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A Time-Domain Meshless Local Petrov-Galerkin
Formulation for the Dynamic Analysis of Nonlinear

Porous Media

Delfim Soares Jr.1

Abstract: In this work, a meshless method based on the local Petrov–Galerkin
approach is proposed for the solution of pore-dynamic problems considering elas-
tic and elastoplastic materials. Formulations adopting the Heaviside step function
as the test functions in the local weak form are considered. The moving least-
square method is used for the approximation of physical quantities in the local
integral equations. After spatial discretization is carried out, a nonlinear system of
time-domain ordinary differential equations is obtained. This system is solved by
Newmark/Newton–Raphson techniques. The present work is based on the u−p
formulation and the incognita fields of the coupled analysis in focus are the solid
skeleton displacements and the interstitial fluid pore pressures. Independent spatial
discretization is considered for each phase of the model, rendering a more flexible,
efficient and robust methodology. At the end of the paper, numerical applications
illustrate the accuracy and potentialities of the proposed techniques.

Keywords: Meshless Local Petrov-Galerkin, Moving Least Squares, Newmark
/ Newton–Raphson Method, Pore-Dynamics, Elastoplastic Analysis, Independent
Phase Discretization.

1 Introduction

In spite of the great success of the finite element method and other techniques as
effective numerical tools for the solution of boundary value problems on complex
domains, there is still a growing interest in development of new advanced meth-
ods. Nowadays, many meshless formulations are becoming popular, due to their
high adaptivity and to their low-cost effort to prepare input data (meshless methods
were essentially stimulated by difficulties related to mesh generation). In addition,
the need for flexibility in the selection of approximating functions (e.g., the flexi-
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bility to use non-polynomial approximating functions) has played a significant role
in the development of meshless methods. Many meshless approximations give con-
tinuous variation of the first or higher order derivatives of a primitive function in
counterpart to classical polynomial approximation, where secondary fields have a
jump on the interface of elements; therefore, meshless approximations are leading
to more accurate results in many cases.

A variety of meshless methods has been proposed along the last decades (e.g.,
Belytschko et al., 1994; Atluri and Shen, 2002 etc.). Many of them are derived
from a weak-form formulation on global domain (Belytschko et al., 1994) or a
set of local subdomains (Atluri and Zhu, 1998; Atluri and Shen 2002; Mikhailov,
2002; Sladek et al. 2003, 2008). In the global formulation, background cells are
required for the integration of the weak form. In methods based on local weak
formulation, no cells are required (if, for the geometry of the subdomains, a simple
form is chosen, numerical integrations can be easily carried out over them) and
therefore they are often referred to as truly meshless methods. The meshless local
Petrov-Galerkin method is a fundamental base for the derivation of many meshless
formulations, since trial and test functions are chosen from different functional
spaces.

Considering the analysis of porous media, most meshless formulations presented
so far have been applied to analyse consolidation problems and, presently, there are
only some few works concerned with pore-dynamic analysis. Considering the ra-
dial point interpolation method (RPIM), Wang and co-authors (2002, 2004, 2005)
presented the numerical analysis of Biot’s consolidation process, wave-induced
transient response of seabeds and dissipation process of excess pore water pressure,
respectively. Nogami et al. (2004) developed a numerical method for consolidation
analysis of lumpy clay fillings by using the double porosity model and the RPIM,
considering different order of interpolation functions. Wang et al. (2007) also
presented an unequal-order radial interpolation meshless method for Biot’s consol-
idation theory. The consolidation analysis of saturated soils with anisotropic dam-
age and the simulation of wave motions in saturated porous media were presented
by Wang et al. (2008) and Chen and Li (2008), respectively, taking into account
the RPIM. Considering the element-free Galerkin method (EFGM), Modaressi and
Aubert (1998) were among the firsts studying deforming multiphase porous media.
Murakami et al. (2005) described a formulation for soil-water coupled problems
considering finite strain analysis; Wang and Li (2006) and Wang et al. (2007)
analysed factors influencing the solution of the consolidation problem and seabed
instability, respectively; and Karim et al. (2002) studied the transient response of
saturated porous elastic soil under cyclic loading. Some numerical issues using
element-free Galerkin meshless method for coupled hydro-mechanical problems
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were discussed by Oliaei et al. (2009). Meshless methods, based on the mesh-
less local Petrov-Galerkin (MLPG) approach, were developed and implemented
for the solution of the Biot’s consolidation problem by Ferronato et al. (2007) and
Bergamaschi (2009), taking into account axi-symmetric poroelastic models, and by
Wang et al. (2009), taking into account plane models. The pore-dynamic analysis
of elastic soils considering the MLPG was introduced by Soares (2010), taking into
account Gaussian weight functions as test functions and different discretizations
for each phase of the model. As far as the author is concerned, there are no pub-
lications regarding the dynamic analysis of elastoplastic porous media by MLPG
formulations.

The MLPG formulation considered here adopts Heaviside step functions as test
functions and employs the moving least square method to approximate the solid
skeleton and the interstitial fluid incognita fields. After performing the spatial inte-
grations, one obtains a system of nonlinear ordinary differential equations for cer-
tain nodal unknowns. That system is solved numerically by the Newmark/Newton-
Raphson method. The Newmark finite difference scheme (Newmark, 1959) is ap-
plied here as a time marching technique and the Newton-Raphson method is em-
ployed as an iterative procedure to treat the nonlinear equations (as it is similarly
presented by Soares et al., 2010, considering solid mechanics). In this work, the
solid and fluid sub-domains of the porous model are analysed considering com-
plete independent discretizations by MLPG techniques. This means that, for each
phase of the model, not only different order for the interpolation functions may be
considered, but also complete disassociated node distributions (as well as test and
weight functions) may be adopted. This is highly important when impermeable and
incompressible media are modelled, ensuring unique solvability and convergence
(Soares, 2010).

2 Governing equations

The present work is focused on the u−p formulation, as presented by Zienkiewicz
et al. (1984, 1990). In this case, the governing equations of the pore-dynamic
model can be written as:

σi j, j−ρm üi +ρm bi = 0 (1)

αε̇ii− (κ p, j),i +(1/Q)ṗ−a = 0 (2)

where equation (1) stands for the balance of momentum of the mixture and equation
(2) is a combination of the balance of mass and momentum for the interstitial fluid.

In equation (1), σi j(X , t) is the total Cauchy stress (usual indicial notation for Carte-
sian axes is considered); the effective stress is defined as σ ′i j = σi j +αδi j p, where
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α(X) accounts for slight strain changes, p(X , t) stands for interstitial fluid pore-
pressure and δi j represents the Kronecker delta (δi j = 0 if i 6= j and δi j = 1 if
i = j). Further on in equation (1), ui(X , t) stands for the solid matrix displacement
and bi(X , t) for the body force distribution. Inferior commas and overdots indi-
cate partial space (u j,i = ∂u j/∂xi) and time (u̇i = ∂ui/∂ t) derivatives, respectively.
ρm = υρ f +(1−υ)ρs stands for the mass density of the mixture, where ρs(X) and
ρ f (X) are the mass density of the solid and fluid phase, respectively, and υ(X) is
the porosity of the medium. In equation (2), εi j(X , t) represents the strain tensor
and κ(X) defines the permeability coefficients, according to the D’Arcy seepage
law. a(X , t) stands for domain source terms and the mixture parameter Q(X) is
defined by (1/Q) = υ/K f +(α −υ)/Ks, where the bulk moduli of the solid and
fluid phase are represented by Ks(X) and K f (X), respectively.

In equation (3) the constitutive law is written incrementally:

dσ
′
i j = Dep

i jkl dεkl (3)

where the incremental strain components dεi j are defined in the usual way (linear
kinematical relations) from the displacements, i.e., dεi j = 1

2(dui, j + du j,i). Dep
i jkl is

a tangential tensor defined by suitable state variables and the direction of the incre-
ment (nonlinear constitutive relations). Within the context of associated isotropic
work hardening theory, the tangent constitutive tensor is defined as:

Dep
i jkl = Di jkl− (1/ψ)Di jmnamnaopDopkl (4)

where

Di jkl = 2µν/(1−2ν)δi jδkl + µ (δikδ jl +δilδ jk) (5a)

akl = ∂ σ̄/∂σ
′
kl (5b)

ψ = ai jDi jklakl +H (5c)

H = ∂σ0/∂ ε̄
p (5d)

In equations (5), σ̄ and ε̄ p are the equivalent (or effective) stress and plastic strain,
respectively; σ0 is the uniaxial yield stress; H is the plastic-hardening modulus (the
current slope of the uniaxial plastic stress-strain curve) and µ and ν stand for the
shear modulus and the Poisson ratio, respectively. In case of elastic analyses, the
Cauchy stresses can be defined by σ ′i j = Di jklεkl , where Di jkl (see equation (5a))
is the elastic constitutive tensor (this linear relation is a particular case of equation
(3)).
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In addition to equations (1)-(5), boundary and initial conditions have to be pre-
scribed in order to completely define the problem. They are given as follows:

(i) Boundary conditions (t > 0, X ∈ Γ where Γ = Γu∪Γτ = Γp∪Γq)

ui = ūi for X ∈ Γu (6a)

τi = σi j n j = τ̄i for X ∈ Γτ (6b)

p = p̄ for X ∈ Γp (6c)

q = p, j n j = q̄ for X ∈ Γq (6d)

(ii) Initial conditions (t = 0, X ∈ Γ∪Ω)

ui = ūi0 (7a)

u̇i = ˙̄ui0 (7b)

p = p̄0 (7c)

where the prescribed values are indicated by over bars and q(X , t) and τi(X , t) rep-
resent the fluxes and total tractions, respectively, acting along the boundary whose
unit outward normal vector components are represented by ni(X). The effective
tractions are defined as τ ′i = τi + α ni p. The domain of the model is denoted by Ω

and the boundary by Γ (Γu∪Γτ = Γp∪Γq = Γ and Γu∩Γτ = Γp∩Γq = 0).

3 Numerical discretization

In this section, the numerical discretization of the pore-dynamic model by a mesh-
less local Petrov-Galerkin formulation is presented. First, in sub-section 3.1, the
moving least square (MLS) approximation is described and, next (sub-section 3.2),
the local weak-forms of the governing equations, as well as their spatial discretiza-
tions taking into account MLS approximations, are discussed. In sub-section 3.3,
time-marching procedures based on the generalized Newmark method, as well as
iterative procedures based on the Newton-Raphson technique, are presented, allow-
ing the time-domain solution of the nonlinear matricial systems of equations that
arise.

3.1 Moving least square approximation

In general, a meshless method uses a local approximation to represent the trial
function in terms of nodal unknowns which are either the nodal values of real field
variables or fictitious nodal unknowns at some randomly located nodes. The mov-
ing least squares approximation may be considered as one of such schemes, and it
is employed here.
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Figure 1: Local boundaries, sub-domains and domain of definition of the MLS
approximation for the trial function at node X .

Consider a sub-domain Ωx, the neighbourhood of a point X and denoted as the
domain of definition of the MLS approximation for the trial function at X , which
is located in the problem domain Ω (see Fig.1). Also consider a generic field ϕ ,
which represents the interstitial fluid pore-pressure field p or the solid skeleton
displacement field ui. To approximate the distribution of function ϕ in Ωx, over a
number of randomly located nodes, the MLS approximation of ϕ can be defined by
(Atluri and Shen, 2002; Atluri, 2004):

φ(X , t)≈ΠΠΠ
T (X)Φ̂(t) =

N

∑
a=1

η
a(X)φ̂ a(t) (8)

where φ̂ is the fictitious nodal value of φ and N is the number of points in the sub-
domain Ωx. The shape matrix ΠΠΠT (X) =

[
η1(X) η2(X) · · · ηN(X)

]
is com-

puted by:

ΠΠΠ
T (X) = pT (X)A−1(X)B(X) (9)

where

A(X) =
N

∑
a=1

wa(X)p(Xa)pT (Xa) (10a)
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B(X) =
[

w1(X)p(X1) w2(X)p(X2) · · · wN(X)p(XN)
]

(10b)

and pT (X) =
[
p1(X) p2(X) · · · pm(X)

]
is a complete monomial basis of order

m. wa(X) is the weight function associated with node a. The Gaussian weight
function is adopted here, and it is given by:

wa(X) =
exp[−(da/ca)2k]− exp[−(ra/ca)2k]

1− exp[−(ra/ca)2k]
(1−H[da− ra]) (11)

where da = ||X−Xa|| is the distance between the sampling point X and node Xa, ca

is a constant controlling the shape of the weight function and ra is the radius of the
circular support of the weight function. The Heaviside unit step function is defined
as H[z] = 1 for z > 0 and H[z] = 0 for z≤ 0. The size of the weight function support
should be large enough to have a sufficient number of nodes covered in the domain
of definition to ensure the regularity of matrix A.

3.2 Spatial discretization

Instead of writing the global weak-form for the governing equations described in
section 2, the MLPG method constructs a weak-form over local fictitious sub-
domains, such as Ωs, which is a small region taken for each node inside the global
domain (see Fig.1). The local sub-domains overlap each other, and cover the whole
global domain Ω. The geometrical shape and size of local sub-domains can be
arbitrary. In the present work, the local sub-domains are taken to be of circular
shape. The local weak-form of the governing equations described in section 2 can
be written as:∫

∂Ωs

ϕikσi jn j dΓ−
∫
Ωs

ϕik, jσi j dΩ+
∫
Ωs

ϕik(ρm bi−ρmüi)dΩ+β

∫
Γsu

ϕik(ui− ūi)dΓ = 0

(12a)

∫
∂Ωs

ϕ κqdΓ−
∫
Ωs

ϕ,i κ p,idΩ+
∫
Ωs

ϕ (a− (1/Q)ṗ−αε̇ii)dΩ+β

∫
Γsp

ϕ (p− p̄)dΓ = 0

(12b)

where ϕ and ϕik are test functions and β is a penalty parameter, which is intro-
duced here in order to impose essential prescribed boundary conditions in an inte-
gral form. In equations (12), ∂Ωs is the boundary of the local sub-domain, which
consists of three parts, in general: ∂Ωs = Ls∪Γs1∪Γs2 (see Fig.1). Here, Ls is the
local boundary that is totally inside the global domain, Γs2 is the part of the local
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boundary which coincides with the global natural boundary, i.e., Γs2 = ∂Ωs ∩Γ2
(where Γ2 stands for the natural boundary, i.e., Γ2 ≡ Γq or Γ2 ≡ Γτ ) and, similarly,
Γs1 is the part of the local boundary that coincides with the global essential bound-
ary, i.e., Γs1 = ∂Ωs∩Γ1 (where Γ1 stands for the essential boundary, i.e., Γ1 ≡ Γp

or Γ1 ≡ Γu).

In this work, plane strain problems are focused and the variables of the solid
skeleton are written considering the Voigt notation (i.e., σσσ =

[
σ11 σ22 σ12

]T ,

εεε =
[
ε11 ε22 2ε12

]T , τ =
[
τ1 τ2

]T , u =
[
u1 u2

]T , b =
[
b1 b2

]T etc.). Tak-
ing into account the Voigt notation, equations (12) can be rewritten, considering the
definition of effective stresses (σ ′i j = σi j +αδi j p) and expressions (8). By defining
the local integral sub-domain of the meshless local Petrov-Galerkin formulation as
the circle Ωc, centred at node Xc and described by radius rc (∂Ωc = Lc∪Γc

1∪Γc
2),

the expressions that arise, considering the test functions as the Heaviside step func-
tion (i.e., ϕ = (1−H(dc− rc)) and ϕik = δik(1−H(dc− rc))), are given by:

N

∑
a=1

∫
Ωc

ρmη
a
u dΩ

 ¨̂ua−
N

∑
a=1

β

∫
Γc

u

η
a
u dΓ

 ûa−
∫

Lc+Γc
u

Nσ
′dΓ+

+
N

∑
a=1

 ∫
Lc+Γc

u

nαη
a
pdΓ

 p̂a =
∫
Γc

τ

τ̄ dΓ+
∫
Ωc

ρmbdΩ−β

∫
Γc

u

ūdΓ (13a)

N

∑
a=1

∫
Ωc

(1/Q)η
a
pdΩ

 ˙̂pa−
N

∑
a=1

β

∫
Γc

p

η
a
pdΓ+

∫
Lc+Γc

p

nT
κsaT

p dΓ

 p̂a+

+
N

∑
a=1

∫
Ωc

α sa
udΩ

 ˙̂ua
=
∫
Γc

q

κ q̄dΓ+
∫
Ωc

adΩ−β

∫
Γc

p

p̄dΓ (13b)

In the linear elastic case, equation (13a) simplifies to:

N

∑
a=1

∫
Ωc

ρmη
a
u dΩ

 ¨̂ua−
N

∑
a=1

β

∫
Γc

u

η
a
u dΓ+

∫
Lc+Γc

u

NDSa
udΓ

 ûa+

+
N

∑
a=1

 ∫
Lc+Γc

u

nαη
a
pdΓ

 p̂a =
∫
Γc

τ

τ̄ dΓ+
∫
Ωc

ρmbdΩ−β

∫
Γc

u

ūdΓ (14)
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where matrices N, n, Sa and sa are specified as:

N =
[

n1 0 n2
0 n2 n1

]
(15a)

n =
[
n1 n2

]T (15b)

Sa =
[

ηa
,1 0 ηa

,2
0 ηa

,2 ηa
,1

]T

(15c)

sa =
[
ηa

,1 ηa
,2
]

(15d)

and D is the linear elastic constitutive matrix, defined as indicated by equation
(5a). In equations (13-14), subscripts u and p are relative to solid and fluid phase
discretizations, respectively.

By collecting all nodal unknown fictitious values p̂a(t) and ûa
i (t) into vectors P̂ and

Û, respectively, the system of the discretized equations (13) can be rewritten into
matrix form as:

M ¨̂U+ℑ(Û)−QP̂ = F (16a)

C ˙̂P+HP̂+G ˙̂U = R (16b)

or, for the elastic linear case, equation (14) can be rewritten as:

M ¨̂U+KÛ−QP̂ = F (17)

where M (mass matrix) and C (compressibility matrix) are evaluated taking into ac-
count the first integral term on the l.h.s. of equations (14) and (13b), respectively;
K (stiffness matrix) and H (permeability matrix) are computed considering the sec-
ond term on the l.h.s. of equations (14) and (13b), respectively; Q and G (coupling
matrices) are calculated considering the third term on the l.h.s. of equations (14)
and (13b), respectively; and F and R (load nodal vectors) are evaluated considering
the terms on the r.h.s. of equations (14) and (13b), respectively. In equation (16a),
ℑ is the internal force vector, computed regarding the second and third terms on the
l.h.s. of equation (13a) (for the elastic particular case, ℑ(Û) = KÛ).

Once the ordinary differential nonlinear matrix equations (16) are established, their
coupled solution in the time-domain is discussed in the next sub-section, taking
into account Newmark/Newton-Raphson procedures.

It is important to note that equations (13) can be very easily implemented consider-
ing different spatial discretizations for each phase of the porous model (ΠΠΠp 6= ΠΠΠu);
i.e., taking into account the present saturated porous media analysis, considering
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different discretizations for the solid and fluid sub-domain (e.g., different distribu-
tion and/or number of nodes, monomial basis with different orders, different weight
functions etc.). This is highly important when null permeability is considered and
incompressible fluid and solid particles are analysed, in order to provide unique
solvability and convergence (Soares, 2010). Even when permeable and/or com-
pressible models are focused, different phase discretizations allow more flexible
and accurate analyses, characterizing the present methodology as a more efficient
and robust numerical technique (local refinements can be considered independently
for each phase, coupled systems of equations of lower order can be obtained etc.).
It is important to observe that, although for the MLPG it is a trivial task to consider
generic independent discretizations for each phase of the model, this is a complex
task for several other numerical procedures, such as the finite element method.
Thus, in addition to the usually referred advantages of the MLPG, in porous media
analyses, the great flexibility of the methodology to independently describe each
phase of the model must be highlighted.

4 Newmark/Newton-Raphson method

For temporal discretization, the following one-step finite difference approximations
are considered (generalized Newmark method):

¨̂U
n
= (1/(γ2∆t2))dÛn− (1/(γ2∆t)) ˙̂U

n−1
+(1−1/(2γ2)) ¨̂U

n−1
(18a)

˙̂U
n
= (γ1/(γ2∆t))dÛn +(1− γ1/γ2) ˙̂U

n−1
+∆t(1− γ1/(2γ2)) ¨̂U

n−1
(18b)

˙̂P
n
= (1/(γ3∆t))dP̂n +(1−1/γ3) ˙̂P

n−1
(18c)

where ∆t is the selected time-step and Ûn stands for a numerical approximation
of Û(tn) (analogously for P̂n). For an unconditionally stable scheme, the relations
γ1 ≥ 0.5, γ2 ≥ 0.5γ1 and γ3 ≥ 0.5 must hold in equations (18), whereγ1, γ2 and γ3
are the parameters of the time integration method. The temporal increment dÛn =
Ûn− Ûn−1 is defined by the difference of values at two subsequent time instants.

Taking into account the Newmark approximations (18), equations (16) become, at
a given time-instant tn:

(1/(γ2∆t2))MdÛn +ℑ(Ûn)−QdP̂n =

= Fn +M((1/(γ2∆t)) ˙̂U
n−1

+(1/(2γ2)−1) ¨̂U
n−1

)+QP̂n−1
(19a)
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(γ1/(γ2∆t))GdÛn +((1/(γ3∆t))C+H)dP̂n = Rn+

+C((1/γ3−1) ˙̂P
n−1

)+G((γ1/γ2−1) ˙̂U
n−1

+∆t(γ1/(2γ2)−1) ¨̂U
n−1

)−HP̂n−1

(19b)

Due to the nonlinearities involved in the internal force vector, each increment
dÛn must be computed iteratively, taking into account the incremental constitu-
tive law (3). Let the iterative variation be defined independently of the time instant
as δ Û(k+1) = Ûn

(k+1)− Ûn
(k) (analogously for δ P̂(k+1)). Then dÛn

(k+1) = dÛn
(k) +

δ Û(k+1), and consideration of equations (19) at the (k+1)st iterative step yields the
following system of nonlinear algebraic equations:

(1/(γ2∆t2))Mδ Û(k+1) +ℑ(Ûn
(k) + δ Û(k+1))−Qδ P̂(k+1) =

= Fn +M(−(1/(γ2∆t2))dÛn
(k) +(1/(γ2∆t)) ˙̂U

n−1
+(1/(2γ2)−1) ¨̂U

n−1
)+

+ Q(P̂n−1 + dP̂n
(k)) (20a)

(γ1/(γ2∆t))Gδ Û(k+1) +((1/(γ3∆t))C+H)δ P̂(k+1) =

= Rn +C(−(1/(γ3∆t))dP̂n
(k) +(1/γ3−1) ˙̂P

n−1
)+G(−(γ1/(γ2∆t))dûn

(k)+

+(γ1/γ2−1) ˙̂U
n−1

+∆t(γ1/(2γ2)−1) ¨̂U
n−1

)−H(P̂n−1 +dP̂n
(k)) (20b)

Making use of the linearization of the nonlinear term ℑ(Ûn
(k) + δ Û(k+1)) with re-

spect to the iterative variation δ Û(k+1), one obtains in view of equations (13a) and
(16a):

ℑ
c(Ûn

(k) +δ Û(k+1)) =

=−
N

∑
a=1

β

∫
Γc

u

η
a
u dΓ

(ûan
(k) +δ ûa

(k+1))−
∫

Lc+Γc
u

N(σσσ ′n(k) +δσσσ
′
(k+1))dΓ =

= ℑ
c(Ûn

(k))−
N

∑
a=1

β

∫
Γc

u

η
a
u dΓ+

∫
Lc+Γc

u

NDep
(k)S

a
udΓ

 δ ûa
(k+1) =

= ℑ
c(Ûn

(k))+ Kc
T (Ûn

(k))δ Û(k+1) (21)

where KT is the tangent stiffness matrix, with sub-matrices given by:

Kca
T (Ûn

(k)) =
∂ℑc(Ûn

(k))

∂ ûa =−β I
∫
Γc

u

η
a
u dΓ−

∫
Lc+Γc

u

NDep
(k)S

a
udΓ (22)
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In equation (22), I stands for the identity matrix and Dep
(k)(Û

n
(k)) is computed accord-

ing to definitions (3)-(5) in Voigt notation, i.e., σσσ ′n(k) = σσσ ′n−1 + dσσσ ′n(k) = σσσ ′n−1 +
Dep

(k)dεεεn
(k) etc. If the initial stress formulation is considered (which is an appropriate

technique for dynamic analysis), the tangent stiffness matrix is never updated, and
KT = K is assumed.

Finally, in view of equations (21)-(22), equations (20) become:[
(1/(γ2∆t2))M+KT −Q

(γ1/(γ2∆t))G (1/(γ3∆t))C+H

] [
δ Û(k+1)
δ P̂(k+1)

]
=

[
F̄n

(k)
R̄n

(k)

]
(23)

where its r.h.s. is defined by:

F̄n
(k) = Fn−ℑ(Ûn

(k))+M(−(1/(γ2∆t2))dÛn
(k) +(1/(γ2∆t)) ˙̂U

n−1
+

+(1/(2γ2)−1) ¨̂U
n−1

)+ Q(P̂n−1 + dP̂n
(k)) (24a)

R̄n
(k) = Rn +C(−(1/(γ3∆t))dP̂n

(k) +(1/γ3−1) ˙̂P
n−1

)+G(−(γ1/(γ2∆t))dÛn
(k)+

+(γ1/γ2−1) ˙̂U
n−1

+∆t(γ1/(2γ2)−1) ¨̂U
n−1

)−H(P̂n−1 +dP̂n
(k)) (24b)

Equations (23)-(24) enable the computation of the solid skeleton displacements and
of the interstitial fluid pore-pressures at each iterative step, of each time step (one
should keep in mind that Ûn

(k+1) = Ûn
(k) +δ Û(k+1); dÛn

(k+1) = dÛn
(k) +δ Û(k+1) etc.).

5 Numerical aspects and applications

Two numerical applications are considered here, illustrating the discussed method-
ologies. In the first application, the simulation of a linear one-dimensional problem
is focused, and a soil column is analysed taking into account different material
properties. In the second application, a nonlinear two-dimensional soil strip is con-
sidered. The results obtained by the proposed MLPG formulation are compared
with analytical answers, whenever possible, and with results provided by the Finite
Element Method (FEM).

In the present work, the radii of the influence domain and of the local sub-domain
are set to θxd3

i and θsd1
i , respectively; where d3

i and d1
i are the distances to the third

and first nearest points from node i, respectively. In all the applications that follow,
θx = 4.0 and θs = 0.6 are adopted. Complete monomial bases of order m = 6 are
considered. The time-integration parameters are selected regarding the trapezoidal
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rule, i.e.: γ1 = 0.5, γ2 = 0.25 and γ3 = 0.5, and the mass and compressibility ma-
trices are diagonalized by a row-sum technique. Regarding the iterative process,
convergence is achieved once the relative norm of the results computed by equa-
tion (23) is smaller than a given tolerance and, for all the applications that follow, a
tight tolerance of 10−5 is selected. In the present work, the tangent stiffness matrix
is never updated along the nonlinear analysis (initial stress formulation) and it can
be considered as the linear stiffness matrix expressed in equation (17).

5.1 Linear analysis

In this first example, a soil column is analysed (de Boer et al., 1993; Diebels and
Ehlers, 1996; Schanz and Cheng, 2000; Soares et al., 2006; Soares, 2008 and
2010). A sketch of the model is depicted in Fig.2. The top surface of the column
is considered drained and uniformly loaded. The other surfaces of the model are
undrained and have null normal displacements prescribed. 561 nodes are employed
to spatially discretize the rectangular domain (H = 10m).
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Figure 2: Sketch of the soil column model.

Two kinds of soils and load amplitudes are considered here (the loads have a Heav-
iside time variation). The properties of the models are specified below:

Model 1 – for the present model, the load amplitude is 3 kN/m2. The physical
properties of the soil are: ν = 0.3 (Poisson); E = 14515880N/m2 (Young Modu-
lus); ρs = 2000kg/m3 (mass density – solid phase); ρ f = 1000kg/m3 (mass density
– fluid phase); υ = 0.33 (porosity); κ = 10−6m4/Ns (permeability). The soil is
incompressible and the time discretization considered is given by ∆t = 10−3s;

Model 2 – for the present model, the load amplitude is 1 kN/m2. The physical
properties of the soil are: ν = 0.298; E = 254423076.9N/m2; ρs = 2700kg/m3;
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ρ f = 1000kg/m3; υ = 0.48; κ = 3.55 · 10−9m4/Ns. The soil is compressible and
Ks = 1.1 · 1010N/m2 (compression modulus – solid phase); K f = 3.3 · 109N/m2

(compression modulus – fluid phase). The time-step is ∆t = 10−4s.

In Fig.3, vertical displacements at point A are depicted, taking into account Model
1 and Model 2. As can be observed in Fig.3(a), the results obtained by the MLPG
formulation are in good agreement with the analytical results provided by de Boer
et al. (1993) and with the results provided by the FEM. In Fig.3(b), once again,
the MLPG results are in good agreement with the results provided by the semi-
analytical procedures presented by Dubner and Abate (1968) and Schanz and Cheng
(2000) and with those provided by the FEM.

5.2 Nonlinear analysis

In this second example, a two-dimensional soil strip is analysed (Li et al., 2003;
Soares et al., 2006; Soares, 2008 and 2010). A sketch of the model is depicted in
Fig.4. The geometry of the strip is defined by a = 5m, b = 10m and c = 1m. The
symmetry of the model is taken into account and two possibilities are considered for
the solid and fluid phase discretizations, namely: (i) Discretization 1 – 441 nodes
are employed to spatially discretize the solid and the fluid phases; (ii) Discretization
2 – 441 nodes are employed to spatially discretize the solid phase and 121 nodes
are employed to spatially discretize the fluid phase.

The soil strip is loaded as indicted in Fig.4 (in kN/m2) and the adopted time-step
is ∆t = 5 · 10−4s. The soil is compressible (fluid phase) and permeable: ν = 0.2;
E = 107N/m2; ρs = 2538.5kg/m3; ρ f = 1000kg/m3; υ = 0.35; κ = 10−7m4/Ns
and K f = 3.3 · 109N/m2. A perfectly plastic material obeying the Mohr-Coulomb
yield criterion is assumed, where c = 2 ·102 N/m2 (cohesion) and θ = 100 (internal
friction angle).

Vertical displacements at point A (see Fig.4) are depicted in Fig.5, considering dis-
cretizations 1 and 2, and linear and nonlinear analyses. As can be observed, the
results provided by the proposed MLPG formulation are in good agreement with
those provided by the FEM. Discretization 2 is a very appropriate discretization
for the model (and for pore-mechanic analyses, in general): not only it renders a
smaller system of coupled equations (providing more efficient analyses) than dis-
cretization 1, maintaining the good accuracy of the results, but also it allows the
numerical simulation of impermeable and incompressible media, as is described in
Figs.6 and 7.

Fig.6 depicts the pore-pressure distributions along the modelled soil strip at time
t = 1.0s, considering the soil as impermeable and incompressible (i.e., κ = 0 and
Ks = K f = ∞) and the two discretizations in focus. As can be observed, discretiza-
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Figure 3: Displacements at point A for the (a) incompressible (Model 1) and (b)
compressible (Model 2) soil column.
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Figure 4: Sketch of the soil strip model.
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Figure 5: Displacements at point A for the compressible and permeable soil strip
considering linear and nonlinear analyses.

tion 1 do not fulfil the solvability condition, providing unstable results (in a finite
element context, for instance, in the limit of zero compressibility of water and soil
grains and zero permeability, the functions used to interpolate displacements and
pressures must fulfil either the Babuska-Brezzi conditions – Babuska, 1973; Brezzi,
1974 – or the simpler patch test proposed by Zienkiewicz et al., 1986: these require-
ments exclude the use of elements with equal order interpolation for pressures and
displacements, for which spurious oscillations may appear). Discretization 2, on
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(c) 

Figure 6: Pore-pressure field for the impermeable and incompressible soil strip at
time t = 1.0s considering: (a) discretization 1 (linear analysis); (b) discretization 2
(linear analysis); (c) discretization 2 (nonlinear analysis).

the other hand, allows an appropriate numerical simulation of the model, and the re-
sults depicted in Fig.6(b) are in good agreement with other authors/methodologies
results (see, for instance, Li et al., 2003; Soares, 2010, etc.).

Vertical displacements at point A are depicted in Fig.7, considering the soil as im-
permeable and incompressible (discretization 2), and linear and nonlinear analyses.
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Figure 7: Displacements at point A for the incompressible and impermeable soil
strip considering linear and nonlinear analyses.

6 Conclusions

In this work, time-domain dynamic analyses of nonlinear porous media, taking into
account MLPG formulations, are discussed. In the present MLPG approach, Heavi-
side step functions are adopted as test functions (eliminating some domain integrals
of the local weak form equations) and a MLS interpolation scheme is considered
(independently for each phase of the model), rendering a nonlinear time-domain
matricial system of coupled equations. This system is analysed by iterative time-
marching procedures based on Newmak/Newton-Raphson techniques. Numerical
results are presented at the end of the paper, illustrating the good accuracy, stability
and flexibility of the proposed methodologies.

The adoption of different spatial discretizations for each phase of the porous model
is very important. Not only it may provide more accurate, efficient and flexible sim-
ulations, but also it permits the analysis of impermeable and incompressible media.
It must be highlighted that the introduction of independent phase discretization
by meshless local Petrov-Galerkin techniques is much easier to implement than in
mesh-based formulations, such as the finite element method. In the present work
a very generic methodology is discussed, allowing a complete independency of
the solid and fluid phase discretizations (in fact, analyses can be carried out here
without a single common node for both phases).
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It is also important to highlight that the adopted meshless technique gives continu-
ous variation of the first (or higher order) derivatives of the primitive function (in
counterpart to classical FEM polynomial approximations where secondary fields
have a jump on the interface of elements) and, therefore, more accurate results are
expected in elastoplastic analyses by these techniques, since proper computation of
stresses plays a crucial role on these nonlinear models. Moreover, for these mod-
els, MLPG formulations based on Heaviside step functions as test functions are
considerably more efficient than other MLPG formulations (such as those based
on Gaussian weight function as the test functions, for instance), since the stress
states of the model are computed just for a small number of integration points
(only local boundary integrations are necessary – see equation (13a)), allowing an
efficient evaluation of the internal forces. MLPG formulations based on Heavi-
side step functions also seem to deal better with the spurious modes related to the
dynamic analysis (Soares et al, 2009), allowing more stable numerical procedures
when considering the Newmark time-marching scheme.
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