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Method
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Abstract: The application of the MPS (Moving Particle Semi-implicit) scheme
to incompressible viscous fluid flow problem in the liquid ring vacuum pump with
rotating impeller is presented. The rotating impeller in the pump is attached to a
center hub and located in off-set from the center of a cylindrical body. For such
flow problem there are some interesting phenomena including the formation of the
liquid ring by rotating impeller, the interface dynamics between gas and liquid,
and so forth. The MPS scheme is widely utilized as a particle strategy for the
free surface flow, the problem of moving boundary, and multi-physics/multi-scale
ones. Numerical results demonstrate the workability and the validity of the present
approach through incompressible viscous fluid flow in the pump with rotating im-
peller blades.
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1 Introduction

From a simulation-based practical point of view, it is important to compute ef-
ficiently multi-physics problem and moving boundary/obstacle one in the wide
fields of science and engineering. Heretofore, we have proposed a finite element
scheme based on the Petrov-Galerkin weak formulation using exponential weight-
ing functions for solving effectively and in a stable manner the incompressible
Navier-Stokes equations up to high Reynolds number regimes [Kakuda and Tosaka
(1992);Kakuda, Tosaka and Nakamura (1996);Kakuda (2004);Kakuda, Miura and
Tosaka (2006)]. The Navier-Stokes equations are semi-explicitly integrated in time
by using a fractional step strategy [Donea, Giuliani, Laval and Quartapelle (1982)],
and hence split into the convection-diffusion equation and linear Euler-type equa-
tions using an auxiliary velocity vector. As the time-marching scheme, we adopt
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the second-order accurate Adams-Bashforth explicit differencing for both convec-
tion and diffusion terms.

It is not easy to simulate such problems by using the finite element-based schemes.
There are various meshless-based methods, such as SPH (Smoothed Particle Hy-
drodynamics) method [Lucy (1977);Gingold and Monaghan (1977)], MPS (Mov-
ing Particle Semi-implicit) one [Koshizuka and Oka (1996)], and MLPG (Meshless
Local Petrov-Galerkin) one [Atluri and Zhu (1998)], to simulate effectively such
problems. The SPH methods for solving compressible fluid flows with gravity
have been firstly developed in the field of astrophysics [Lucy (1977);Gingold and
Monaghan (1977)], and applied successfully to a wide variety of complicated prob-
lems, including free surface incompressible flows [Monaghan (1994);Sakai, Yang
and Jung (2004)] involving breaking dam, wave propagation, and so forth, ther-
mal conduction with heat flux across discontinuities in material properties [Cleary
and Monaghan (1999)], impact fracture in solids [Swegle, Hicks and Attaway
(1995);Hoover (2006)], and the behaviors of arctic sea ice in oceanography [Lind-
say and Stern (2004)]. The MPS method [Koshizuka and Oka (1996)] as an in-
compressible fluid flow solver has been widely applied to the problem of breaking
wave with large deformation [Koshizuka, Nobe and Oka (1998)], the fluid-structure
interaction problem [Chikazawa, Koshizuka and Oka (2001)], and the micro multi-
phase flow one [Harada, Suzuki, Koshizuka, Arakawa and Shoji (2006)]. Atluri and
Zhu [Atluri and Zhu (1998)] have developed the MLPG approach based on the lo-
cal symmetric weak form and the moving least squares [Lancaster and Salkauskas
(1981)] for solving accurately potential problems, and the approach was extended
to deal with the problems for convection-diffusion equation [Lin and Atluri (2000)]
and incompressible Navier-Stokes equations [Lin and Atluri (2001)] in fluid dy-
namics.

The purpose of this paper is to present the application of the MPS scheme to in-
compressible viscous fluid flow in a pump with rotating impeller. The liquid ring
vacuum pump has an impeller with blades attached to a center hub, located by the
decentering in a cylindrical body. The phenomena in the pump require the multi-
physics problem including the moving interface boundary between gas and liquid,
and the rotating impeller with blades. It is particularly indispensable to catch the
interface boundary between the gas and the liquid to design the impeller which is
off-set from the center of the body. The workability and validity of the present ap-
proach are demonstrated through flow in the liquid ring pump, and compared with
experimental data and other numerical ones.

Throughout this paper, the summation convention on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect
to the spatial variable.
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2 Statement of the problem

Let Ω be a bounded domain in Euclidean space with a piecewise smooth boundary
Γ. The unit outward normal vector to Γ is denoted by nnn. Also, ℑ denotes a closed
time interval.

The motion of an incompressible viscous fluid flow is governed by the following
Navier-Stokes equations :

Dui

Dt
=− 1

ρ
p,i +νui, j j + fi in ℑ×Ω (1)

Dρ

Dt
= 0 in ℑ×Ω (2)

where ui is the velocity vector component, ρ is the density, p is the pressure, fi is
the external force, ν is the kinematic viscosity, and D/Dt denotes the Lagrangian
differentiation.

In addition to Eq. 1 and Eq. 2, we prescribe the initial condition ui(xxx,0) = u0
i , where

u0
i denotes the given initial velocity, and the Dirichlet and Neumann boundary con-

ditions.

3 MPS formulation

Let us briefly describe the MPS proposed by Koshizuka [Koshizuka and Oka (1996)].
The MPS method is one of the particle methods. The particle interaction models
as illustrated in Fig. 1 are prepared with respect to differential operators, namely,
gradient, divergence and Laplacian. The incompressible viscous fluid flow is cal-
culated by a semi-implicit algorithm, such as SMAC (Simplified MAC) scheme
[Amsden and Harlow (1970)].

The particle number density n at particle i with the neighboring particles j is defined
as

ni = ∑
j 6=i

w(|rrr j− rrri|) (3)

in which the weighting function w(r) is

w(r) =

{re

r
−1 (r < re)

0 (r ≥ re)
(4)

where re is the radius of the interaction area as shown in Fig. 1.
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The model of the gradient vectors at particle i between particles i and j are weighted
with the kernel function and averaged as follows :

< ∇∇∇φ >i=
d
n0 ∑

j 6=i
[

φ j−φi

|rrr j− rrri|2
(rrr j− rrri)w(|rrr j− rrri|)] (5)

where d is the number of spatial dimensions, φi and φ j denote the scalar quantities
at coordinates rrri and rrr j, respectively, and n0 is the constant value of the particle
number density.

The Laplacian model at particle i is also given by

< ∇∇∇
2
φ >i=

2d
n0λ

∑
j 6=i

(φ j−φi)w(|rrr j− rrri|) (6)

where λ is an ad hoc coefficient.

Figure 1: Particle interaction models

4 Numerical example

In this section we present numerical results obtained from applications of the above-
mentioned numerical methods to incompressible viscous flow problems in a liquid
ring pump with rotating impeller blades from a practical point of view. The initial
velocities are assumed to be zero everywhere in the interior domain.

Fig. 2 shows the geometry and the initial state of particles for flow in a liquid ring
pump with rotating impeller. In Fig. 2(a) the blades near the top of the pump are



Flow Simulations in a Liquid Ring Pump 219

(a) Geometry (b) Initial state of particles
Figure 2: Geometrical configuration and initial state of particles

very closer to the outside wall than at the side and bottom of the pump. The impeller
with blades is attached to a center hub and located in off-set from the center of the
cylindrical body. In this two-dimensional simulation, we set 9,527 particles in the
initial configuration, 2,400rpm and 1,200rpm as the speed of the rotating impeller,
and the CFL condition umax∆t/lmin ≤C, where C is the Courant number (= 0.1).
The kernel size for the particle number density and the gradient/Laplacian models
is re = 4.0l0 in which l0 is the distance between two neighboring particles in the
initial state. In this case, we set l0 = 0.002333.

Fig. 3 shows the instantaneous particle behaviors for the rotational speed 2,400rpm
of the impeller blades. When the pump starts, the impeller slings the water sealant
by centrifugal force, to the outside walls of the body, forming a water ring at the
outside walls of the body with passage in the time. As you can see in these figures,
some of the blades are fully immersed in water, and some are almost out of the wa-
ter, because of the decentering impeller in the body. Fig. 4 shows the corresponding
instantaneous velocity vector fields at different time using the MPS scheme. With
passage in the time, you can see the extension of high velocity vector fields near
the bottom wall of the body. The present results at the same time for different ro-
tational speed of the impeller are shown in Fig. 5. As the results, it is clear that the
width of the water ring for high rotating speed is considerably narrower than that
of low rotating speed by centrifugal force. The pump with an impeller of the high
rotating speed expands also the high velocity vector field to the neighborhood of
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(a) t ' 5ms (b) t ' 20ms

(c) t ' 100ms (d) t ' 200ms

(e) t ' 300ms (f) t ' 449ms
Figure 3: Instantaneous particle behaviors
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(a) t ' 5ms (b) t ' 20ms

(c) t ' 100ms (d) t ' 200ms

(e) t ' 300ms (f) t ' 449ms
Figure 4: Instantaneous velocity vector fields
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the outside wall.

(a) 1,200rpm (b) 2,400rpm
Figure 5: Comparisons with different rotating impeller speed at t ' 449ms

Fig. 6 shows the instantaneous streamlines for different Reynolds number using
the Petrov-Galerkin FE scheme[Kakuda, Toyotani, Matsuda, Tanaka and Katagiri
(2010)]. The finite element-based parameters are summarized in Tab. 1. In this
case, we adopt the lowest interpolation functions in which the velocity vector and
the scalar potential are piecewise tri-linear, and the pressure is constant over each
element. As you can see there exist the vortexes from some edges of the impeller
blades. Fig. 7 shows the 2D simulation using the MPS (see Fig. 7(b)) and the
Petrov-Galerkin FE results (see Fig. 7(c)) through comparison with experimental
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(a) Re = 103 (b) Re = 105

Figure 6: Instantaneous streamlines fields

(a) Experiment (b) MPS method (2D) (c) P-G method
Figure 7: Comparisons with the experimental data
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photograph (see Fig. 7(a)). The air-water interface line obtained from the exper-
iment is shown in Fig. 7(a) by a solid line. The maximum streamline using the
Petrov-Galerkin method (see Fig. 7(c)) seem to be overestimated near the top and
underestimated slightly at others in comparison with the air-water interface line
obtained from the experiment, while the agreement between the present results,
namely a dot line, using the MPS scheme and the experimental data appears satis-
factory as shown in Fig. 7(b). In the left area of the impeller blades, the instanta-
neous interface behaviors are qualitatively similar to the experimental ones.

Table 1: A summary of the parameters using Petrov-Galerkin FEM

Re Nodes Elements 4t αi

103,105 105,948 90,784 0.001 0.5

5 Conclusions

We have presented the MPS approach for solving numerically incompressible vis-
cous fluid flow in a liquid ring pump with rotating impeller blades. The MPS
scheme has been widely utilized as a particle strategy for free surface flow, the
problem of moving boundary, and multi-physics/multi-scale ones. As the numer-
ical example, flow in a liquid ring pump with rotating impeller is carried out and
compared with experimental data and other numerical ones. The numerical results
obtained herein are summarized as follows:

(1) It is confirmed that the pump forms a water ring at the outside walls of the body
with passage in the time.

(2) The qualitative agreements between the present results and the experimental
data appear satisfactory.

(3) The numerical results demonstrate that the approach is capable of solving qual-
itatively and in a stable manner the complicated flow phenomena.
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