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Evolutionary Algorithms Applied to Estimation of
Thermal Property by Inverse Problem

V.C. Mariani1, V. J. Neckel2 and L. S. Coelho3

Abstract: In this study an inverse heat conduction problem using two optimiza-
tion methods to estimate apparent thermal diffusivity at different drying tempera-
tures is solved. Temperature and moisture versus time were obtained numerically
using heat and mass transfer equations with drying temperatures in the range be-
tween 20◦C to 70◦C. The solution of the partial differential equation is made with
a finite difference method coupled to optimization techniques of Differential Evo-
lution (DE) and Particle Swarm Optimization (PSO) used in inverse problem. Sta-
tistical analysis shows no significant differences between reported and estimated
curves, and no remarkable differences between results obtained using DE and PSO
in 30 runs. The convective and evaporative effects and shrinkage assumptions in
the model provides greater reliability on the calculated thermal diffusivity.

Keywords: Inverse problem, Thermal diffusivity, Optimization, Differential evo-
lution, Particle swarm optimization, Finite difference method.

1 Introduction

There are numerous methods to measure thermal diffusivity proposed in the spe-
cialized literature. Nevertheless, most of them need relatively complex instrumen-
tation or experimental assemblies and demand an expertise of the thermal phenom-
ena. Sweat (1986) recommends determination of thermal diffusivities from exper-
imentally obtained values for thermal conductivity, specific heat and mass density.
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Growing interest has recently been evidenced in the analysis and solution of in-
verse problems in different areas, and some study specifically obtaining thermal
properties. For example, Liu et al. (2007) identify thermophysical parameters of
the inverse heat conduction problems governed by linear parabolic partial differen-
tial equations (PDEs) establishing one-step group preserving scheme for the semi-
discretization of PDEs. Liu and Atluri (2008) developed a fictitious time integra-
tion method (FTIM) to find the potential function, impedance function or weighting
function, in a discretized manner by inverse problem. Liu and Atluri (2008) solve
the inverse Sturm-Liouville problem applying Lie-group and FTIM methods, with
significant improved accuracy. Liu (2008) consider a Lavrentiev regularization and
Fredholm integral equation to solve an inverse problem of Laplace, Cauchy, as well
as the problem of unknown Robin coefficient. The Calderón inverse problem is re-
duced to an inverse Cauchy and parameter identification problem in Liu and Atluri
(2010). Mendonça et al. (2005) and Simpson and Cortés (2004) using the inverse
method to estimate thermophysical properties of foods.

The meshless local Petrov-Galerkin method is used to solve the inverse heat con-
duction problem predicting the distribution of the heat transfer coefficient on the
boundary of bidimensional and axisymmetric bodies in Sladek et al. (2009). The
method of fundamental solutions is coupled with the boundary control technique to
solve the Cauchy problems of the Laplace equations by Ling and Takeuchi (2008).

An inverse forced vibration problem is studied in Huang and Shih (2007) to esti-
mate the unknown time-dependent applied force and moment for an Euler-Bernoulli
beam. Marin et al. (2008) investigate the reconstruction of a divergence-free sur-
face current distribution in the framework of static electromagnetism. Solvability
conditions of an inverse problem for non-stationary kinetic equation is formulated
by Yildiz (2009).

Many papers reported in the literature involving inverse problems use determin-
istic methods, based on gradient information, to minimize the objective function
(Khachf et al., 2002). Although such optimization methods can lead to local rather
than global minima, their main advantage lies in their good convergence rate. New
optimization methodologies are being used to solve inverse problems, particularly
stochastic approaches, which usually supply a good solution or until the global
optimum; however, the computational time they require can exceeds that of de-
terministic methods (Wood (1996), Suram et al. (2005)). Other techniques based
on artificial intelligence field, such as genetic algorithms and artificial neural net-
works, have been used for the solution of inverse problems (Ayhan et al. (2004),
Sablani et al. (2005); Mariani and Coelho (2009a, 2009b), Silva et al. (2009)).

This paper presents a procedure to estimate apparent thermal diffusivity as a func-
tion of the moisture content for a range of numerical/experimental temperatures,
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using Differential Evolution and Particle Swarm Optimization for obtain param-
eters of piecewise function through of inverse method. The problem considered
here is relevant in food processing operations, such as the analysis of transient heat
transfer during the drying, cooling or freezing of products in continuous systems,
which requires knowledge of the thermal properties of foods.

Thus the main objective of this work is to analyze and validate two stochastic op-
timization methods, Differential Evolution and Particle Swarm Optimization, ap-
plied in problem inverse for determination of apparent thermal diffusivity in the
range between 20◦C to 70◦C for drying temperature. The second objective is to
study heat and mass transfer aspects during drying process and use transient tem-
peratures to estimate the apparent thermal diffusivity as a function of the moisture
content.

The remainder of this paper is organized as follows: section 2 presents the heat
mass transfer equations, while section 3 explain the fundamentals of inverse prob-
lem, optimization methods, and thermophysical properties. Subsequently, section
4 provides the analysis of results. Lastly, conclusion is given in the section 5.

2 Heat and Mass Transfer Equations

The method used to estimate apparent thermal diffusivity was based on the conduc-
tion heat transfer equation. To simplify the problem the following hypotheses were
considered:

(i) The body is represented in the geometric form of an infinite cylinder of length
L (m) and radius R (m) defined between [0; R], where R « L; thus, the longi-
tudinal heat and moisture transfer were neglected and the axial symmetry was
considered.

(ii) The thermal diffusivity was considered as a function of moisture content dur-
ing drying.

(iii) The body is considered homogeneous.

By according to Figure 1, one of the boundaries is in contact with the surround-
ing air thus resulting in a convective boundary condition for both temperature and
moisture content. The conservation equations proposed with associated initial and
boundary conditions for the modeling of such physical problem involving the en-
ergy equation, based on Fourier’s law and mass transfer equation described by
Fick’s unidirectional diffusion equation (Crank, 1975; Smith, 1985) are as follows:

∂T
∂ t

=
1
r

∂

∂ r

(
rα

∂T
∂ r

)
, (1)
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Figure 1: Computational domain.

∂X
∂ t

=
1
r

∂

∂ r

(
rDe f

∂X
∂ r

)
, (2)

where α (m2/s) is the thermal diffusivity, T (◦C) is the internal temperature, De f

(m2/s) is the effective mass diffusivity, X (kgw/kgdm) is the moisture content (dry
basis), r (m) is the transfer direction and t (s) is the time.

As initial condition, it was considered that initial temperature and moisture of the
food are uniform, Eqs. (3) and (4). Symmetry conditions were considered at the
banana geometric center, Eqs. (5) and (7). Convective and evaporative effects due
to moisture and heat transfer at surface, Eqs. (6) and (8), were considered.

Initial conditions:

T (r,0) = T 0, ∀r, (3)

X(r,0) = X0, ∀r, (4)

Boundary conditions:

∂T
∂ r

)
r=0

= 0, (5)

−k
∂T
∂ r

)
r=R

= h(TR−Te)+ρs∆r
∂X
∂ t

[h f g + cv(TR−Te)] , (6)

∂X
∂ r

)
r=0

= 0, (7)

−De f
∂X
∂ r

)
r=R

= hm(XR−Xe), (8)

where k(W/m◦C) is the thermal conductivity of the fruit, h(W/m2oC) is the heat
transfer convective coefficient, ∆r is the spatial mesh step, ρs = 1970 (kg/m3) is the
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dry solid density, h f g (J/kg) represents the latent heat of vaporization of water, cv

(J/kg.K) is the specific heat of vapor of water, both obtained by air dry conditions

X = 1
R

R∫
0

X(r, t)dr (kgw/kgdm) is the average moisture content in the section and hm

(m/s) is the mass transfer convective coefficient. Due to the characteristics of the
mathematical problem (one-dimension and homogeneous material), the simpler fi-
nite difference technique (Crank, 1975) can be used rather than the finite element
method or finite volume method for the solution of these partial differential equa-
tions. In this work, an explicit scheme was selected. Using this numerical scheme,
the Eq. (1) can be described and approximated in the following terms,(

T t+∆t
r −T t

r

∆t
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=

α
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[
r1/2

(
T t

r+1−T t
r +T t+∆t

r+1 −T t+∆t
r

)
−

r−1/2
(
T t

r −T t
r−1 +T t+∆t

r −T t+∆t
r−1

) ]
(9)

The Eq. (1) at r=0 can be replaced by ∂T
∂ t = 2 ∂

∂ r

(
α

∂T
∂ r

)
, thus at the food center

(Figure 1) symmetric condition was considered where Tr+1 = Tr−1, we can write
this equation in the discretized form as follows:(
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To boundary condition at the surface, since Eq. (6), the solid temperature can be
calculated as follows,

T t+∆t
R =

[
T t+∆t

R−1 + h∆r
k Te− ρs∆r2

k

(
X t+∆t−X t

∆t

)
(h f g− cvTe)

]
[
1+ h∆r

k + ρs∆r2cv
k

(
X t+∆t−X t

∆t

)] (11)

Substituting Eq. (11) into Eq. (9) we obtain the temperature T t+∆t
R−1 . The discretiza-

tion of the Eq. (2) is omitted here due to its analogy with Eq. (1).

3 Inverse Problem

Knowing the food’s geometry and physical properties, as well as the boundary
and initial conditions, enables one to solve Eqs. (1) to (8), thus determining the
transient temperature and mass distribution in the food. This type of problem is
called a direct problem. If any of these magnitudes or a combination of them is
unknown, but experimental data are available on the temperature measured inside
and/or on the external surface of the food, we have an inverse problem that allows
one to determine the unknown magnitudes, provided those data contain sufficient
information.
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The interest of the present work is to estimate the apparent thermal diffusivity using
experimental data of the temperature obtained experimentally at the center of the
banana during a time interval. In this work is desired to minimize the difference
between experimental and predicted temperatures. Mathematically it is desired to
minimize the objective function,

f =

√
∑

n
j=1 (τ j

0−T j
0 (α))2

n
, (12)

where T j
0 (◦C) is the temperature of the banana at central node, r = 0, calculated

numerically by the explicit finite difference method, j is the time indicator,τ j
0 (◦C)

is the experimental temperature of the banana at central thermocouple, r = 0, and n
is the number of samples.

In most of the techniques developed to solve inverse problems, the numerical model
must be able to solve the direct problem with values arbitrated to the magnitudes to
be determined. Since the procedures for the solution are usually iterative, the direct
problem must be solved several times. Thus, it is desirable to have a precise method
for the solution of the direct problem that requires a relatively short computational
time. The Differential Evolution and Particle Swarm Optimization approaches were
used as the optimization technique and are described as follows.

3.1 Differential Evolution (DE)

Evolutionary algorithms are computer-based problem-solving systems of evolu-
tionary computation area based on principles of evolution theory. The interest in
evolutionary algorithms is increasing quickly, due to robust and powerful adap-
tive search mechanisms these algorithms. Evolutionary algorithms have been used
in many problems, dealing with multidimensional and multimodal search. There
are a variety of evolutionary models that have been proposed and studied, such
as genetic algorithms, evolution strategy, evolutionary programming, genetic pro-
gramming, and recently differential evolution that are referred as evolutionary al-
gorithms. They share a common conceptual base of simulating the evolution of
individual structures via selection and reproduction procedure. The basic idea is
to maintain a population of candidate solutions that evolve under selective pres-
sure that favors better solutions (Goldberg (1989), Bäck et al. (1997), Coelho and
Mariani (2007)).

Differential Evolution (DE) is a population-based stochastic function minimized
(or maximized) relating to evolutionary computation, whose simple yet powerful
and straightforward features make it very attractive for numerical optimization. DE
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combines simple arithmetical operators with the classical operators of recombina-
tion, mutation and selection to evolve from a randomly generated starting popula-
tion to a final solution.

DE differs from conventional genetic algorithms in its use of perturbing vectors,
which are the difference between two randomly chosen parameter vectors. The
DE algorithm was first introduced by Storn and Price (1995), and was successfully
applied in the optimization of some well-known non-linear, non-differentiable and
non-convex functions by Storn and Price (1997).

The different variants of DE are classified using the following notation: DE/φ /β /δ ,
where φ indicates the method for selecting the parent chromosome that will form
the base of the mutated vector, β indicates the number of difference vectors used to
perturb the base chromosome, and δ indicates the recombination mechanism used
to create the offspring population. The bin acronym indicates that the recombina-
tion is controlled by various independent binomial experiments.

The fundamental idea behind DE is a scheme whereby it generates the trial pa-
rameter vectors. If the cost of the trial vector is better than that of the target, then
the target vector is replaced by the trial vector in the next generation. The variant
implemented in Matlab (MathWorks) was the DE/rand/1/bin, which involved the
following steps and procedures:

Step 1: Parameter setup

The user chooses the parameters of population size, the boundary constraints of
optimization variables, the mutation factor (MF), the crossover rate (CR), and the
stopping criterion of maximum number of iterations (generations), Gmax.

Step 2: Initialization of an individual population

Set generation k = 0. Initialize one population of i = 1, ..,M individuals (real-
valued n-dimensional solution vectors) with random values generated according to
a uniform probability distribution in the n dimensional problem space. These initial
individual values are chosen randomly from within user-defined bounds (boundary
constraints).

Step 3: Evaluation of the individual population

Evaluate the fitness value related to a objective function of each individual in the
population.

Step 4: Mutation operation (or differential operation)

Mutation is an operation that adds one vector differential in the population accord-
ing to the following Eq. (13),

zi(k +1) = xi,r1(k)+MF · [xi,r2(k)− xi,r3(k)] (13)
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where i=1,2,...,M is the individual’s index of population; k is the generation (itera-
tion); xi(k) = [xi1(k), xi2(k), ..., xin(k)]

T stands for the position of the i-th individual
of population of N real-valued n-dimensional vectors; zi(k)= [zi1(k), zi2(k), ..., zin(k)]

T

stands for the position of the i-th individual of one mutant vector; r1, r2 and r3 are
mutually different integers and also different from the running index, i, randomly
selected with uniform distribution of the set {1, 2, · · · , i−1, i+1, · · · , N }; MF>
0 is a real parameter called mutation factor, which controls the amplification of the
difference between two individuals so as avoid stagnation and is usually taken from
the range [0.1, 1].

Step 5: Recombination operation

Following the mutation operation, recombination is applied to the population. Re-
combination is employed to generate a trial vector by replacing certain parameters
of the target vector with the corresponding parameters of a randomly generated
donor vector. For each vector, zi(k+1), an index rnbr(i) ∈ {1, 2, · · · ,n} is ran-
domly chosen using uniform distribution, and a trial vector, ui(k + 1) = [ui1(k +
1), ui2(k +1), ...,uin(k +1)]T , is generated with

ui j(k +1) =

{
zi j(k +1), if randb( j)≤CR or j = rnbr(i),
xi j(k), if randb( j) > CR or j 6= rnbr(i).

(14)

In the above equations, randb( j) is the j-th evaluation of a uniform random number
generation with [0, 1] and CR is a crossover or recombination rate in the range [0,
1]. The performance of a DE algorithm usually depends on three variables: the
population size N, the mutation factor MF, and the recombination rate CR.

Step 6: Selection operation

Selection is the procedure of producing better offspring. To decide whether or
not the vector ui(k+1) should be a member of the population comprising the next
generation, it is compared with the corresponding vector xi(k). Thus, if f denotes
the objective function under minimization, then

xi(k +1) =

{
ui(k +1), if f (u(k +1)) < f (xi(k)),
xi(k), otherwise.

(15)

In this case, the cost of each trial vector ui(k+1) is compared with that of its parent
target vector xi(k). If the cost function (objective function), f , of the target vector
xi(k) is lower than that of the trial vector, the target is allowed to advance to the
next generation. Otherwise, the target vector is replaced by trial vector in the next
generation.

Step 7: Verification of stop criterion
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Set the generation number for k = k + 1. Proceed to Step 3 until a stopping criterion
is met, usually Gmax. The stopping criterion depends on the type of problem.

Each optimization approach was implemented in environment computational Mat-
lab (MathWorks). To illustrate the effectiveness of the optimization procedure sev-
eral simulations were performed. The program was run on a 3.8 GHz Pentium IV
processor with 2 GB of RAM. In the tests, 30 independent runs were made for the
optimization method involving 30 different initial trial solutions. In optimization
tests, the setup of DE used was the following: MF = 0.3, CR = 0.8, the population
size N was 10 and the stopping criterion Gmax was 200 generations for the DE.

3.2 Particle Swarm Optimization (PSO)

The field of swarm intelligence is an emerging research area that presents features
of self-organization and cooperation principles among group members bio-inspired
on social insect societies (Dorigo and Stützle (2004), Kennedy et al. (2001), Bonabeau
et al. (1999)). Swarm intelligence is inspired by nature, based on the fact that the
live animals of a group contribute with their individual experiences to the group,
rendering it stronger to face other groups.

The particle swarm optimization (PSO) originally developed by Kennedy and Eber-
hart (1995) is a population-based swarm algorithm. Similarly to genetic algorithms
(Goldberg, 1989), PSO is an optimization tool based on a population, where each
member is seen as a particle, and each particle is one potential solution to the prob-
lem under analysis. Each particle in PSO has a randomized velocity associated to
it, which moves through the space of the problem. However, unlike genetic algo-
rithms, PSO does not have operators, such as crossover and mutation. PSO does
not implement the survival of the fittest individuals; rather, it implements the sim-
ulation of social behavior (Coelho and Mariani, 2008). The procedure for global
version of PSO is given by the following steps:

Step 1: Initialization of swarm positions and velocities:

Initialize a population (array) of particles with random positions and velocities in
the n dimensional problem space using uniform probability distribution function.

Step 2: Evaluation of particle’s fitness:

Evaluate each particle’s fitness value.

Step 3: Comparison to pbest (personal best):

Compare each particle’s fitness with the particle’s pbest. If the current value is
better than pbest, then set the pbest value to be equal to the current value, and the
pbest location to be equal to the current location in n-dimensional space.

Step 4: Comparison to gbest (global best):
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Compare the fitness with the population’s overall previous best. If the current value
is better than gbest, then reset gbest to the current particle’s array index and value.

Step 5: Updating of each particle’s velocity and position:

Change the velocity, vi, and position of the particle, xi, according to:

vi(t +1) = w · vi(t)+ c1 ·ud · [pi(t)− xi(t)]++c2 ·Ud · [pg(t)− xi(t)] (16)

xi(t +1) = xi(t)+∆t · vi(t +1) (17)

where w is the inertia weight; i=1,2,. . . ,N indicates the number of particles of popu-
lation (swarm); t=1,2,. . . , tmax, indicates the iterations, vi = [vi1, vi2,...,vin]

T stands
for the velocity of the i-th particle,xi = [xi1, xi2,...,xin]

T stands for the position of
the i-th particle of population, and pi = [pi1, pi2,...,pin]

T represents the best previ-
ous position of the i-th particle. Positive constants c1 and c2 are the cognitive and
social components, respectively, which are the acceleration constants responsible
for varying the particle velocity towards pbest and gbest, respectively. Index g rep-
resents the index of the best particle among all the particles in the swarm. Variables
ud and Ud are two random functions in the range [0, 1]. Equation (17) represents
the position update, according to its previous position and velocity, for∆t = 1.

Step 6: Repeating the evolutionary cycle:

Return to Step 2 until a stop criterion is met, usually a sufficiently good fitness or a
maximum number of iterations (generations).

3.3 Thermophysical Properties

Experimental results for temperature used in this study were obtained from Pérez
(1998), whose work presents results for six banana drying experiments with dif-
ferent conditions of velocity, temperature and relative humidity to air, which are
presented in Table 1, where X0 is the initial moisture content (kgw/kgdm) and Xe is
the equilibrium moisture content (kgw/kgdm).

The values for heat transfer convective coefficient were obtained based on the Nus-
selt number,h = kNu/d, where k (W/mK) is the air thermal conductivity, d (m)
is the diameter of the banana, Nu is the Nusselt number given by Nu = 0.97 +
0.68Re0.52Pr1/3, Pr is the Prandtl number, Re is the Reynolds number calculated
by Re = ρvd/µ , ρ (kg/m3) is the air density and µ (Pa.s) is the air viscosity. The
numerical simulations were performed for values of the heat transfer convective
coefficient, h, calculated from Eq. (18), in the range between 15 and 35 W/m2oC,
while the values of air velocities, v, are in the range between 0.33 and 0.39 m/s.
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The shrinkage phenomenon was included in this work through of an empirical
equation obtained from experimental results:

R =
[
0.4721+0.1819Xe +0.1819(X−Xe)

]
R0, (18)

Numerically, the shrinkage was treated like an elastic grid. This means that the
number of nodes in the radius was maintained constant and the radial subinterval
size was changed at each time step. The shrinkage is strong and fast at surface since
X decrease quite fast main at the beginning of the drying.

Table 1: Air drying conditions and parameters used in the experimental tests.

Test Te(◦C) R (m) X0 (kgw/kgdm) Xe(kgw/kgdm) t(h)
1 29.9 0.01613 3.43 0.1428 121.9
2 39.9 0.01569 3.17 0.0664 72.0
3 49.9 0.01522 3.21 0.0579 40.8
4 60.2 0.01530 2.96 0.0426 35.3
5 60.5 0.01506 3.04 0.0211 27.8
6 68.4 0.01545 2.95 0.0121 27.6

Note that several authors have derived equations to predict thermal properties.
Semi-theoretical equations (Krokida et al. (2001), Maroulis et al. (2002)) are
simple to use however these equations are not always in agreement with experi-
mental data. The functional forms of thermal properties are generally unknown,
especially in the case of foods with multiple compositions. A preliminary choice
of these functions could be an obstacle to a correct approximation of these thermal
properties dependent of the temperature and/or moisture, even if the parameters of
these functions are adjustable. The usual solution consists of representing these
functions by empirical polynomials, some authors have proposed replacing poly-
nomials by piecewise linear functions of temperature, and to adjust the parameters
by optimization approaches.

In this study it was proposed the use of a non-linear function dependent of dimen-
sionless average moisture content in section. The parameters were adjusted by
inverse method using a DE and PSO approaches, thus the number of parameters for
adjust is three, using the following equation

α(X∗) =
A1

AX∗
2 +A3

, (19)

where apparent thermal diffusivity is dependent of dimensionless average moisture
content in the section, X∗ = X̄−Xe

Xo−Xe
.
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4 Results and Discussion

The mathematical model described in Eqs. (1) to (8) considers some strict assump-
tions (homogeneous material and infinite cylinder). To characterize the apparent
thermal diffusivity variable as a function of the moisture content, several prelimi-
nary analyses were made. The best fitness of the least square sense, between exper-
imental and computational temperature is shown in Table 2. Deviations between
experimental and simulated temperatures were calculated using the multiple corre-
lation coefficient (Pearson coefficient), in successive trials as,

R2 = 1−
∑

(
τ

j
0−T j

0 (α)
)2

∑

(
τ

j
0− τ

j
0

)2 (20)

where τ
j

0 (◦C) is the mean experimental temperature of the banana at thermocouple
central, r = 0, and j is the time indicator. The R2 value of 0.9 to 1.0 is consid-
ered sufficient for that the apparent thermal diffusivity obtained in this work to be
well adjusted with the experimental data. In Table 2 are shown the values of the
constants presents in the equation (19) obtained in this work. The values for goal
function are shown in the last column in same table.

Table 2: Parameters of the Eq. (19) obtained using DE.

Cases A1.1011 A2 A3 R2 f
1 6.3197 0.3027 - 0.3000 0.9973 0.09
2 9.7950 0.3674 - 0.3658 0.9976 0.16
3 12.0060 0.4835 -0.4828 0.9994 0.04
4 11.5770 0.5000 - 0.4994 0.9982 0.21
5 17.6650 0.4689 -0.4673 0.9996 0.05
6 19.6654 0.4155 - 0.4141 0.9999 0.07

In Table 2 ones observe, through of R2 values that the results predicted using DE
optimization method have a good agreement with experimental values, showing
that the apparent thermal diffusivity obtained from the inverse method was fitted
by function presented in Eq. (19). In Table 3 the values for the same cases are
presented using PSO method.

Figure 2 shows predicted and experimental temperatures at the thermal centre (r
= 0) predicted by Eq. (1) using Eq. (19) using the parameters of the Table 2 for
all cases. The predicted temperatures are in excellent agreement with experimen-
tal data obtained in Pérez (1998). Predicted temperatures were calculated with
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Table 3: Parameters of the Eq. (19) obtained using PSO.

Cases A1.1011 A2 A3 R2 f
1 5.4280 0.4857 - 0.4839 0.9989 0.06
2 9.5420 0.4077 - 0.4062 0.9983 0.13
3 13.391 0.3441 -0.3432 0.9997 0.09
4 15.967 0.3475 - 0.3450 0.9910 0.48
5 19.988 0.3022 -0.3000 0.9999 0.07
6 20.520 0.4943 - 0.4920 0.9932 0.67

parameters estimated under the inverse method using the Differential Evolution.
Statistical analysis through of the values of multiple correlation coefficients shows
no significant differences between reported and estimated curves (see Table 2). In
this figure the shrinkage and convective and evaporative effects at banana surface
are included in the mathematical model, so, this is a complete model due the incor-
poration of physical phenomena in the banana’s drying. It is important to observe
that in practice, bananas shrink by about 43 ± 47% their original diameter during
drying. This fact reveals the importance of including this phenomenon in the the-
oretical model. The inclusion of shrinkage and convective and evaporative effects
lends more credibility to the apparent thermal diffusivity obtained and presented in
Table 2. The minimum and maximum values for apparent thermal diffusivity ob-
tained in this work using Eq. (19), for example, for fourth case were 2.49×10−10

(m2/s) and 1.88×10−7 (m2/s), respectively.

Figure 3 presents the comparative box plots of the data obtained from the objective
function using two optimization methods, DE and PSO, after 30 runs for the case
3. From Figure 3, we can see that the results using PSO presented more variabil-
ity than the results based on DE method. The PSO method needs to improve its
convergence performance and design setup. Furthermore, the box plot to the DE
method indicates that the objective function distribution is reasonably symmetric
around the central value, median, there is a smooth outlier in the upper end of the
data.

Figure 4 provides the comparative box plots obtained for the PSO and DE based
on 30 independent runs for the case 5. Note in the Figure 4 again that the data
obtained with the PSO method has greater dispersion than the data obtained with
the DE method. The diagram of box representing the objective function of the
data obtained by the PSO method indicates that the distribution is not symmetrical,
the median value is high and there are two outliers in the lower end of the data.
Already, the box plot to represent the performance of the DE method indicates a
less dispersed distribution, however also presents a smooth outlier in the upper end
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Figure 2: Experimental validation for the inverse method using the parameters of
the Table 2 (central temperature, in r = 0).

of the data. So for this study the DE method had behavior less dispersed that the
PSO method. Therefore, from the above observations, it is clear that validated DE
method has a better performance that the PSO method.

5 Conclusion

In this study, Differential Evolution and Particle Swarm Optimization methods
were successfully applied to the determination of apparent thermal diffusivity as
a function of the dimensionless average moisture content in the section radial of
the banana during the drying process. A statistical analysis shows no significant
differences between the predicted and experimental profiles of temperature at the
thermal centre of the banana, and DE method has a better performance that the
PSO method. The results obtained in this work validate the proposed method
as a tool to the determination of apparent thermal diffusivity in the drying tem-
perature range. The proposed procedure can be extended to the determination of
other thermal properties in different processes like thermal conductivity, and spe-
cific heat in drying, wetting, cooling, heating and/or freezing. The determination
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Figure 3: Statistical analysis using DE and PSO for case 3.
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Figure 4: Statistical analysis using DE and PSO for case 5.
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of thermal properties from an inverse method is an attractive technique both from
the experimental and methodological point of view, because of its accuracy and
short time for parameters estimation. The higher value obtained in this work to
apparent thermal diffusivity was approximately 1.88×10−7 (m2/s) while the lower
value was 9.47×10−11 (m2/s) when the moisture content changes from 2.95 to 3.43
(kgw/kgdm) and the air temperature changes from 29.9 to 68.4 (◦C).
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