strip under uni-
form mechanical and electrical loads is analyzed (Fig. 1). The strip is subjected
to a stationary or impact mechanical load with Heaviside time variation and the
intensity σ0 = 108Pa and an electrical load with D0 = 10−2Cm−2 on the top side
of the strip. Homogeneous material properties are selected to test the present com-
putational method. The material coefficients of the strip correspond to the PZT-4
material and they are given by

c11 = 13.9 ·1010Nm−2 , c13 = 7.43 ·1010Nm−2 ,

c33 = 11.5 ·1010Nm−2 , c44 = 2.56 ·1010Nm−2 ,

e15 = 12.7Cm−2 , e31 =−5.2Cm−2 , e33 = 15.1Cm−2 ,

h11 = 6.46 ·10−9C(V m)−1 , h33 = 5.62 ·10−9C(V m)−1 , ρ = 7500kg / m3 .

The crack-length 2a = 1.0m, strip width ratio a/w = 0.4, and height of the strip
h = 1.2w are considered. Due to the symmetry of the problem with respect to the
crack-line, only a quarter of the specimen is numerically analyzed. The mechan-
ical displacement and the electrical potential fields in the quarter of the specimen
are approximated by using 930 (31x30) nodes equidistantly distributed. The local
subdomains are considered to be circular with a radius rloc = 0.033m.

Numerical results for the crack displacement u3 along x1-direction for imperme-
able, permeable and semi-permeable crack conditions are given in Fig. 2. A pure
mechanical static load σ0 = 108Pa on the top side of the specimen is considered.
One can observe a good agreement between the BIE and present MLPG results
for all three electrical crack-face boundary conditions. The largest crack opening
displacement is occurred at permeable electrical crack-face conditions.

From the comparison of the crack opening displacements for semi-permeable and
energetically consistent crack boundary conditions (exact) on Fig. 3 it is seen a
vanishing influence of closing tractions in energetically consistent crack boundary
conditions on this value.

The variations of the electrical potential along the crack for impermeable and semi-
permeable crack boundary conditions are given in Fig. 4. The BIE and MLPG
results are in a good agreement. The electrical potential along the crack for the
permeable crack-face condition is vanishing. The closing tractions in energeti-
cally consistent crack boundary conditions have almost vanishing influence on the
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Figure 1: Central crack in a finite homogeneous strip
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Figure 2: Variations of the crack displacement with the normalized coordinate
x1/2a for a pure mechanical loading σ0 = 108Pa
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Figure 3: Comparison of the crack displacement for semi-permeable and energeti-
cally consistent crack b.c. under a pure mechanical loading σ0 = 108Pa
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Figure 4: Variations of the electrical potential with the normalized coordinate x1/2a
for a pure mechanical load
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Figure 5: Variations of the crack displacement with the normalized coordinate
x1/2a for a combination of mechanical and electrical loads

electrical potential, therefore the results are very close to the potential for the semi-
permeable crack-face boundary condition.

In the next example we consider a combination of mechanical loadσ0 = 108Pa and
electrical load withD0 = 10−2Cm−2 on the top side of the strip. The crack opening
displacement for impermeable, permeable and semi-permeable crack-face condi-
tions are given in Fig. 5. One can observe again a good agreement of the present
MLPG and the BIE results. At considered loading levels the semi-permeable results
are closer to impermeable crack opening displacement than in the previous pure
mechanical load. At the combined load the displacement values are larger. Smaller
crack opening displacement is occurring at a lower load level. Therefore, we have
considered a pure mechanical load with σ0 = 107Pa. Smaller displacement values
at the same crack permittivity and semi-permeable crack-face boundary conditions
are approaching permeable quantities in Fig. 6. It shows on a nonlinear character
of semi-permeable boundary conditions.

The variations of the electrical potential along the crack for impermeable and semi-
permeable crack-face boundary conditions at the combined load are given in Fig.
7. The BIE and MLPG results are in a good agreement.

Sladek at al. (2007a) observed that the electrical potential on the crack ψ caused by
a remote stress loading σ0 is identical to the crack opening displacementu3 caused
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by a remote electric displacement loading D0 as a consequence of the extended
Betti’s reciprocal theorem. For a pure positive electrical displacement loading KI =
0, therefore we obtain from eq. (32) a positive crack opening displacement u3 and
a negative electrical potentialψ . It is interesting to note that for a pure mechanical
load, a finite value of the potential ψ on the crack does not result in a finite value
of the EDIF KIV . It means that the crack opening displacement u3 and the potential
jump ψ are coupled, but the SIF and the EDIF in this case are uncoupled. For a
pure mechanical load we have obtained Kstat

I = 1.428Pa ·m1/2 at σ0 = 108Pa .
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Figure 6: Variations of the crack opening displacement with the normalized coor-
dinate x1/2a for a pure mechanical loading σ0 = 107Pa

In the next example we analyze the same cracked strip under a pure mechanical load
with Heaviside time variationσ0H(t−0). The impermeable conditions are consid-
ered on the crack-faces. The normalized stress intensity factor KI/Kstat

I and elec-
trical displacement factor ΛKIV /Kstat

I are compared with the BIE results in Figs.
8 and 9, where Λ = e22/h22 . The BIE results are obtained by a combination of
the collocation method and the Galerkin-method with 102 linear elements for the
full specimen and 100 time-steps. The temporal discretization is performed by the
collocation method, while the spatial discretization is carried out by the Galerkin-
method.

One can observe very good agreement of BIE and MLPG results for the SIF in Fig.
8. A slight difference is observed for the EDIF, since the value of EDIF is small for
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Figure 7: Variations of the electrical potential with the normalized coordinate x1/2a
for a combination of mechanical and electrical loads
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Figure 8: Temporal variation of the normalized SIF for a central crack in a strip
under a pure mechanical impact load withσ0 = 108Pa
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Figure 9: Temporal variation of the normalized EDIF for a central crack in a strip
under a pure mechanical impact load withσ0 = 108Pa

impermeable conditions. The peak value of the dynamic SIF is more than doubled
with respect to the static one. The electrical displacement intensity factor for a
pure static mechanical load is vanishing as we stated above. Contrary to the static
case the EDIF is not vanishing in the dynamic case with a finite velocity of wave
propagation for a pure mechanical load. From the Maxwell‘s equations, it is known
that the velocity of electromagnetic waves is equal to the speed of light, which is
much larger than the velocity of elastic waves. The response of the electric field
is immediate, while that of the elastic ones is taken as finite because of the finite
velocity of elastic waves. On the other hand, in a static case, the response of both
the mechanical (strain, stress) and electrical fields is immediate. Thus, the SIF is
vanishing in such a case since the stress σ33 is zero ahead of the crack-tip on the
crack-line because of the immediate electromechanical interaction. In the dynamic
case the stress field is coupled not only to the immediate electric field, but also to
inertia forces [Enderlein et al. (2005)]. One can observe from Fig. 10 that the three
various electrical crack-face conditions have almost vanishing influence on the SIF
in a cracked strip under a pure impact mechanical load.

However, the electrical crack-face conditions have strong influence on the EDIF for
a cracked strip under a pure mechanical impact load. The largest EDIF corresponds
to permeable crack-face conditions. The variation of the normalized dynamic EDIF
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Figure 10: Influence of electrical crack-face conditions on the SIF for a cracked
strip under a pure mechanical impact load σ0H(t−0)
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Figure 11: Influence of electrical crack-face conditions on the EDIF for a cracked
strip under a pure mechanical impact load σ0H(t−0)
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for permeable electrical crack-face boundary conditions is similar to the variation
of the normalized dynamic SIF. The smallest EDIF corresponds to the impermeable
crack-face conditions.

5.2 An edge crack in a finite FGPM strip

An edge crack in a finite strip is analyzed in the second example. The sample
geometry is given in Fig. 12 with the following values: a = 0.5, a/w = 0.4 and
h/w = 1.2. Due to the symmetry with respect to x1 only a half of the specimen is
modeled. We have used 930 nodes equidistantly distributed for the MLS approx-
imation of the physical fields. On the top of the strip a uniform impact tension
σ0 = 108Pa and electrical displacement D0 = 10−2Cm−2 are applied, respectively.

Functionally graded material properties in x1 -direction are considered. An expo-
nential variation for the elastic, piezoelectric and dielectric tensors is used

ci jkl(x) = ci jkl0 exp(γx1),

ei jk(x) = ei jk0 exp(γx1),

hi j(x) = hi j0 exp(γx1), (34)

where ci jkl0 , ei jk0 and hi j0 correspond to the material parameters used in the pre-
vious example.

First, we present numerical results for a homogeneous cracked strip. The varia-
tions of the crack opening displacement along the crack-line for four various crack
conditions are presented in Fig. 13. Similarly to the previous central crack the
largest crack opening displacement is observed at permeable crack-face condition.
The results for semi-permeable and energetically consistent crack conditions are
very similar and they are approaching to impermeable results. The variations of the
electrical potential for three various electrical crack-face conditions are presented
in Fig. 14. The results for semi-permeable and energetically consistent crack-face
conditions are again very similar. Their magnitudes are smaller than the ones for
permeable crack-face conditions.

In the next example we analyze the same cracked strip under a combination of
mechanical load with Heaviside time variationσ0H(t−0), whereσ0 = 108Pa, and
electrical impact load with D0 = 10−2Cm−2 on the top side of the strip. Both im-
permeable and permeable conditions are considered on the crack-faces. The nor-
malized stress intensity factor KI/Kstat

I for both crack-face boundary conditions are
presented in Figs. 15 and 16. The static stress intensity factor for the considered
load and geometry is equal to Kstat

I = 2.642Pam1 / 2. One can observe a quite good
agreement of the FEM using ANSYS and the MLPG results. In the MLPG analysis
we have used the time-step ∆τ = 0.2 ·10−4s.
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Figure 12: An edge crack in a finite strip with graded material properties in x1 -
direction

One can observe from Fig. 17 that the three various electrical crack-face conditions
have almost vanishing influence on the SIF in a cracked strip under a combined
electro-mechanical impact load.

The normalized electrical displacement intensity factor ΛKIV /Kstat
I is presented in

Fig. 18. The electrical crack-face conditions have an influence on the EDIF for a
cracked strip under a combined electro-mechanical impact load. The largest EDIF
corresponds to the permeable crack-face condition.

Now, we consider the same exponential gradient for all material coefficients with
the value γ = 2m−1 in the numerical calculations. Then, all material parameters
at the crack-tip are e1 = 2.718 times larger than in the homogeneous material.
Three various electrical boundary conditions on the crack-faces are considered.
The numerical results for normalized SIF and EDIF are given in Figs. 19 and 20.

One can observe from Figs. 19 and 20 that the three various electrical crack-face
conditions have almost vanishing influence on the SIF in the FGPM cracked strip.
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Figure 13: Variations of the crack displacement with the normalized coordinate
x1/2a for a combination of mechanical and electrical loads in a homogeneous strip
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Figure 14: Variations of the electrical potential with the normalized coordinate
x1/2a for a combination of mechanical and electrical loads in a homogeneous strip
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Figure 15: Temporal variation of the normalized SIF for an edge crack in a strip
under a combined impact load with impermeable crack-face b.c.
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Figure 16: Temporal variation of the normalized SIF for an edge crack in a strip
under a combined impact load with permeable crack-face b.c.
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Figure 17: Influence of electrical crack-face conditions on the SIF for a cracked
strip under a combined electro-mechanical impact load
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Figure 18: Influence of electrical crack-face conditions on the EDIF for a cracked
strip under a combined electro-mechanical impact load
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Figure 19: Influence of electrical crack-face conditions on the SIF for the FGPM
cracked strip under a combined electro-mechanical impact load
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Figure 20: Influence of electrical crack-face conditions on the EDIF for the FGPM
cracked strip under a combined electro-mechanical impact load

However, the electrical crack-face conditions have strong influence on the EDIF.
Similar phenomenon has been observed in the previous example with a central
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crack in a homogeneous material. The largest EDIF corresponds to permeable
crack-face condition. The variation of the normalized dynamic EDIF for permeable
electrical crack-face boundary condition is similar to the variation of the normal-
ized dynamic SIF. The smallest EDIF corresponds to the impermeable crack-face
condition.

The influence of the material gradation on the stress intensity factor and the elec-
trical displacement intensity factor is analyzed too. The temporal variations of the
SIF and the EDIF in the cracked FGPM strip are presented in Figs. 21 and 22,
respectively. Numerical results are given for semi-permeable boundary conditions
on the crack-faces.
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Figure 21: Temporal variations of the normalized SIF for an edge crack in a homo-
geneous and FGPM strip with semi-permeable crack-face condition

For a material gradation of the mechanical properties in the x1 -direction and a
uniform mass density, the wave propagation is growing with x1 . Therefore, the
peak value of the SIF is reached in a shorter time instant in the FGPM strip than in
a homogeneous one. The maximum values of the SIF are almost the same in both
homogeneous and FGPM cracked strip. Similar conclusion can be drawn for the
EDIF.



214 Copyright © 2010 Tech Science Press CMES, vol.68, no.2, pp.185-219, 2010

 28

-0.5

0

0.5

1

0 0.001 0.002 0.003 0.004

time [sec]

N
or

m
al

iz
ed

 E
D

IF

homogeneous

MLPG

 
Fig. 22 Temporal variations of the normalized EDIF for an edge crack in a homogeneous and 

FGPM strip with semi-permeable crack-face condition  
 

For a material gradation of the mechanical properties in the 1x -direction and a uniform mass 
density, the wave propagation is growing with 1x . Therefore, the peak value of the SIF is 
reached in a shorter time instant in the FGPM strip than in a homogeneous one. The maximum 
values of the SIF are almost the same in both homogeneous and FGPM cracked strip. Similar 
conclusion can be drawn for the EDIF. 
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Figure 22: Temporal variations of the normalized EDIF for an edge crack in a
homogeneous and FGPM strip with semi-permeable crack-face condition

6 Conclusions

A meshless local Petrov-Galerkin method (MLPG) is presented for 2-D crack prob-
lems in homogeneous and functionally graded piezoelectric materials. The linear
MLPG solvers for the impermeable and permeable cracks are developed first and
then an iterative procedure to reach the semi-permeable crack model is proposed.
Energetically consistent boundary conditions on the crack-faces are considered too.
This model is leading to consistency of total and crack-tip energy release rates. An
additional closing traction is added to the well-known semi-permeable crack-face
boundary conditions.

The governing partial differential equations are satisfied in a weak-form on small
fictitious subdomains. A unit step function is used as the test function in the local
weak-form of the governing partial differential equations on small circular subdo-
mains spread on the analyzed domain. The moving least-squares (MLS) scheme
is adopted for the approximation of the physical field quantities. The system of
the ordinary differential equations of the second order resulting from the equations
of motion is solved by the Houbolt finite-difference scheme as a time-stepping
method. The proposed method is a truly meshless method, which requires neither
domain elements nor background cells in either the interpolation or the integration.

The results in several numerical examples show a strong coupling between the
stress intensity factor and the electrical displacement intensity factor under the dy-
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namic loadings although no coupling is observed for static loads. An impact load
is leading to a dynamic overshoot of the static intensity factors. A gradation of the
material properties affects both intensity factors.

The present method is an alternative numerical tool to many existing computa-
tional methods such as the FEM and the BEM. The main advantage of the present
method is its simplicity. Compared to the conventional BEM, the present method
requires no fundamental solutions and all integrands in the present formulation are
regular. Thus, no special numerical techniques are required to evaluate the inte-
grals. It should be noted here that the expressions of the fundamental solutions
for piezoelectric materials with continuously varying properties are not available.
The present formulation also possesses the generality of the FEM. Therefore, the
method is promising for numerical analysis of multi-field problems.
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