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Size-Dependent Behavior of Macromolecular solids II:
Higher-Order Viscoelastic Theory and Experiments

D. C. C. Lam1, L-H Keung1 and P. Tong2

Abstract: Additional molecular rotations in long chained macromolecules lead
to additional size dependence. In this investigation, we developed the higher order
viscoelasticity framework and conducted experiments to determine the higher order
material length scale parameters needed to describe the higher order viscoelastic
behavior in the new framework. In the first part of the investigation of high order de-
formation behavior of macromolecular solids, the higher-order viscoelasticity theo-
ries for Maxwell and Kelvin-Voigt materials, and models of higher-order viscoelas-
tic beam deflection creep are developed in this study. We conducted creep bending
experiments with epoxy beams to show that the creep deflection behavior followed
the conventional Kelvin-Voigt viscoelastic behavior when the beams are thick and
that higher-order size dependences are present in both the time-independent elastic
and time-dependent creep deflection when the beams are thin. The higher-order
viscoelastic creep bending model with a higher-order material length scale param-
eter, l2, was shown to be in good agreement with the data. Furthermore, l2 is
chain-based, instead of mechanism-based. Since each macromolecular solid has
only a single set of chains, only a single l2 is needed to characterize its higher or-
der behavior in the newly developed higher order viscoelasticity framework. The
new single l2 higher order viscoelastic theory can be used to describe viscoelastic
nanomechanical behaviors in nanostructured macromolecular solids.

Keywords: polymer, creep, viscoelastic, size effect, strain gradient

1 Introduction

Conventional descriptions of material behaviors are strain-based (Doi 1996). Chain
rotation is the molecular mechanism underpinning strain-based deformation in macro-
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molecular solid. Experiments have shown size-effects are present when strain gra-
dients are non-negligible. Experiments showed that nanofibers 260 nm in diameter
have an elastic modulus of 47 GPa while nanofibers 375 nm in diameter have an
elastic modulus of 15 GPa in bending (Gu et al., 2005). Similar increases in the
bending elastic modulus were reported by Cuenot et al. (2000) and Ji et al. (2006).
Lam et al. (2003) and McFarland et al. (2005) experimentally found that the ef-
fective elastic modulus increased with the inverse square of the beam thickness.
The increase in the elastic modulus was obtained when the data were analyzed
using the conventional strain-based beam bending model. When the higher-order
strain-gradient beam bending model with the higher-order bending parameter, bh,
was used, the elastic modulus was shown to remain constant. The high-order beam
bending parameter, bh,

b2
h = 3(1−ν)l2

2 +
2(4−ν)

5
l2
1 +6(1−2ν)l2

0 (1)

is dependent on Poisson’s ratio, ν , the strain gradient material length scale pa-
rameters and l0, l1 and l2, which are associated with dilatation gradients, stretch
gradients and rotation gradients, respectively.

1.1 Molecular rotation and length-scale parameters

The size effects can be readily explained by higher order mechanics (Lam et al.
(2003); Wang and Lam (2010)) with l2 as the new material length scale parame-
ter characterizing the size dependence. The higher order mechanics models have
successfully explained the size-effects observed in bending beams and in nanocom-
posites. Despite the success of the mathematical higher order mechanics model, the
molecular origin of the size-effects is lacking. This gap is filled by the breakthrough
study detailed in part I of this series (Wei and Lam; 2010). The molecular deforma-
tion of beams in bending and tension were examined for three different polymers
over a range of molecular weights using molecular models. The study showed that
when the beams were strained uniformly in tension, the elastic modulus remained
constant across different beam thicknesses. The behavior in bending was different.
Experimental results indicated that the effective elastic moduli of beams in bend-
ing were increased by the strain gradients along the thickness direction. Molecular
simulations revealed that the deformation energy during bending originated from
molecular rotations. The increase in the effective elastic moduli was associated
with increase in molecular rotations of the chains when rotation gradients are non-
negligible. This means that the size-observed effect is not underpinned by a new
mechanism, but is a new association of molecular rotations with rotation gradients.
The association was tested by examining if l2, the higher order material length scale
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parameter characterizing the rotation gradient behavior, shared the same inverse de-
pendence on the segmental molecular weight as elastic modulus has. Simulation
results confirmed that l2 exhibited the same molecular weight dependence.

1.2 Higher-order viscoelastic behavior

For the first time, the molecular origin of the size effect in macromolecular solids
was confirmed and validated. By using molecular mechanics, we were able to gen-
erate a new mathematical, physical and molecular framework relating the elastic
deformation mechanism, the higher order elastic deformation mechanism, conven-
tional mechanics and the higher order gradients mechanics together. However, a
key element in the macromolecular behavior of higher order mechanics is miss-
ing. Along with time-dependent elastic deformation, macromolecular solids also
deform viscoelastically. If the higher order elastic deformation has the same molec-
ular chain rotation mechanism as the conventional strain-based elastic deformation
mechanism, the higher order viscous part may also share the same chain sliding
mechanism as the conventional viscous part.

In this paper, we developed a higher order viscoelastic framework and higher order
bending models for beams. Creep deflections of beams with different thickness
were then examined using nanometer-precision instrumentations to show that the
size-dependence is also present in the time-dependent creeping regime. The de-
velopment of the framework, beam models, experimental designs and results are
detailed in the section below.

2 Strain gradient viscoelasticity

In the first part of this paper, a brief summary of strain gradient visoelasticity theory
is given. Beam bending solutions for a Maxwell material and a Kelvin-Voigt ma-
terial for load relaxation after deflection, creeping deflection at constant load and
oscillatory loading are developed using the theory.

Higher-order theories of plasticity and elasticity, which include contributions from
strain gradients, have been developed by many authors. Lam et al. (2003) de-
veloped a linear elastic bending theory for plane-strain beams. In this part of the
paper, the foundation of higher-order viscoelasticity is first summarized. Solutions
for oscillations, relaxation and creep are developed for Maxwell and Kelvin-Voigt
materials.

In the derivation of strain gradient theory for viscoelasticity, we shall use the same
set of strain/stress decompositions and definitions used in strain gradient elasticity.
In this theory, the strain tensor is ε i j; and the second-order deformation gradient
tensors are the dilatation gradient vector, γ i, the deviatoric stretch gradient tensor,
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ηi jk, and the symmetric rotational gradient (curvature) tensor, . There are six inde-
pendent components in ε i j, three in γ i, seven in ηi jk, and five in χi j, which gives
a total of 15 independent components in the second-order deformation gradient
tensors. The stress measures, the work-conjugates to the strain measures, are the
classical stress tensor, σ i j, and the higher-order stresses, pi, τi jk and mi j. A sum-
mary of the strain gradient elasticity theory and the constitutive relations for linear
elastic center-symmetric isotropic materials is given in Appendix I.

For linear isotropic viscoelastic materials, the constitutive relations in differential
equation forms (Fung and Tong, 2001) can be written as

P3(
∂

∂ t
)σkk = 2Q3(

∂

∂ t
)εkk (2)

P4(
∂

∂ t
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P0(
∂

∂ t
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P1(
∂

∂ t
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1Q1(
∂
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∂
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)ms

i j = 2l2
2Q2(

∂

∂ t
)χ

s
i j, (6)

where σ ′i j,ε
′
i j are the stress and strain deviations, and Ps and Qs are polynomials of

the time-derivative operator.

For a spring and a dashpot in series (Maxwell model), the polynomials of the oper-
ator are

P0 = P1 = P2 = 1+ηg
∂

∂ t
(7)

P3 = P4 = 1+η
∂

∂ t
(8)

Q0 = Q1 = Q2 = µg

[
1+ηg

(
1+

µ1g
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)
∂

∂ t

]
(9)

Q3 =
1+ν

3+(1−2ν)
Q4 =

1+ν

3+(1−2ν)
µ

[
1+

µ1

µ

∂

∂ t

]
, (10)

where η and ηg are the viscosity coefficients, µ and µg are the first shear mod-
uli, and µ1 and µ1g are the second shear moduli associated with strains and strain
gradients, respectively. The viscosity coefficients have the dimension of time.
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3 Bending Theory for Plane-Strain Beams

3.1 Approach

In the development of a bending theory for plane strain beams (Lam et al., 2003),
the mid-plane of the thin plane-strain beam (an infinitely wide plate) is the x-y
plane of a Cartesian coordinate system with the width direction along the y-axis.
The beam thickness is much smaller than the length and width. The displacement
along the width direction is ignored and the beam deformation is assumed to be in-
dependent of the width coordinate, y. Only the normal tractions are applied on the
top or bottom surfaces of the beam and the body force is ignored. In the derivation,
the bending stress resultants are first defined in terms of the stress measures. Then,
the bending equilibrium equations and the prescribed force boundary conditions are
derived. Afterwards, a new set of bending deformation measures is proposed to es-
tablish the bending constitutive relations using Taylor expansions of displacements
with respect to the beam thickness.

3.2 Equilibrium Relations

In deriving the equilibrium relations and force-prescribed boundary conditions, we
define the stress resultants with higher-order stress measures as

N =
∫ h/2

−h/2
σ11dz;

Q =
∫ h/2

−h/2

(
σ13 +

1
2

∂1m12−∂1τ113

)
dz;

M =
∫ h/2

−h/2
(zσ11 +m12 + p3 + τ113)dz;

Nh =
∫ h/2

−h/2
(p1 + τ111)dz;

Mh =
∫ h/2

−h/2
z(p1 + τ111)dz

(11)

where N is the axial stress resultant per unit width, Q is the shear stress resultant
per unit width, and M is the moment per unit width in the beam. New higher-order
stress resultants per unit width, Nh, and the higher-order moment resultant per unit
width, Mh, are introduced to account for the higher-order effect. The resultant shear
stress, Q, and the moment, M, now contain higher-order stress terms.

We consider only the deformations along the length and thickness directions of the
beam and assume that the beam deformation is independent of the coordinate, y.
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Combining the equilibrium equations in Eq. (C1), we obtain the boundary condi-
tions from Eq. (C2) and the stress resultant definitions Eq. (C3)

∂N
∂x
− ∂ 2Nh

∂x2 = ρh
∂ 2u
∂ t2 (12)

∂Q
∂x

+ q̄ = ρh
∂ 2w
∂ t2 ;

∂M
∂x
− ∂ 2Mh

∂x2 −Q = 0 (13)

where q̄ = q̄h/2 + q̄−h/2. Equation (13) can be re-written as

∂ 2M
∂x2 −

∂ 3Mh

∂x3 + q̄ = ρh
∂ 2w
∂x2 . (14)

In Eq. (12)-(14), we ignore the variation of u and w through the beam thickness in
the inertia terms. The solution of Eqs. (12)-(13) satisfies the equilibrium equation
(C1), and the top and bottom boundary conditions, Eq.(C2).

The stress resultants at the traction prescribed boundaries are derived from Eqs.
(57) and (58) of Lam et al. (2003) as

N− dNk

dx
= N̄ =

∫ h/2

−h/2
t̄1dz+ P̄1|z=−h/2 + P̄1|z=h/2 (15)

Q =
∂M
∂x
− ∂ 2Mh

∂x2 = Q =
∫ h/2

−h/2
t̄3dz+ P̄3|z=h/2− P̄3|z=−h/2 (16)

M− dMh

dx
= M̄ =

∫ h/2

−h/2
(zt̄1 + ḡ2)dz− h

2
P̄1|x=−h/2 +

h
2

P̄1|x=h/2 (17)

Nh = Nh =
∫ h/2

−h/2
rdz; Mh = Mh =

∫ h/2

−h/2
rzdz, (18)

where N̄ is the prescribed total axial force in units of N/m; Q̄ is the prescribed
shear force in units of N/m; M̄ is the prescribed moment per unit width in units
of N-m/m; N̄h is the prescribed higher-order axial force in units of N-m/m; and
M̄h is the prescribed higher-order moment per unit width in units of N-m2/m. The
quantities t̄ ′s, ḡ′s, r̄ and P̄′s are defined in Eqs. (57) and (58) of Lam et al. (2003).
With pure bending, both N̄ and N̄h, which correspond to pure tension, are both zero.

In brief, the independent stress resultant measures for bending are the moment, M,
and the higher-order, moment, Mh. The shear force, Q, is associated with M and Mh

(Eq.(13)). The equations detailed in this section are used in the following section
for development of the bending equations.
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3.3 Deformation and Constitutive Relations

The deformation measures and constitutive relations for thin beams can be estab-
lished by expanding the displacements as a power series of the beam thickness,
h,

u =
∞

∑
i=1

ui(x,s, t)hi; v = 0; w =
∞

∑
i=1

wi(x,s, t)hi, (19)

Here s = z/h and z is the coordinate in the thickness direction. The expansion of
the non-vanishing strains and strain gradients are given in Eq. (A1) of Lam et al.
(2003) with

∂u0 (x,s, t)
∂ s

=
∂w0 (x,s, t)

∂ s
=

∂ 2u1 (x,s, t)
∂ s2 =

∂ 2w1 (x,s, t)
∂ s2 = 0 (20)

to ensure that the strains and strain gradients are only of order 1 or smaller as h→ 0.
Then, the non-vanishing stresses and higher-order stresses, and the expansion of
the second boundary equation of Eq. (C2) and the first and second equilibrium
equations of Eq. (C1) in terms of displacements are given in Appendix D.

Defining the curvature, κ , and the curvature gradient, κh, respectively, as

κ =−w
′′
0(x); κ

h =−w
′′′
0 (x), (21)

we obtain, for bending of beams only, the constitutive equations for the non-vanishing
stresses and higher-order stresses in terms of the curvature and the curvature gradi-
ents (Appendix D).

The constitutive relations for beam bending are obtained by substituting Eqs. (D15)–
(D18) into Eq. (C2). This gives the constitutive relations as

M =−D0D1κ−D0D2
∂κh

∂x
, Mh =−D0D3κ

h, (22)

where D0D1, D0D2 and D0D3 are the bending rigidities with

D0 =
µh3

6(1−ν)
; D1 =

1
µ

[
Qc

∂

∂ t
+

b2
h

h2 Qg
∂

∂ t

]
;

D2 =

1
µ

{
− h2

20
Qc

∂

∂ t
+
[

1
8

l2
2 +
(

13
60
− ν

15
+

ν2

20

)
l2
1

1−ν
+

(1−2ν)(3−ν)
4(1−nu)

l2
0

]
Qg

∂

∂ t
;
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D3 =
1

2µ

[
4−ν

5
l2
1 +(1−2ν)l2

0

]
Qg

∂

∂ t
; (23)

b2
h = 3(1−ν)l2

2 +
2(4−ν)

5
l2
1 +6(1−2ν)l2

0 , (24)

in which D0 is the conventional bending rigidity and D1, D2, D3 and bh are the
higher-order bending parameters, which characterize the thickness dependence of
beam bending. The bending equation (14) can be written as

−D0D1
∂ 4w0

∂x4 +D0(D3−D2)
∂ 6w0

∂x6 + q̄ = ρh
∂ 2w0

∂ t2 . (25)

From Eqs. (16)–(18), the boundary conditions become

Q =
∂M
∂x
− ∂ 2Mh

∂x2 = Q̄ or w0 = w̄0, (26)

M− ∂Mh

∂x
= barM or

∂w0

∂x
= w̄′0 (27)

Mh = 0 or
∂ 2w0

∂x2 = w̄′′0, (28)

where Mh is zero for a zero applied higher-order moment. The displacement bound-
ary conditions are

w0 = w̄0, w′0 = w̄′0, w
′′
0 = w̄

′′
0 (29)

at the fixed end. They are

w0 = w̄0, M− ∂Mh

∂x
= M̄, Mh = 0 (30)

at the simply supported end; and they are

Q =
∂M
∂x
− ∂ 2Mh

∂x2 = Q̄; M− ∂Mh

∂x
= M̄, Mh = M̄h (31)

at the free end.
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3.4 Relaxation and Creep of Simple Maxwell Materials

In the subsequent discussion, we shall consider the relaxation and creep problems
with the inertia effect neglected.

−D0D1(t)
∂ 4w0

∂x4 +D0[D3(t)−D2(t)]
∂ 6w0

∂x6 = 0 (32)

For a cantilever beam clamped at x = 0, the boundary conditions [assuming Mh(0, t)=
Mh(l, t) = 0] are

w0(0, t) = w′0(0, t) = w
′′′
0 (0, t) =−D1

∂ 2w0

∂x2 (l, t)+DL
∂ 4w0

∂x4 (l, t) = w′′′0 (l, t) = 0 (33)

w0(l, t) = w0(l) (34)

for relaxation problems; and

−D0[D1
∂ 3w0

∂x3 (l, t)−DL
∂ 5w0

∂x5 (l, t)] = Q̄ (35)

for creep.

For conventional simple Maxwell materials, there are two parallel springs, one with
a series damper and one without, associated with the strains. We call them the first
and second springs, respectively. We have

P3(
∂

∂ t
) = 1+η

∂

∂ t
, Q3(

∂

∂ t
) = µ[1+η(1+

µ1

µ
)

∂

∂ t
], (36)

where µ and µ1 are the first and second spring constants (shear moduli), and µ1η

is the viscosity coefficient of the damper in series with the second spring. For
materials with strain gradient effects, we assume a separate, but similar, spring set
for the strain gradients, i.e.,

P0
∂

∂ t
= P1

∂

∂ t
= P2

∂

∂ t
= 1+η

∂

∂ t
;

Q0
∂

∂ t
= Q1

∂

∂ t
= Q2

∂

∂ t
= µg

[
1+η

(
1+

µ1h

µh

)
∂

∂ t

] (37)

Here, to simplify the solution, we have assumed that the viscosity coefficient of the
second strain gradient spring is µ1hη . In this case, we have

P0
∂

∂ t
= P1

∂

∂ t
= P2

∂

∂ t
= 1+η

∂

∂ t
;

Q0
∂

∂ t
= Q1

∂

∂ t
= Q2

∂

∂ t
= µg

[
1+η

(
1+

µ1h

µh

)
∂

∂ t

] (38)
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in which

G0 = D0(1+
b2

h
h2

µ0h

µ
), G1 = D0

µ1

µ
(1+

b2
h

h2
µ1h

µ1
)

G0h = D0(1+
β 2

h
h2

µ0h

µ
), G1h = D0

µ1

µ
(1+

β 2
h

h2
µ1h

µ1
)

(39)

With

β
2
h =

(
11
3
− 26ν

3
−2ν

2
)

l2
1

1−ν
− 5(1+ν)(1−2ν)

1−ν
l2
0 −

5
2

l2
2 (40)

depend on the material length scale parameters.

We further assume that

µ0h

µ
=

µ1h

µ1 .

(41)

Then we have

G1

G0
=

G1h

G0h
=

µ1

µ .

(42)

Equation (32) reduces to

−G0[1+η(1+
µ1

µ
)

∂

∂ t
](

∂ 4w0

∂x4 −
h2

20
G0h

∂ 6w0

∂x6 ) = 0. (43)

The corresponding moment and shear force equilibrium equations are

(1+η
∂

∂ t
)(M− ∂Mh

∂x
) =−G0[1+η(1+

µ1

µ
)

∂

∂ t
](

∂ 2w0

∂x2 −
h2

20
G0h

G0

∂ 4w0

∂x4 )

(1+η
∂

∂ t
)Q =−G0[1+η(1+

µ1

µ
)

∂

∂ t
](

∂ 3w0

∂x3 −
h2

20
G0h

G0

∂ 5w0

∂x5 ).
(44)

The fourth boundary condition of Eq. (33) can be written as

[1+η(1+
µ1

µ
)

∂

∂ t
] · [G0

∂ 2w0(l, t)
∂x2 − h2

20
G0h

∂ 4w0(l, t)
∂x4 ] = 0. (45)
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3.4.1 Relaxation

For relaxation, the deflection, w0, is given in Eq. (E1), which is the solution of Eq.
(43) with the boundary conditions Eqs. (33) and (35). The deflection is independent
of t. The shear force, given in Eq.(E6), is derived from Eq. (45) with the initial
condition at t = 0,

Q =−(G0 +G1)
(

∂ 3w0

∂x3 −
h2

20
G0h

G0

∂ 5w0

∂x5

)
. (46)

If we neglect the term proportional to h2 for thin beams in Eq. (43), the deflection
given in Eq. (E1) reduces to

w0(x, t) =
3
2

x2

l2 (1− 1
3

x
l
)w0(l). (47)

Solving the moment and shear force equations

(1+η
∂

∂ t
)M =−G0

d2w0

dx2 ; (1+η
∂

∂ t
)Q =−G0

d3w0

dx3 (48)

gives

M(x, t) =−G0

(
1+

µ1

µ
e−t/η

)
3
l2

(
1− x

l

)
w0(l) (49)

Q =
∂M
∂x

(x, t) =
3
l3 G0

(
1+

µ1

µ
e−t/η

)
w0(l) (50)

It is of interest to note that there is no size dependence in the exponentially decaying
time function in relaxation of simple Maxwell materials that satisfy Eq. (35).

3.4.2 Creep

For creep, the transversal shear force and the moment are independent of time such
that

Q(x, t) = Q̄; M(x, t) = (x− l)Q̄, (51)

where Q̄ is the applied shear force at the free end. The deflection, w0, is in the same
form as Eq. (E1) in which w0(l, t) is now a function of time. The initial condition
for w0(l, t) is similar to Eq. (46) with Q replaced by Q̄.

The solution is given in Eq. (E8), which is the creep relation between the deflection
and the applied shear force at the tip of the beam.
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If the term proportional to h2 in Eq. (43) is neglected for thin beams, the creep
relation reduces to

w0(l, t) =
l3Q̄
3G0

[
1− µ1

µ + µ1
e−

µ

µ+µ 1
t
η

]
. (52)

Similar to relaxation, there is no size dependence in the exponentially decaying
time function when simple Maxwell materials that satisfy Eq. (41) creep.

3.5 Simple Kelvin-Voigt Materials

For conventional simple Kelvin-Voigt materials, there are two springs in series, one
of which has a parallel damper and one has no parallel damper, associated with the
strains. We have

Q3
∂

∂ t
/P3

∂

∂ t
= µµ1

(
1+η

∂

∂ t

)[
µ + µ1

(
1+η

∂

∂ t

)]−1

(53)

where µ and µ1 are the first and second spring constants (shear moduli), and µ1η

is the viscosity coefficient of the damper in series with the second spring. For
materials with strain gradient effects, we assume a separate, but similar, spring set
for the strain gradients, i.e.,

Q j
∂

∂ t
/Pj

∂

∂ t
= µ0hµ1h

(
1+η

∂

∂ t

)[
µ0h + µ1h

(
1+η

∂

∂ t

)]−1

(54)

for j = 0, 1, and 2. As before, we have assumed that the viscosity coefficient of the
strain gradient spring with a damper is µ1hη .

With materials satisfying Eq. (41), Eq. (32) reduces to

−(1+ηD)(G0
∂ 4w0

∂x4 −
h2

20
G0h

∂ 6w0

∂x6 ) = 0. (55)

The corresponding moment and shear force equilibrium equations are

(1+
µ

µ1
+ηD)(M− ∂Mh

∂x
) =−(1+ηD)(G0

∂ 2w0

∂x2 −
h2

20
G0h

∂ 4w0

∂x4 ), (56)

(1+
µ

µ1
+ηD)Q =−(1+ηD)(G0

∂ 3w0

∂x3 −
h2

20
G0h

∂ 5w0

∂x5 ). (57)

For both relaxation and creep, the deflection w0 is in the form of Eq. (E1). The
initial condition at t = 0 for the Kelvin-Voigt model is

Q =−(G0
∂ 3w0

∂x3 −
h2

20
G0h

∂ 5w0

∂x5 ) (58)



Higher-Order Behavior of Macromolecular Solids 85

in which w0 is independent of t for relaxation while Q(= Q̄) is independent of t for
creep. The fourth boundary condition of Eq. (33) can be written as

(1+η
∂

∂ t
)[G0

∂ 2w0(l, t)
∂x2 − h2

20
G0h

∂ 4w0(l, t)
∂x4 ] = 0. (59)

3.5.1 Relaxation

For a sudden deflection of w0(l) at x = l, the solution that satisfies the boundary
conditions of Eqs. (33) and (34) is the same as that given in Eq. (E1) with w0(l, t) =
w0(l). From Eq.(57), we determine the solution for Q as given in Eq.(F3).

If we neglect the term proportional to h2 for thin beams in Eq.(43), the deflection
is the same as that given in Eq.(47). The relaxation relation reduces to

Q =
∂M
∂x

(x, t) =
3
l3 G0[1+

µ

µ1
exp(−µ + µ1

µ1

t
η

)]w0(l). (60)

Similar to Maxwell materials, there is no size dependence in the exponentially
decaying time function in the relaxation of simple Kelvin-Voigt materials satisfying
Eq.(41).

3.5.2 Creep

For a sudden applied shear force, Q̄, at x = l, the solution that satisfies the boundary
conditions, Eqs. (33) and (34), is the same as that given in Eq.(47). Equation (57)
gives the creep relation between the tip deflection and the applied shear force as
shown in Eq. (F5).

Again, if the term proportional to h2 in Eq. (43) is neglected in thin beams, the
creep relation reduces to

w0(l, t) =
l3Q̄
3G0

[1+
µ

µ1
− µ

µ1
exp(− t

η
)], (61)

and after substitution of variables, we have

w0(l, t)

2Q̄ l3

h3

(
1−ν +

3l2
2

h2

)
=

1
µ0

+
1
µ1
− 1

µ1
exp
(
−µ1t

η1

)
. (62)

As for relaxation, creep has no size dependence in the exponentially decaying time
function for simple Kelvin-Voigt materials that satisfy Eq. (41).
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4 Experiments

Epoxy beams made from a mixture of Bisphenol-A epichlorohydrin resin and 20
phr of diethylenetriamine hardener were fabricated. The beam thicknesses were
controlled by spin casting the degassed epoxy onto low-adhesion glass plates with
spacers (between 20 – 300 µm) to control the gap size. The cast sandwich as-
semblies were cured at 100oC for 3 hours and cooled slowly to room tempera-
ture following a previously established procedure (Lam and Chong, 1999). The
glass plates were then removed from the cured epoxy plates. Identical parallel cuts
were made on the beams to form identical rows of cantilever beams and adhesively
mounted onto glass substrates. The beams were loaded at lengths between 20 to 40
multiples (l/h) of the beam thicknesses to minimize the anchor effects. The loads
were applied using a nanoindentor (Hysitron Triboindentor) fitted with a pyramidal
Berkovich tip. The nanoindentor had a load resolution from 100 nN with a dis-
placement resolution under 1 nm. In our experiments, beams were deflected up to
1000 nm for applied loads between 20 to 60 µN. The local indentation effects on
the overall deflection were small and were ignored.

5 Results

The deflection behavior of the epoxy beams was checked to ensure that they were
Kelvin-Voigt viscoelastic beams. The creep deflection from a representative test
is shown in Figure 1. Agreement between the experimental data and the model
(Figure 1) confirmed that the tested beams were Kelvin-Voigt viscoelastic beams.
The deflection curves for beams with different thicknesses loaded at l/h = 20 and
Q=30µN are shown in Figure 2. If the deflection behaved classically without added
size-dependence, the curves at identical l/h would collapse onto a single curve.
Instead, the thin beams have lower normalized deflections than the thick beams
have in Figure 2. A close-up plot (Figure 3) shows that the slope of the deflection
in the initial elastic regime also has an inverse dependence on the beam thickness.
This suggests that the beam stiffness in Figure 2 has an added inverse dependence
on the beam thickness in both the elastic and time-dependent regimes.

The thickness dependence is eliminated after the deflections are normalized (Fig-
ure 4) using l2 = 34 µm. The plot showed that the initial fast-rising portion of the
deflection where µ0,rg dominated, i.e., the elastic portion, has collapsed. The creep-
ing portion in the second stage has also collapsed onto a single curve with the same
l2. In fact, all curves from start to finish collapsed onto a single curve (Figure 5)
using the same l2 for all beam thicknesses in the elastic and the creeping regimes.
The collapse confirmed that the constants, µ0,rg, µ1,rg,andη1,rg, have the same the
thickness and l2 dependence.
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Figure 1: A normalized creep deflection
curve for a 268 micron thick beam co-
plotted with a conventional Voigt model
(solid curve).
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Figure 2: Creep deflection in relation to
thicknesses from 26 (top curve), 39, 65,
135 and 268 microns (bottom curve) at
constant l/h = 20.
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Figure 3: A close-up view of the elastic
regime before reaching the set load for
creep.
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Figure 4: Normalized deflection using
l2=34 microns.
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Figure 5: A deflection curve normalized using l2=34 microns.

6 Discussion

In Part I of this series, molecular rotation is identified as the underlying deformation
mechanism for l2, and that it shares the same deformation mechanism as the strain-
based elastic deformation. Moreover, it is a parameter characterizing the extended
association of the deformation mechanism from strain to rotation gradients. The
single l2 results ascertained in this investigation is a natural consequence of this
extension view of l2.

In the viscoelastic regime, the deformation behavior of the macromolecular solid is
characterized by multiple material constants, i.e., µ0, µ1, and η1. If l2 is tied to spe-
cific material constants, then there would be different l2 for each spring and dashpot
constant since each maybe tied to their respective effects, which can include align-
ment (Fleck et al., 1994), surface (Cuenot, Frétigny, and Demoustier-Champagne,
2004) or the supramolecular effects (Arinstein, Burman, and Gendelman, 2007).
Instead, this study showed that µ0,rg, µ1,rg,and η1,rg have identical l2. This suggests
that l2 is not tied specifically to a physical mechanism, but is a characteristic mul-
tiplier of rotation gradient deformations. In other words, the relationship between
strain (or strain rate) and stress for a specific mechanism is already characterized
by its set of material constants, and the relationship is simply extended to rotation
gradients (or gradient rates) by l2. The extension is a new association, and not a
new mechanism. The association is fundamentally chain-based and is not deforma-
tion mechanism-based. Since there is only one set of chains within a single solid,
there is only one l2 for the solid. l2 is unique to the chemistry and the molecular



Higher-Order Behavior of Macromolecular Solids 89

structure of the chain, and is not unique to the deformation regime of the solid.

7 Conclusions

Molecular rotation was identified as the deformation mechanism behind higher-
order elastic deformation of macromolecular solid. Higher-order viscoelasticity
framework and creep bending models were developed based on the hypothesis that
the elastic and viscous material constants shared the same higher order material
constant. Experimental results from creep tests on macromolecular beams in this
study showed that a single chain-based l2 controlled both the elastic and viscoelastic
higher-order deformation of macromolecular polymers. This means that irrespec-
tive of the number of springs and dashpots in the strain-based phemenological con-
stitutive law, only a single l2 is required to transform strain- and strain rate-based
viscoelastic law into higher order viscoelastic constitutive law for macromolecular
solids.

Appendix A Summary of strain gradient theory for linear elasticity

In the strain gradient elasticity theory, the second-order deformation gradient ten-
sors are the dilatation gradient vector, γi, the deviatoric stretch gradient tensor, ηi jk,
and the symmetric rotational gradient (curvature) tensor, χi j. These strain measures
are defined as

εi j =
1
2
(∂iu j +∂ jui), γi = ∂iεmm,

ηi jk =
1
3
(∂iε jk +∂ jεki +∂kεi j)

− 1
15
[
δi j(∂kεmm +2∂mεmk)+δ jk(∂iεmm +2∂mεmi)+δki(∂ jεmm +2∂mεm j)

]
,

χi j =
1
2
(eipq∂pεq j + e jpq∂pεqi), (A1)

where ∂ i is the forward gradient operator, ui the displacement vector, δ i j the Kro-
necker delta and ei jk the alternating tensor; and ε i j is the strain tensor with six
independent symmetric components. There are three independent components in
γ i, seven in ηi jk, and five in χi j mean that there is a total of 15 independent com-
ponents in the second-order deformation gradient tensors. The stress measures, the
work-conjugates to the strain measures, are the classical stress tensor, σ i j, and the
higher-order stresses, pi, τi jk and mi j.
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For linear elastic center-symmetric isotropic materials, the constitutive relations are

σi j = λδi jεmm +2µεi j pi = 2µl2
0εmm,i, τi jk = 2µl2

1ηi jk, mi j = 2µl2
2 χi j, (A2)

where λ and µ are Lame’s constant and the shear modulus, respectively, and ln (n=
0,1,2) are the three additional length scale material parameters associated with the
dilatation, deviatoric stretch and rotation gradients, respectively.

Appendix B Linear Isotropic Viscoelasticity in Convolution Integral Form

The constitutive relations for linear isotropic viscoelastic materials in convolution
integral form are

σi j(x, t) =
∫ t

−∞

λ (x, t− τ)δi j
∂εmm(x,τ)

∂τ
dτ +2

∫ t

−∞

µ(x, t− τ)
∂εi j(x,τ)

∂τ
dτ, (B1)

pi(x,τ) = 2l2
0

∫ t

−∞

µ0(x, t− τ)
∂εmm,i(x,τ)

∂τ
dτ, (B2)

τi jk = 2l2
1

∫ t

−∞

µ1(x, t− τ)
∂ηi jk(x,τ)

∂τ
dτ, (B3)

mi j = 2l2
2

∫ t

−∞

µ2(x, t− τ)
∂ χi j(x,τ)

∂τ
dτ, (B4)

where λ and the µ are relaxation functions. A simple viscoelastic model is

λ (x,τ) =
2ν

1−2ν
µ(x,τ), (B5)

µ0(x,τ) = µ1(x,τ) = µ2(x,τ), (B6)

in which the Poisson ratio, ν , is independent of time.

Appendix C General Equilibrium Equations

The general equilibrium equations along the directions of length and thickness of
the beam are

∂1 (σ11−∂1 p1−∂1τ111)

+∂3

(
σ13−

1
2

∂1m12−∂1 p3−2∂1τ113−
1
2

∂3m32−∂3τ133

)
= ρ

∂ 2u
∂ t2 ,

∂3

(
σ33 +

1
2

∂1m32−∂1 p1−2∂1τ133−∂3 p3−∂3τ333

)
+∂1

(
σ13 +

1
2

∂1m12−∂1τ113

)
= ρ

∂ 2w
∂ t2 .

(C1)
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The traction-prescribed boundary conditions on the top and bottom surfaces of the
beam are

σ33−∂1 p1−∂3 p3−3∂1τ133−∂3τ333 = q̄±h/2, (C2)

σ13−
1
2

∂1m12−∂1 p3−2∂1τ113−
1
2

∂3m32−∂3τ133 = 0, ∀z =±h
2
,

m32 +2τ133 = 0, p3− τ333 = 0, (C3)

where q̄±h/2 is the prescribed normal force-traction on the top and bottom surfaces
in units of N/m2. The prescribed force-tractions on the surfaces normal to the
x−axis and the boundary conditions at the edges of the top and bottom surfaces of
the beam are given in Eqs. (57) and (58) of Lam et al. (2003).

Appendix D Bending Deformations and Constitutive Equations

For plain strain beams, the non-vanishing stresses and higher-order stresses are

σ11 = 2Qc(
∂

∂ t
)

∞

∑
i=0

[
1−ν

1−2ν

∂ui

∂x
+

ν

1−2ν

∂wi+1

∂ s

]
hi

σ33 = 2Qc(
∂

∂ t
)

∞

∑
i=0

[
1−ν

1−2ν

∂wi+1

∂ s
+

ν

1−2ν

∂ui

∂x

]
hi

σ13 = Qc(
∂

∂ t
)

∞

∑
i=0

[
∂wi

∂x
+

∂ui+1

∂ s

]
hi

σ22 = γ(σ11 +σ33)

(D1)

p1 = l2
0Qg(

∂

∂ t
)

∞

∑
i=0

∂

∂x

[
∂ui

∂x
+

∂wi+1

∂ s

]
hi

p3 = l2
0Qg(

∂

∂ t
)

∞

∑
i=0

∂

∂ s

[
∂ui+1

∂x
+

∂wi+2

∂ s

]
hi

(D2)

m21 =− l2
2
4

Qg(
∂

∂ t
)

∞

∑
i=0

∂

∂x

[
∂wi

∂x
− ∂ui+1

∂ s

]
hi

m23 =− l2
2
4

Qg(
∂

∂ t
)

∞

∑
i=0

∂

∂ s

[
∂wi+1

∂x
− ∂ui+2

∂ s

]
hi

(D3)
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and

τ111 = l2
1Qg(

∂

∂ t
) ·

∞

∑
i=0

[
∂

∂x

(
2
5

∂ui

∂x
− 2

5
∂wi+1

∂ s

)
− 1

5
∂ 2ui+2

∂ s2

]
hi;

τ113 = l2
1Qg(

∂

∂ t
) ·

∞

∑
i=0

[
∂

∂x

(
4
15

∂wi

∂x
+

8
15

∂ui+1

∂ s

)
− 1

5
∂ 2wi+2

∂ s2

]
hi;

τ133 =−l2
1Qg(

∂

∂ t
) ·

∞

∑
i=0

[
∂

∂x

(
1
5

∂ui

∂x
− 8

15
∂wi+1

∂ s

)
− 4

15
∂ 2ui+2

∂ s2

]
hi;

τ333 =−l2
1Qg(

∂

∂ t
) ·

∞

∑
i=0

[
∂

∂x

(
1
5

∂wi

∂x
+

2
5

∂ui+1

∂ s

)
− 2

5
∂ 2wi+2

∂ s2

]
hi;

τ122 =−(τ111 + τ133), τ223 =−(τ133 + τ333),

(D4)

where

Qc(
∂

∂ t
) = Q3(

∂

∂ t
)/P3(

∂

∂ t
),

Qg(
∂

∂ t
) = Q3(

∂

∂ t
)/P3(

∂

∂ t
) = Q0(

∂

∂ t
)/P0(

∂

∂ t
) = Q2(

∂

∂ t
)/P2(

∂

∂ t
),

(D5)

for P0 = P1 = P2 and Q0 = Q1 = Q2.

The expansion of the second boundary equation in Eq. (C2) gives the O(hi) equa-
tion:

Qc
∂

∂ t

(
∂wi

∂x
+

∂ui+1

∂ s

)
+Qg

∂

∂ t

[(
l2
2
8
− 8l2

1
15

)
∂ 3wi

∂x3 +
(

2l2
1

5
− l2

0

)
∂ 3wi+2

∂x∂ s2 −
(

l2
2
8

+
16l2

1
15

+ l2
0

)
∂ 3ui+1

∂x2∂ s

]
= 0, (D6)

where i = 0,1,2, . . .. Similarly from the first and second equilibrium equations,
Eq.(C1), we obtain, respectively,

Qc
∂

∂ t

[
2(1−ν)
1−2ν

∂ 2ui

∂x2 +
1

1−2ν

∂ 2wi+1

∂x∂ s
+

∂ 2ui+2

∂ s2

]
+Qg

∂

∂ t

[
−
(
−2l2

1
5

+ l2
0

)
∂ 4ui

∂x4 +
(

l2
2
8
− 2l2

1
15
− l2

0

)(
∂ 4wi+1

∂x3∂ s
+

∂ 4wi+3

∂x∂ s3

)

−
(

l2
2
8

+
2l2

1
3

+ l2
0

)
∂ 4ui+2

∂x2∂ s2 −
(

l2
2
8

+
4l2

0
15

)
∂ 4ui+4

∂ s4

]
= 0, (D7)
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Qc
∂

∂ t

[
∂ 2wi

∂x2 +
1

1−2ν

∂ 2ui+1

∂x∂ s
+

2(1−ν)
1−2ν

∂ 2ui+2

∂ s2

]
+Qg

∂

∂ t

[
−
(

l2
1
8

+
4l2

1
15

)
∂ 4wi

∂x4 +
(

l2
2
8
− 2l2

1
15
− l2

0

)
∂ 4ui+1

∂x3∂ s

−
(

l2
2
8

+
2l2

1
3

+ l2
0

)
∂ 4wi+2

∂x2∂ s2 +
(

l2
2
8
−

2l2
0

15
− l2

0

)
∂ 4ui+3

∂x∂ s3 −
(

l2
2
5

+ l2
0

)
∂ 4wi+4

∂ s4

]
= 0,

(D8)

with the assumption that the inertia force is small and can be neglected. First, from
Eqs. (D7) and (D8), we can express u3,u5, ... and w2,w4, ... in terms of w0,u1,
and u2,u4, ... and w3,w5, ... in terms of u0,w1 and their derivatives. Then, together
with the O(1) equation of Eq.(D6), we determine u1 in terms of w0 and w1 in terms
of u0 and the respective partial derivative with respect to x. In turn, we obtain
u3,u5, ... and w2,w4, ... in terms of w0 and the partial derivatives with respect to x
and u2,u4, ... and w1,w3, ... in terms of u0 and its partial derivatives. The results are
as follows:

Qc(
∂

∂ t
)
∂ 2w4

∂ s2 =− 1−2ν

2(1−ν)
Qc(

∂

∂ t
)[

∂ 2w2

∂x2 +
1

1−2ν

∂ 2u3

∂x∂ s
]+O(l2

0 , l2
1 , l

2
2)

=−s2

2
1+ν

1−ν
Qc(

∂

∂ t
)
∂ 4w0

∂x4 +O(l2
0 , l

2
1 , l

2
2 ,h

2) (D9)

Qc(
∂

∂ t
)
∂ 2u3

∂ s2 =−Qc(
∂

∂ t
)[

2(1−ν)
1−2ν

∂ 2u1

∂x2 +
1

1−2ν

∂ 2w2

∂x∂ s
]+O(l4

0 , l
4
1 , l

4
2)

= s{2−ν

1−ν
Qc(

∂

∂ t
)
∂ 3w0

∂x3 +
3−2ν

2(1−ν)2 [
1−ν

4
l2
2 +

2(4−ν)
15

l2
1 +(1−2ν)l2

0 ]

Qg(
∂

∂ t
)
∂ 4w0

∂x4 }+ O(l4
0 , l4

1 , l4
2 ,h2) (D10)

Qc(
∂

∂ t
)
∂ 2w2

∂ s2 =− 1−2ν

2(1−ν)
Qc(

∂

∂ t
)[

∂ 2w0

∂x2 +
1

1−2ν

∂ 2u1

∂x∂ s
]+O(l4

0 , l4
1 , l

4
2)

=
ν

1−ν
Qc(

∂

∂ t
)
∂ 2w0

∂x2 +
1

2(1−ν)2 [
1−ν

4
l2
2 +

2(4−ν)
15

l2
1 +(1−2ν)l2

0 ]

Qg(
∂

∂ t
)
∂ 4w0

∂x4 + O(l4
0 , l4

1 , l4
2 ,h4) (D11)
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Qc(
∂

∂ t
)
∂u1

∂ s
=−Qc(

∂

∂ t
)
∂w0

∂x

−Qg(
∂

∂ t
)[(

l2
2
8
− 8l2

1
15

)
∂ 3w0

∂x3 +(
2l2

1
5
− l2

0)
∂ 3w2

∂x∂ s2 − (
l2
2
8

+
16l2

1
15

+ l2
0)

∂ 3u1

∂x2∂ s
]

=−Qc(
∂

∂ t
)
∂w0

∂x
− 1

1−ν
[
1−ν

4
l2
2 +

2(4−ν)
15

l2
1 +(1−2ν)l2

0 ]

Qg(
∂

∂ t
)
∂ 3w0

∂x3 + O(l4
0 , l4

1 , l4
2 ,h4) (D12)

In Eqs. (D11) and (D12), the inertia force associated with w2 has been neglected.
Similar results can be obtained for u2,u4, ... and w3,w5, ... in terms of u0. For pure
bending, the axial and higher-order axial stress resultants (Eq.(12)) vanish and give

u0 = u2 = ... = w1 = w3 = ... = 0. (D13)

For only bending, the curvature, κ , and the curvature gradient, κh, are, respectively

κ =−w
′′
0(x), κ

h =−w
′′′
0 (x). (D14)

By combining Eqs. (D1) – (D4) and (D9) – (D12), the constitutive equations for
the non-vanishing stresses and higher-order stresses in terms of the curvature and
the curvature gradients become

σ11 =− 2hs
1−ν

Qc
∂

∂ t

(
κ− h2s2

3
∂κh

∂x

)
−
[

1−ν

4
l2
2 +

2(4−ν)
15

l2
1 +(1−2ν)l2

0

]
(2−ν)hs
(1−ν)2 Qg

∂

∂ t
∂κh

∂x
+O(l4

i mh5) (D15)

p1 =−1−2ν

1−ν
hsl2

0Qg(
∂

∂ t
)κh +O(l2

0h3)

p3
1−2ν

1−ν
l2
0Qg(

∂

∂ t
)(−κ +

h2s2

2
∂κh

∂x
)+O(l2

0h4)
(D16)

τ111 =− 4−ν

5(1−ν)
hsl2

1Qg(
∂

∂ t
)κh +O(l2

1h3)

τ113 =−l2
1Qg(

∂

∂ t
)[

4−ν

15(1−ν)
κ− 19−ν

30(1−ν)
h2s2 ∂κh

∂x
]+O(l2

1h4)

τ133 =− 11+ν

15(1−ν)
hsl2

1Qg(
∂

∂ t
)κh +O(l2

1h3)

τ333 = l2
1Qg(

∂

∂ t
)[

1+ν

5(1−ν)
κ− ν +6

10(1−ν)
h2s2 ∂κh

∂x
]+O(l2

1h4)

(D17)
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m12 =−l2
2Qg(

∂

∂ t
)[

κ

2
− h2s2

4
∂κh

∂x
]+O(l2

2h4)

m32 = hsl2
2Qg(

∂

∂ t
)[

κ

2
− h2s2

12
∂κh

∂x
]+O(l2

2h4)
(D18)

After solving the bending problem, the stresses and higher-order stresses can be
obtained from Eqs. (D4) – (D7). The exception is that σ13 and σ33 should be
determined by integrating Eq. (C1) from the bottom surface to z, i.e.,

σ13 = ∂1 p3 +
1
2

∂1m12 +2∂1τ113 +
1
2

∂3m32 +∂3τ133

−∂1

∫ z

−h/2
(σ11−∂1 p1−∂1τ111)dz

σ33 = ∂1 p1−
1
2

∂1m32 +2∂1τ133 +∂3 p3 +∂3τ333−−barq−h/2

−∂1

∫ z

−h/2

(
σ13 +

1
2

∂1m12−∂1τ113

)
dz

(D19)

in which the inertia force is neglected.

Appendix E Relaxation and Creep of Simple Maxwell Materials

Relaxation
For relaxation, the deflection w0 is independent of t. The solution of Eq. (43),
which satisfies the boundary conditions of Eqs. (33) and (35), is

w0 =
w0(l, t)

1− 3
α2l2 +6 cosh(αl)−1

α3l3 sinh(αl)

3
cosh(αx)+ cosh(αl)− cosh [α(x− l)]−1

α3l3 sinh(αl)
+

3x2

2l2 −
x3

2l3 −
3x

α2l3 (E1)

where

α
2 =

20
h2

G0

G0h
=

20
h2

µ

µ0h
(E2)

and w0(l, t) = w0(l) is independent of t. Then,

d3w0

dx3 −
h2

20
G0h

G0

d5w0

dx5 =− 3
l3 [1− 3

α2l2 +6
cosh(α l)−1
α3l3 sinh(α l)

]−1w0(l, t) (E3)

Equation (45) becomes(
1+η

∂

∂ t

)
Q =

3G0

l3

[
1− 3

α2l2 +6
cosh(αl)−1
α3l3 sinh(αl)

]−1

w0(l) (E4)
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The initial condition at t = 0 is

Q =−(G0 +G1)(
∂ 3w0

∂x3 −
h2

20
G0h

G0

∂ 5w0

∂x5 )

=
3(1+ µ1

µ
)G0

l3
[
1− 3

α2l2 +6 cosh(α l)−1
α3l3 sinh(α l)

]w0(l)
(E5)

The solution of Eq. (E4) is

Q(t) =
3G0

l3

[
1− 3

α2l2 +6
cosh(α l)−1
α3l3 sinh(α l)

]−1[
1+

µ1

µ
exp
(
− t

η

)]
w0(l) (E6)

which is the relaxation relation between the beam’s tip deflection, w0(l), and the
applied transversal force, Q.
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Creep
For creep, the transversal shear force and the moment are independent of time such
that

Q(x, t) = Q̄; M(x, t) = (x− l)Q̄ (E7)

where Q̄ is the applied shear force at the free end. The deflection, w0, is in the same
form as Eq. (E1)in which w0(l, t) is now a function of time. Equation (45) becomes

Q̄ =−G0

[
1+η

(
1+

µ1

µ

)
∂

∂ t

](
∂ 3w0

∂x3 −
h2

20
G0h

G0

∂ 5w0

∂x5

)

=
3G0

[
1+η

(
1+ µ1

µ

)
∂

∂ t

]
w0(l, t)

l3
[
1− 3

α2l2 +6 cosh(α l)−1
α3l3 sinh(α l)

] (E8)

The initial condition for w0(l, t) is similar to Eq. (52) with Q replaced by Q̄. The
solution of Eq. (E7) is

w0(l, t) =
Q̄l3

3G0

[
1− 3

α2l2 +6
cosh(α l)−1
α3l3 sinh(α l)

][
1− µ1

µ + µ1
exp
(
− µ

µ + µ1

t
η

)]
(E9)

which is the creep relation between the deflection and the applied shear force at the
tip of the beam. The moment equilibrium is

(1+η
∂

∂ t
)M = M =−(1+η

∂

∂ t
)D0D1

∂ 2w0

∂x2 =−[G0 +η(G0 +G1)
∂

∂ t
]
∂ 2w0

∂x2

= (x− l)Q̄ (E10)

Appendix F Relaxation and Creep of Simple Kelvin-Voigt Materials

For conventional simple Kelvin-Voigt materials, there are two springs in series, one
of which has a parallel damper and one has no parallel damper, associated with the
strains. Equation (32) becomes

− h3

6(1−ν)

{[
µ1µ(1+ηD)

µ + µ1(1+ηD)
+

b2
h

h2
µ1hµ0h(1+ηD)

µ0h + µ1h(1+ηD)

]
∂ 4w0

∂x4

− h2

20

[
µ1µ(1+ηD)

µ + µ1(1+ηD)
+

b2
h

h2
µ1hµ0h(1+ηD)

µ0h + µ1h(1+ηD)

]
∂ 6w0

∂x6

}
= 0 (F1)
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where D is an differential operator of time. With materials satisfying Eq. (41), the
governing equation above reduces to Eq. (55).

Relaxation
For a sudden deflection of w0(l) at x = l, the solution that satisfies the boundary
conditions of Eqs. (33) and (34) is the same as that given in Eq. (47) with w0(l, t) =
w0(l). From Eq. (57), we obtain(

1+
µ

µ1
+η

∂

∂ t

)
Q =−

[
G0

d2w0

dx2 (l)− h2

20
G0h

d4w0

dx4 (l)
]

=
3G0w0(l)

l3
[
1− 3

α2l2 +6 cosh(α l)−1
α3l3 sinh(α l)

] (F2)

Note that w0 is independent of t. The solution for Q is

Q(t) =
3G0

l3

(
1+

µ

µ1

)−1[
1− 3

α2l2 +6
cosh(α l)−1
α3l3 sinh(α l)

]−1

[
1+

µ

µ1
exp
(
−µ + µ1

µ1

t
η

)]
w0(l) (F3)

for the initial condition of Eq.(58).

Creep
For a sudden applied shear force, Q̄, at x = l, the creep solution that satisfies the
boundary conditions, Eqs. (33) and (34), is the same as that given in Eq. (47).
Equation (57)reduces to

Q̄ =−
(

1+η
∂

∂ t

)[
G0

d2w0(l, t)
dx2 − h2

20
G0h

d4w0(l, t)
dx4

]
3G0

(
1+η

∂

∂ t

)
w0(l, t)

l3
[
1− 3

α2l2 +6 cosh(α l)−1
α3l3 sinh(α l)

] (F4)

which gives the creep relation between the tip deflection and the applied shear
force,

w0(l, t) =
Q̄l3

3G0

[
1− 3

α2l2 +6
cosh(α l)−1
α3l3 sinh(α l)

][
1+

µ

µ1
− µ

µ1
exp
(
− t

η

)]
(F5)
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