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Sequential Approximate Optimization Procedure based on
Sample-reusable Moving Least Squares Meta-model and

its Application to Design Optimizations

Jin Yeon Cho1 and Min Hwan Oh1

Abstract: In this work, a sample-reusable sequential approximate optimization
(SAO) procedure is suggested. The suggested sequential approximate optimization
procedure utilizes a newly proposed sample-reusable meta-model along with the
trust region algorithm. Domain of design is sequentially updated to search for the
optimal solution through the trust region algorithm, and the system response in the
updated design region at each sequential stage is approximated by the proposed
sample-reusable meta-model. The proposed sample-reusable meta-model is based
on the moving least squares(MLS) approximation scheme. Thanks to the merits of
moving least squares scheme, the proposed meta-model can fully utilize the previ-
ously sampled responses as well as the currently sampled responses of the system,
and consequently it makes it possible to enhance the accuracy and robustness of
meta-model (often called response surface) for system response.
Through the typical optimization problems, the performance of proposed approach
is investigated. After the investigations, a preliminary optimal design of compound
helicopter is carried out by using the proposed sample-reusable sequential approx-
imate optimization procedure as a practical example of design optimization.

Keywords: sequential approximate optimization(SAO), sample-reusable meta-
model, moving least squares(MLS), trust region algorithm, response surface.

1 Introduction

Meta-model based design optimization (MBDO) has been one of the major trends
in design optimizations of complex engineering systems in the past two decades
[Wang, Shan (2007)]. The major reason to use meta-model (such as polynomial
based regression, Kriging, thin plate splines, radial basis function, moving least
squares, etc. [Lancaster, Salkauskas (1981); Atluri, Cho, Kim (1999); Jones (2001);
Myers and Montgomery (2002); Ho, Yang, Ni, Wong (2007); McDonald, Grantham,
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Tabor, Murphy (2007); Panda and Manohar (2008)]) instead of high-fidelity model
is the expensive computational cost which is required to obtain the response of
high-fidelity model. Of course, computational cost per arithmetic operation has
been greatly reduced compared to 20 years ago, because of the startling progress
in computing hardware technologies. On the contrary, the fidelity of model in en-
gineering practice has been enormously increased according to the affordability of
computing hardware and ever-increasing requirements for more reliable, more ef-
ficient, and more competitive design. Therefore, even nowadays it is still common
that it takes couple of days to carry out high-fidelity simulation of complex systems
such as aerospace vehicle, automobiles, and others.

Because of the aforementioned research driving force, a considerable research ef-
fort has been given to meta-model based design optimization (MBDO). As a result,
several optimization strategies have been proposed in the context of meta-model
based design optimization [Schmit, Jr. and Farshi (1974); Sacks, Welch, Mitchell,
Wynn (1989); Jones, Schonlau, Welch (1998); Rodriguez, Renaud, Watson (1998);
Alexandrov, Lewis, Gumbert, Green, Newman (2001); Myers and Montgomery
(2002)]. Among these, successive approximate optimization(SAO) procedure is
one of the mostly preferred strategies in engineering practice because of its com-
putational efficiency and guaranteed convergence to local optima [Fletcher (1987);
Rodriguez, Renaud, Watson (1998); Alexandrov, Lewis, Gumbert, Green, Newman
(2001)].

In successive approximate optimization procedure, a repetitive strategy is adopted.
In each sequential step, region of design space is restricted to local region, and the
sub-optimization problem is considered in that region. The sub-optimization prob-
lem in the restricted region is carried out along with meta-model according to the
following procedure. At first, appropriate locations in the restricted design space
are selected through so called DoE(design of experiments) techniques, and sys-
tem responses are obtained by the simulation of high-fidelity model at the selected
locations. The procedure is often called sampling. After sampling, the sampled
responses are utilized to construct a meta-model (usually quadratic polynomial
regression model [Sobieski, Manning, Kroo (1998)]) which is a surrogate of the
system response of high-fidelity model. With the constructed meta-model, sub-
optimization is carried out within the restricted design space to select a probable
optimal solution. If the obtained probable optimal solution is not the converged
solution, then the next sequential restricted region is updated. And the same pro-
cedure is repeated until the probable optimal solution of sub-problem converges to
the optimal solution.

In sequential approximate optimization(SAO), meta-model is constructed by using
new sampling points in each sequential step with no regard to the previously sam-
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pled points, although the previous sampling points may provide valuable informa-
tion about the system response. Taking into account the expensive computational
cost paid for sampling responses, recycling the pre-sampled responses may be a
smart strategy to save a computational cost.

In the line of thought, a novel sequential approximate optimization(SAO) proce-
dure, based on sample-reusable meta-model, is proposed in this work. To con-
struct the sample-reusable meta-model, moving least squares method is employed
instead of the conventional polynomial regression meta-model because of its fa-
vorable characteristics [Atluri (2004), Atluri (2005)]. In numerical examples, the
performance of proposed method is investigated through the representative opti-
mization problems including Branin function, Hosaki function, and Haupt function.
As a practical example of design optimization, a preliminary design optimization
of compound helicopter is performed by using the proposed sample-reusable se-
quential approximate optimization(SAO) procedure, and its potential is observed
in practical point of view.

2 Sequential Approximate Optimization based on Sample-reusable MLS Meta-
model

As mentioned in introduction, there are three main parts in the sequential approx-
imate optimization procedure. The first one is how to restrict the region of design
in each sequential step, the second one is how to select the sampling position of
response in the restricted region, and the third one is how to construct an accurate
surrogate model which could reflect the real response of the system appropriately.
In forthcoming subsections, the three main parts of SAO procedure used in this
work are described.

2.1 Trust Region Algorithm for Restriction of Region of Design

Trust region algorithm was originally proposed in the context of Newton’s method,
and successfully applied to design optimization problems [Sorensen (1982); Fletcher
(1987); Rodriguez, Renaud, Watson (1998)]. Trust region algorithm restricts the
step size first and then determines the probable optimal solution in the restricted
trust region, whereas conventional optimization algorithms determine the search
direction first and then determine the step size. The trust region algorithm can be
summarized as follows.

Consider a design optimization problem, where x is the design variable, f (x) is
the objective function, and Ω is the region of design. Without loss of generality,
one may assume that x(k) is the probable optimum point at the current (k)-th step,
and f̃ (k)(x) is an approximated meta-model of objective function f (x) over the
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restricted trust region Ω(k) with radius ∆(k) at the (k)-th step as shown in Fig. 1.
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Figure 1: Sketch of the concept of trust region algorithm.

Then at first the trust region algorithm seeks the solution x∗ of the resulting sub-
problem for the next (k+1)-th sequential step as denoted in Eq. 1.

x∗ = ARG
[

min
x∈Ω(k)

f̃ (k)(x)
]

(1)

where Ω(k) =
{

x :
∥∥x−x(k)

∥∥≤ ∆(k)
}
∩Ω

And the trust ratio ρ(k) between the actual reduction ∆ f (k) = f (x(k))− f (x∗) and
predicted reduction ∆ f̃ (k) = f̃ (k)(x(k))− f̃ (k)(x∗) is evaluated as shown in Eq. 2.

ρ
(k) =

∆ f (k)

∆ f̃ (k)
=

f (x(k))− f (x∗)
f̃ (k)(x(k))− f̃ (k)(x∗)

(2)

To update the next probable optimum point and the size of trust region, the follow-
ing decision algorithm is utilized.

[Decision Algorithm I]
If ρ(k) < κ1, then ∆(k+1) = c1

∥∥x∗−x(k)
∥∥

If ρ(k) > κ2 and
∥∥x∗−x(k)

∥∥= ∆(k) , then ∆(k+1) = c2∆(k)

Otherwise, ∆(k+1) = ∆(k){
If ρ(k) ≤ 0, then x(k+1) = x(k),

else x(k+1) = x∗

(3)
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And the above is repeated until the probable optimal point x(k+1) converges to the
optimal solution. In decision algorithm I (Eq. 3), κ1, κ2, c1, and c2 denote the al-
gorithmic constants. Customarily the constants are adopted as the values suggested
by Fletcher (1987) (κ1 = 0.25, κ2 = 0.75, c1 = 0.25, and c2 = 2).

However, it is noted that the constants could be modified according to the problem
of interest [Alexandrov, Lewis, Gumbert, Green, Newman (2001)]. Furthermore,
the size of next trust region can be also controlled by the size ∆(k) of current trust
region instead of the distance

∥∥x∗−x(k)
∥∥ as shown in Eq. 4 [Rodriguez, Renaud,

Watson (1998)].

[Decision Algorithm II]
If ρ(k) < κ1, then ∆(k+1) = c1∆(k)

If ρ(k) > κ2 and
∥∥x∗−x(k)

∥∥= ∆(k) , then ∆(k+1) = c2∆(k)

Otherwise, ∆(k+1) = ∆(k){
If ρ(k) ≤ 0, then x(k+1) = x(k),

else x(k+1) = x∗

(4)

It is noted that the algorithm I (Eq. 3) can reduce the trust region size faster than the
algorithm II (Eq. 4). Because of the feature, the decision algorithm I usually shows
faster convergence than the decision algorithm II, once it starts to converge to the
optimal point. On the contrary, the algorithm I is more susceptible to converging
to local optimal point compared with the algorithm II. Additionally, it is noted that
size of trust region is maintained or increased in both algorithms when trust ratio
ρ(k) is larger than κ2, even though trust ratio, larger than 1, implies that the meta-
model does not describe the system response appropriately.

Based on the observations, the following modified decision algorithm is also con-
sidered to inherit the merits of both algorithms as well as alleviate the drawbacks
of algorithms I and II in this work.

[Decision Algorithm III]
If ρ(k) < κ1 or ρ(k) > κ3, then ∆(k+1) = min

(
c1∆(k), c3

∥∥x∗−x(k)
∥∥)

If κ2 < ρ(k) < κ3 and
∥∥x∗−x(k)

∥∥= ∆(k) , then ∆(k+1) = c2∆(k)

Otherwise, ∆(k+1) = ∆(k){
If ρ(k) ≤ 0, then x(k+1) = x(k),

else x(k+1) = x∗

(5)

In algorithm III (Eq. 5) algorithmic constants κ1, κ2, κ3, c1, c2, and c3 are chosen
as κ1 = 0.25, κ2 = 0.75, κ3 = 4, c1 = 0.25, c2 = 2 and c3 = 10.
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2.2 Design of Experiments for Selection of Sample Points

Selection of sample points, which is referred to as DoE(design of experiments),
is important to construct a meta-model which reflects the behavior of considered
system appropriately. Due to the reason, various sampling schemes have been pro-
posed. Representative sampling schemes are FD (factorial design), CCD (central
composite design), FCD (face centered design), BBD (Box-Behnken Design), LHS
(Latin hypercube sampling), and others [McKay, Beckman, Conover (1979); My-
ers and Montgomery (2002)].

Among them, LHS(Latin hybercube sampling) method [McKay, Beckman, Conover
(1979); Park (1994); Zadeh, Toropov, Wood (2009)] is considered in this work be-
cause of its favorable characteristics. It makes it possible to choose the number
of sampling points independent of the number of design variables. Further, Latin
hypercube sampling points could be arranged to have a good space filling property
[Johnson, Moore, Ylvisaker (1990); Tang (1993); Ye (1998)]. LHS selects only
one sample point in each level of every design variables as shown in Fig. 2. There-
fore one can obtain the quadratic regression model only with 10 sampling points
for the problems with 3 design variables. To construct the quadratic regression sur-
face for the problems with 3 design variables, factorial sampling design requires 27
sampling points, and central composite design requires 15 points at least.

In this work, lattice-based LHS algorithm [Hwang (2000)] is utilized to generate
the Latin hypercube sampling points. The utilized lattice-based LHS algorithm is
simple to implement and may generate sampling points similar to GLP(good lattice
point) algorithm, while it preserves the intrinsic nature of Latin hypercube sampling
[Fang, Wang (1994); Fang, Wang, Bentler (1994); Hwang (2000)]. Algorithm for
lattice-based LHS is summarized as shown in box.

It is noted that mod(a,b) denotes the remainder of division of a by b. In imple-
mentation Qd1 can be chosen randomly or intentionally. It is recommended to take
a value Qd1 for a given number of sampling points such that the sampling points
have a good space filling property. In mapping of the sampling level matrix Q into
design space, mid-point or random point in the corresponding level could be uti-
lized as a sampling point as shown in Fig. 2. The typical distribution of generated
sampling points in two dimensional design space is presented in Fig. 3.

2.3 Moving Least Squares Approximation Scheme

Moving least squares approximation scheme has been widely used in the field of
computational mechanics because of its flexibility in dealing with irregular dis-
tribution of sampling points and in achieving the requirement for smoothness of
the approximated function [Atluri, Han, Shen (2003)]. Further, information from
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Figure 2: Concept of Latin hypercube sampling.

the additional sampling points could be easily considered with no difficulty [Atluri
(2004)].

Due to the reasons, the moving least squares approximation scheme may be a
good candidate for meta-model rather than the conventional polynomial regression
model in sequential approximate optimization procedure. Therefore, a meta-model,
which is based on the moving least squares approximation scheme, is considered
for sequential approximate optimization in this work. In this section, the moving
least squares approximation scheme is briefly reviewed.

Consider a continuous function f (x) defined on a domain of design Ω, where the
design variable x =

[
x1 x2 · · · xD

]T is a D−dimension vector. And assume
that the function values at the sampling points xI (1 ≤ I ≤ N) in Ω are given as
f (xI) (1≤ I ≤ N). Then in moving least squares scheme, the following form f̃ (x)
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Figure 3: Typical distribution of Latin hypercube sampling.

is defined to approximate the function f (x).

∀ x ∈Ω, f̃ (x) = pT (x)a(x) =
m

∑
i=1

pi(x)ai(x) (6)

where p(x) is a complete monomial basis of order m, and a(x) is a vector containing
coefficients ai(x) (1 ≤ i ≤ m). The basis p(x) is selected to contain constant ‘1’,
and to be linearly independent over some set of m among the given N points in Ω.
In this work, quadratic monomial basis is selected. If the design variable x is a two
dimension vector and its components are x and y, then the corresponding quadratic
basis is written as

pT (x) =
[
1 x y x2 xy y2

]
(7)

The coefficient vector a(x) is determined by minimizing a weighted discrete L2
error norm as follows.

a(x) = ARG
b∈Rm

{
[Pb−F]T W(x) [Pb−F]

}
=
[
PT W(x)P

]−1 [PT W(x)
]

F (8)

where

P =


pT (x1)
pT (x2)

...
pT (xN)

=


p1(x1) · · · pm(x1)
p1(x2) · · · pm(x2)

...
p1(xN) · · · pm(xN)

 (9)
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F =


f (x1)
f (x2)

...
f (xN)

 (10)

W(x) =


W1(x) 0 · · · 0

0 W2(x) · · ·
...

...
...

. . . 0
0 · · · 0 WN(x)

 (11)

The N×m matrix P consists of basis, and the vector F denotes the vector of given
values f (xI) at sample points xI (1 ≤ I ≤ N) in the domain Ω. The N×N diag-
onal matrix W(x) is composed of weight functions. The weight function WI(x) is
associated with the sample point xI . The weight function WI(x) is selected to be
non-negative for all x, and the region of non-zero values is called the support. In
computations, various kinds of weight functions can be adopted for MLS approx-
imation procedure. The required condition for the continuity of the approximated
function can be easily satisfied by changing the weight function in the MLS approx-
imation. In this work, the following polynomial tensor-product weight function is
used.

WI(x) =
D

∏
α=1

(
1−
(
|xα − (xα)I|

(Rα)I

)2
)4

(12)

where xα and (xα)I denote the α - th components of design variables x and xI ,
respectively, and (Rα)I denotes the radius of support of weight function (radius of
influence) for α - th component of design variable xI in Ω.

2.4 Sample-reusable MLS(Moving Least Squares) Meta-model

As pointed out before, the main reason to use meta-model instead of real system
response is the expensive computational cost for direct evaluation of system re-
sponse. In case of optimization related to high-fidelity mathematical model, expen-
sive computational cost should be paid to obtain the response even in one sampling
location. Usually, the sampling cost overwhelms the computing cost to construct a
meta-model. Therefore, it is essential to extract all the information from the costly
responses of sampling points.

In most of sequential approximate optimization approaches, the sampling points
at the previous steps are not considered, and only the responses of new sampling
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points in the current trust region are considered to construct the meta-model. How-
ever, if one closely looks at the sequential approximate procedure, one may easily
notice that the previously sampled points may exist in the current trust region.

Based on the crucial investigation, we are aiming to fully utilize the information of
previously sampled responses with no additional sampling cost.

If one uses the moving least squares scheme, one can improve the accuracy of meta-
model by additional sampling points. We utilize this feature to enhance the quality
of meta-model by using the previous sampling points.

In this work, we fully take advantage of the pre-sampled points not only in the
current trust region but also near the current trust region under the nearness con-
cept, since the behaviors of sampling points near the trust region may provide the
valuable information about the system response.

The nearness is determined by the intersection of current trust region and the sup-
port of weight function associated with the sampling point. If the intersection is not
empty, it is determined that the sampling point of interest is near the trust region,
and its response is utilized to construct the moving least squares meta-model for the
current trust region as shown in Fig. 4. By the procedure, the previously sampled
points are fully utilized even when the points are not inside the current trust re-
gion. The procedure to construct the proposed sample-reusable MLS(moving least
squares) meta-model can be written as follows.

[Procedure to obtain the sample-reusable MLS meta-model]

 

Figure 4: Concept of nearness for the trust region and previously sampled points.
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(1) Assume that the total number of sampling points until last sequential step
is T N, and the set of previously sampled points is given as P = {x : x =
x(previous)

I , 1≤ I ≤ T N}.

(2) The current trust region Ω(k) is given by the trust region algorithm.

(3) Choose the sampling point x(current)
J (1≤ J ≤ N) in the current trust region Ω(k)

by lattice-based Latin hypercube method or others. (N denotes the number of
sampling points at each step.)

(4) Construct the set of current sampling points as C = {x : x = x(current)
J , 1≤ J ≤

N}

(5) Obtain the system response at the current sampling point x(current)
J (1≤ J ≤ N).

(6) Define the support size of weight for x(current)
J (1 ≤ J ≤ N) to construct MLS

meta-model.

(7) Adjust the support size of weight for the pre-sampled point x(previous)
I (1≤ I ≤

T N).

(8) Define the support set S(previous)
I of weight W (previous)

I (x) associated with x(previous)
I

as S(previous)
I =

{
x ∈Ω : W (previous)

I (x) 6= 0
}

(9) Find the pre-sampled points near the trust region Ω(k) by means of the nearness
criterion.{

x(previous)
I is near the trust region Ω(k) if S(previous)

I ∩Ω(k) 6= φ

x(previous)
I is not near the trust region Ω(k) if S(previous)

I ∩Ω(k) = φ

(10) Make neighboring set N which consists of pre-sampled points near the trust
region.

N =
{

x : x ∈P and x is near the trust region Ω
(k)
}

(11) Set A = C ∪N .

(12) Construct a sample-reusable MLS meta-model with the sampling points in A
by the moving least squares scheme with no additional sampling cost.
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In this work, the radii of supports of weights for both of current and previous sam-
pling points are selected as the same size of trust region for simplicity, even though
those can be adopted arbitrarily if they do not induce singularity in moving least
squares approximation.

In Fig. 5, flowchart for sequential approximate optimization procedure with sample-
reusable MLS meta-model is presented. Optimization of sub-problem in trust re-
gion is carried out by using the genetic algorithm in this work.

 

Figure 5: Flowchart for SAO procedure with sample-reusable meta-model.

3 Numerical tests

For representative functions including Haupt, Hosaki, and Branin functions, opti-
mizations are carried out by the proposed sample-reusable SAO procedure along
with 10 points Latin hypercube sampling, and the performance is compared with
those of conventional SAO procedure with quadratic polynomial regression meta-
model and SAO procedure with MLS meta-model. In examples, in order to observe
the tendency of convergence, the iteration is carried out until 25 steps, if the global
solution is not found or if the rate of convergence is slow. In Figs. 6-11, sample-
reusable SAO, SAO with MLS meta-model, and SAO with quadratic polynomial
regression meta-model are denoted by ‘SR-MLS-SAO’, ‘MLS-SAO’, and ‘QPR-
SAO’, respectively.
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(a)                                                                      (b) 

 

Figure 6: Iteration history for optimization of Haupt function (1st starting condi-
tion).

   
(a)                                                                     (b)  

 

Figure 7: Iteration history for optimization of Haupt function (2nd starting condi-
tion).
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3.1 Optimization of Haupt function

At first, Haupt function[Haupt, Haupt (1998)] is optimized by the proposed sample-
reusable SAO procedure. Haupt function is highly nonlinear function and there
are many local minima. Therefore, it is a very effective benchmarking function
by which the performance of optimization procedure could be measured. Haupt
function is written as follows.

f (Haupt)(x,y) = xsin(4x)+1.1ysin(2y) (13)

Design space is chosen as 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4, and the global optimum of
Haupt function is−5.408 at location (x,y) = (2.771, 2.456). In Fig. 6, the starting
point is adopted as the center of design space, and the radius of initial trust region
is chosen as 1/8 times the size of design space. Trust region algorithms I and II
are utilized to obtain the results presented in Fig. 6a and Fig. 6b, respectively. In
case of trust region algorithm I, result of Fig. 6a shows that the proposed SR-MLS-
SAO(sample-reusable SAO) procedure finds the global optimum rapidly, whereas
convergence of MLS-SAO is very slow, and QPR-SAO(quadratic polynomial re-
gression meta-model SAO) converges to local minima and fails to find the global
optimum. Similar to the case of trust region algorithm I in Fig. 6a, convergence
rate of SR-MLS-SAO is faster than those of the others in case of trust region algo-
rithm II as shown in Fig. 6b. From the results, it can be known that the proposed
SR-MLS-SAO procedure is more reliable than the other SAO procedures.

In case of Fig. 7, the starting point is adopted as the lower-left corner of design
space and the radius of initial trust region is selected as the size of entire design
space. Generally, it is more difficult to find the global optimum with this starting
condition compared with the starting condition used in Fig. 6, because the initial
radius of trust region is too large to approximate the system behavior appropriately
by meta-model as well as the starting point is far from the global optimum. Like
the previous case of Fig. 6, trust region algorithms I and II are utilized to obtain the
results presented in Fig. 7a and Fig. 7b, respectively.

In Fig. 7, the iteration path of SR-MLS-SAO seems to be similar to that of MLS-
SAO during initial two steps. However, SR-MLS-SAO changes the iteration path
after the second step, because the influence of previously sampled responses be-
comes larger as iteration goes on.

Similar to Fig. 6, the proposed sample-reusable SAO procedure gives the global
optimal solution and shows rapid convergence even though it is difficult to find
the global optimal solution with this given starting condition. From the results, it
is confirmed that the proposed SR-MLS-SAO procedure is more robust compared
with the other SAO procedures.
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3.2 Optimization of Hosaki function

At second, Hosaki function [Bekey and Ung (1974)] is optimized by the proposed
sample-reusable SAO procedure. Hosaki function is given by

f (Hosaki)(x,y) =
(

1−8x+7x2− 7x3

3
+

x4

4

)
y2 exp(−y) (14)

Design space is chosen as 0 ≤ x ≤ 5 and 0 ≤ y ≤ 6, and the global optimum is
−2.345 at location (x,y) = (4, 2). Like the case of Haupt function, two starting
conditions are considered. In Fig. 8, the starting point is adopted as the center of
entire design space and the radius of initial trust region is selected as 1/8 times the
size of design space (=6/8). In Fig. 9, the starting point is adopted as the lower-left
corner of design space and the radius of initial trust region is selected as the size of
entire design space (=6). In case of the first starting condition adopted in Fig. 8, all
of the procedures find the global optimum successfully. It seems that it is caused
by the fact that Hosaki function is globally smoother than Haupt function.

  
 (a)                                                                     (b)  

 

Figure 8: Iteration history for optimization of Hosaki function (1st starting condi-
tion).

However, in case of the second starting condition, QPR-SAO (SAO with the quadratic
polynomial regression meta-model) fails to find the global optimum as presented
in Fig. 9b (Trust region algorithm II), whereas the global optimum is successfully
found by SR-MLS-SAO and MLS-SAO procedures for both of trust region algo-
rithms I and II.
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(a)                                                                     (b)  

 

Figure 9: Iteration history for optimization of Hosaki function (2nd starting condi-
tion).

3.3 Optimization of Branin function

At third, Branin function is optimized by the proposed sample-reusable SAO pro-
cedure. Branin function is written as follows [Branin (1972)].

f (Branin)(x,y) =
(

y− 5x2

4π2 +
5x
π
−6
)2

+10
(

1− 1
8π

)
cos(x)+10 (15)

Design space is chosen as −5≤ x≤ 10 and 0≤ y≤ 15, and the global optimum is
0.3979 at three locations (x,y) ∈ {(−π, 12.25), (π, 2.25), (3π, 2.25)}. Like the
former examples, two starting conditions are considered. In Fig. 10, the starting
point is adopted as the center of entire design space and the radius of initial trust
region is selected as 1/8 times the size of design space. In Fig. 11, the starting point
is adopted as the lower-left corner of design space and the radius of initial trust re-
gion is the same as the size of entire design space. In Fig. 10, all of the solutions
converge to the global optimum value, although the convergence rate of SR-MLS-
SAO procedure is slightly slower than those of the others in Fig 10a. Under close
investigation, it has been known that it is caused by inappropriate reduction of size
of trust region in trust region algorithm. The effect of trust region algorithm will be
investigated in section 4. In case of the second starting condition, QPR-SAO does
not find the global optimum and MLS-SAO shows very slow convergence, whereas
SR-MLS-SAO procedure gives the global optimum rapidly as shown in Fig. 11a.
Based upon the results, it is identified that the proposed sample-reusable SAO pro-
cedure is more robust and reliable compared with the other SAO procedures.
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(a)                                                                     (b)  

 

Figure 10: Iteration history for optimization of Branin function (1st starting condi-
tion).

   
(a)                                                                     (b)  

 

Figure 11: Iteration history for optimization of Branin function (2nd starting condi-
tion).

4 Effect of Modification of Trust Region Algorithm

As observed in previous examples, the proposed sample-reusable SAO procedure
is more robust and reliable compared with the other procedures. However, there
is no guarantee that SR-MLS-SAO finds the global optimal point, since the SR-
MLS-SAO inherently relies on the trust region method, which only guarantees the
local minima convergence [Fletcher (1987)]. Further, the convergence rate may
change according to the trust region algorithm. Therefore, the effect of change
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of trust region algorithm is investigated in this section. Trust region algorithm III
described in section 2.1 is employed along with the proposed SR-MLS-SAO and
the effect is investigated.

With the 1st starting condition(same as Fig. 10), Branin function is optimized by
SR-MLS-SAO with trust region algorithm III, and the result is compared with those
obtained with trust region algorithms I and II in Fig. 12a. Comparison shows that
the convergence rate could be accelerated according to the modification of trust
region algorithm.

Under the 2nd starting condition(same as Fig. 7), optimization of Haupt function
is carried out by SR-MLS-SAO with trust region algorithm III, and the result is
presented in Fig. 12b. It shows interesting result. The solution path of algorithm
III is similar to that of algorithm II until 4 steps (see large picture), however after
4 steps, the path becomes similar to that of algorithm I which shows faster conver-
gence than algorithm II after 5 iteration steps (see small picture). From the results,
it can be confirmed that the algorithm III inherits the merits of both algorithms I
and II. And it is identified that SR-MLS-SAO procedure with trust region algorithm
III gives reliable solutions better than or similar to the trust region algorithms I and
II. Based on the results, trust region algorithm III will be utilized along with the
sample-reusable MLS meta-model in optimization of preliminary design of com-
pound helicopter in the next section.

        
(a) Branin (1st starting condition)                  (b) Haupt (2nd starting condition) 

 

Figure 12: Modification of trust region algorithm and its effect.



206 Copyright © 2010 Tech Science Press CMES, vol.66, no.3, pp.187-213, 2010

 
Figure 13: Push-type compound helicopter.

5 Optimization of Preliminary Design of Compound Helicopter

Compound helicopter is one of the promising VTOL(vertical take-off and land-
ing) vehicle concepts, which may expand the mission area of conventional heli-
copter[Orchard, Newman (2003)]. In this work, push-type compound helicopter is
considered. The push-type compound helicopter is equipped with additional wing
and auxiliary propulsion unit as shown in Fig. 13.

To investigate the expandability of possible mission area of compound helicopter,
optimization of preliminary design of compound helicopter is carried out by the
proposed sample-reusable SAO procedure. Additionally, the potential of the pro-
posed sample-reusable SAO procedure is observed in practical point of view.

The baseline design parameters used for preliminary design are presented in Tab.
1. Design variables are presented in Tab. 2. Among the design variables, additional
wing area and angle of attack of additional wing are distinct features of compound
helicopter compared with the conventional helicopter.

In this work, to evaluate the performances of compound helicopter (such as en-
durance, cruise speed, dash speed, maximum range, and hovering capability) ac-
cording to design variables, performance analysis program is utilized. In the pro-
gram, required power for compound helicopter is calculated by the blade element
theory [Prouty (1995)], and it is assumed that all thrust to the forward direction is
provided by the auxiliary propulsion unit. Additionally, lift induced by fuselage is
ignored.
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(a) Endurance and cruise speed                     (b) Endurance and dash speed 
 

Figure 14: Optimization histories of preliminary design of compound helicopter.

Table 1: Baseline design parameters for preliminary design of compound heli-
copter.

Baseline design parameters
Weight Baseline: the weight of rotorcraft except wings [lbs] 30000
Weight Fuel: maximum fuel weight [lbs] 6000
Flat Plate Drag area: frontal equivalent flat plate drag area [ft2] 25
Horizontal Flat Plate Drag area: horizontal equivalent flat plate drag
area [ft2]

100

IRP: intermediate rated power [shp] 8000
MCP: maximum continuous power [shp] 6300
SFC: specific fuel consumption [lb/shp/Hr] 0.5

Table 2: Design variables selected for preliminary design of compound helicopter.

Design Variables
RR Main Rotor Radius(ft)
RC Main Rotor Chord(ft)
RTV Main Rotor Tip Speed(ft/s)
WA Additional Wing Area(ft2)
WAOA Angle of Attack for Additional Wing(deg)
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At first, the endurance, cruise speed, and dash speed of compound helicopter are
independently optimized, and those optimal values are utilized for multi-objective
optimization. The obtained optimal values for endurance, cruise speed, and dash
speed are denoted by f ∗E , f ∗C , and f ∗D, respectively. In multi-objective optimization,
the following objective function F(multi)(x) and design region Ω are considered.

F(multi)(x) = ωE

(
f ∗E − fE(x)

f ∗E

)2

+ωC

(
f ∗C− fC(x)

f ∗C

)2

+ωD

(
f ∗D− fD(x)

f ∗D

)2

for x ∈ Ω (16)

Ω =
{

x : 20≤ RR ≤ 40,1.2≤ RC ≤ 3, 450≤ RTV ≤ 650,0≤WA ≤ 400,

0 ≤WAOA ≤ 10
}

(17)

where x = [RR, RC, RTV , WA, WAOA] is the design variable. fE(x), fC(x), and fD(x)
denote the endurance, cruise speed, and dash speed for the given design variable
x, respectively. Weighting factors for endurance, cruise speed, and dash speed are
adopted as ωE = 0.6, ωC = 0.2, and ωD = 0.2, respectively.

Additionally, feasible design region is restricted by three conditions, considering
the mission of compound helicopter. The conditions are as follows. (a) Maximum
range should be longer than or equal to 400 NM. (b) Endurance should be longer
than or equal to 2hr. (c) Hovering should be possible. Under these conditions,
constraints are constructed as

gi(x)≤ 0 (1≤ i≤ 3) (18)

In this work, the penalty method is utilized to handle the constraints. Through
the penalty method, aforementioned multi-objective optimization problem could
be written as shown below.

xoptimum = ARG

[
min
x∈Ω

(
F(multi)(x)+αp

3

∑
i=1

[max(gi(x), 0)]2
)]

(19)

where the penalty parameter αp is adopted as 104.

As described before, the endurance, cruise speed, and dash speed of compound
helicopter are independently optimized to obtain f ∗E , f ∗C , and f ∗D at first. Trust region
algorithm III is utilized along with 150 Latin hypercube sampling points. Iteration
is terminated if the change of optimal value is less than 0.1% during consecutive 5



Sequential Approximate Optimization Procedure 209

steps. For the three SAO procedures(SR-MLS-SAO, MLS-SAO, and QPR-SAO),
the optimized results of f ∗E , f ∗C , and f ∗D are presented in Tab. 3. Once again, it is
identified from the results that SR-MLS-SAO shows better performance than the
other SAO procedures with no additional sampling cost.

With the optimal values f ∗E , f ∗C , and f ∗D obtained by SR-MLS-SAO procedure,
multi-objective optimization is performed. In optimization, SR-MLS-SAO pro-
cedure is utilized along with trust region algorithm III, the same sampling points,
and the same termination routine as before. The optimization results are presented
in Tab. 3, and the optimization histories are presented in Fig. 14. From the results,
it is identified that there are many possibilities to expand the mission area (such
as rescue, reconnaissance, patrol or others) of conventional helicopter through in-
creasing the endurance, cruise speed, and dash speed at the same time.

6 Conclusions

To fully utilize the information of previously sampled points in sequential approx-
imate optimization (SAO) procedure, a sample-reusable SAO procedure is sug-
gested. The SAO procedure utilizes a newly proposed sample-reusable MLS(moving
least squares) meta-model along with the trust region algorithm. Under the near-
ness concept, the sample-reusable MLS meta-model extracts the valuable informa-
tion about the system response not only from the pre-sampled points located in the
current trust region, but also from the pre-sampled points near the current trust re-
gion. Consequently, it becomes possible to enhance the quality of meta-model for
system response compared with conventional SAO procedures without additional
expensive sampling cost.

Through the representative examples, the performance of the sample-reusable SAO
procedure (SAO with sample-reusable MLS meta-model) is investigated, and the
performance is compared with those of QPR-SAO (SAO with quadratic polyno-
mial regression meta-model) and MLS-SAO (SAO with moving least squares meta-
model). From the results, it is identified that the proposed sample-reusable SAO
procedure gives more reliable solution than the others with no additional sampling
cost, and it is less sensitive to starting conditions. Additionally, through the investi-
gation of the effect of trust region algorithm, it is observed that modified trust region
algorithm III could improve the convergence performance in the sample-reusable
SAO procedure.

As a practical example, optimization of preliminary design of compound helicopter
is carried out by using the proposed sample-reusable SAO procedure. From the
optimization results, it is confirmed that it is possible to expand the mission area
of conventional helicopter by using the concept of compound helicopter. Further,
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it is identified that the proposed sample-reusable SAO procedure has a practical
potential in engineering practice.
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