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An Analysis of Backward Heat Conduction Problems
Using the Time Evolution Method of Fundamental

Solutions

C.H. Tsai1, D.L. Young2 and J. Kolibal3

Abstract: The time evolution method of fundamental solutions (MFS) is pro-
posed to solve backward heat conduction problems (BHCPs). The time evolution
MFS belongs to one of the mesh-free numerical methods and is essentially com-
posed of a sequence of diffusion fundamental solutions which exactly satisfy the
heat conduction equations. Through correct treatment of temporal evolution, the re-
sulting system of the time evolution MFS is smaller, and effectively decreases the
possibility of ill-conditioning induced by such strongly ill-posed problems. Both
one-dimensional and two-dimensional BHCPs are examined in this study, and the
numerical results demonstrate the accuracy and stability of the MFS, especially for
the BHCPs with high levels of noise. Conclusively, time evolution MFS is a sta-
ble and powerful numerical scheme, and is especially suitable for the numerical
solution of BHCPs.

Keywords: Method of fundamental solutions, backward heat conduction prob-
lem, ill-posed problem, diffusion fundamental solutions.

1 Introduction

Meshless numerical methods have been developed as alternatives to the classical
mesh-dependent numerical methods, such as the finite-element method (FEM) and
finite-difference method (FDM). The method of fundamental solutions (MFS) was
initially proposed by Kupradze and Aleksidze (1964). Due to the high efficiency
and high accuracy of this method, many researchers adopted MFS to solve various
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engineering problems, including potential [Fenner (1991)], acoustic [Koopmann,
Song, and Fahnline (1989)], elastostatics problems [Karageorghis and Fairweather
(2000)], biharmonic problem [Smyrlis and Karageorghis (2003)], scattering prob-
lems of electromagnetic waves [Young and Ruan (2005)] and inverse problem [Hon
and Wei (2005); Marin (2008a,b)].

In general, the MFS method is a boundary-type method, and is composed of the
fundamental solutions which exactly satisfy the governing equations. Therefore,
it is only necessary to approximate the augmented boundary when MFS is used
to solve problems. On the other hand, the MFS can also be regarded as an in-
direct Trefftz method [Trefftz (1926); Kita and Kamiya (1995)], moreover, com-
pared with boundary element method (BEM), this numerical method is free from
singularities and the need for numerical integration. The accuracy of MFS, how-
ever, is affected by the ill-conditioning of resulting linear equations system. Liu
(2008) proposed a modified MFS to improve the ill-conditioning of the MFS for
two-dimensional Laplace equation. In terms of unsteady problems, Young, Tsai,
and Fan (2004); Young, Tsai, Murugesan, Fan, and Chen (2004) further solved the
multi-dimensional diffusion equations with diffusion fundamental solutions. Be-
sides, Hu, Young, and Fan (2008) extended MFS to solve diffusion equation with
unsteady forcing function. By directly using the diffusion fundamental solutions
via time evolution, the diffusion equations can be obtained without adopting spe-
cial techniques to deal with the time-derivative term. Since the solutions within
every time evolution process exactly satisfy the governing equations, the solutions
in each time step can be obtained accurately. Therefore, reasonable results can be
obtained by fewer computational points. In other words, problems are able to be
solved by a small resulting linear system instead of a large one which is known to
easily cause the problems to be ill-conditioned.

Generally speaking, BHCPs are so ill-conditioned that solutions cannot be obtained
directly by classical numerical method without special techniques. The investi-
gation of BHCPs includes the BEM [Han, Ingham, and Yuan (1995)], the itera-
tive BEM [Mera, Elliott, Ingham, and Lesnic (2000), Lesnic, Elliott, and Ingham
(1998)], regularization techniques [Muniz, de Campos Velho, and Ramos (1999);
Muniz, Ramos, and de Campos Velho (2000)], the group preserving scheme (GPS)
[Liu (2004)], the backward group preserving scheme (BGPS) [Liu, Chang, and
Chang (2006), Chang and Liu (2010)], the new Lie group shooting method (LGSM)
[Chang, Liu, and Chang (2007)], and the MFS [Mera (2005); Hon and Li (2009)].
Indeed, any method that can successfully solve these types of problems merits fur-
ther consideration and study.

Mera (2005) first used MFS approach to solve BHCPs. Some acceptable solu-
tions are obtained by combining the MFS with standard Tikhonov regularization.
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Hon and Li (2009) developed a new method based on the discrepancy principle for
choosing the optimal location of source points. This improvement greatly promotes
the accuracy and the stability for Mera (2005). Comparing the time evolution MFS
proposed by Young, Tsai, and Fan (2004); Young, Tsai, Murugesan, Fan, and Chen
(2004) with the approaches presented by Mera (2005) and Hon and Li (2009) , the
time evolution scheme considers the diffusion fundamental solutions within each
time step instead of the entire space-time domain. Therefore, using fewer colloca-
tion points is able to attain accurate results. Moreover, the condition number of the
resulting linear system is smaller, and can effectively decrease the ill-conditioning
caused by BHCPs. In this investigation, the time evolution MFS presented by
Young, Tsai, and Fan (2004); Young, Tsai, Murugesan, Fan, and Chen (2004) is
chosen to solve BHCPs. Accurate and stable results are obtained to demonstrate
the time evolution MFS is more appropriate to be applied on the BHCPs.

Throughout this study, we adopt the time evolution MFS to apply on BHCPs in 1D
and 2D geometries. The governing equations are listed and explained in Section 2.
In Section 3, the numerical discretization of the MFS with time evolution scheme
is discussed. Moreover, the comparisons of the present results with the analytical
solutions and other numerical results are presented in Section 4, and these demon-
strate considerable improvement over current methods in solving these types of
problems. The conclusions are presented in Section 5.

2 Mathematical formulation

We consider the following equations:

PDE: ut(~x, t) =ν∇
2u(~x, t), ~x ∈Ω,T ≥ t ≥ 0, (1)

BC: u(~x, t) = f (t), for~x ∈ ∂Ω,T ≥ t ≥ 0, (2)

FC: u(~x,T ) =g(~x), for~x ∈Ω, (3)

where Ω ⊂ Rd , d = 1,2, . . . ,n, and n is the number of the spatial dimension. In
(1)–(3), t is the time variable, u(~x, t) is the heat distribution, ν is the diffusion
coefficient, and f (t) and g(~x) prescribe the heat distribution on the boundary and
the heat distribution at time T , respectively. The task is to recover the initial heat
contribution, u(~x,0), by using the known heat distribution g(~x) at time T .
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3 Method of fundamental solutions (MFS)

The solutions of MFS for diffusion equation can be represented as a linear combi-
nation of the fundamental solutions given by Kythe (1996),

∂G(~x, t;~ξ ,τ)
∂ t

= ν∇
2G(~x, t;~ξ ,τ)+δ (~x−~ξ )δ (t− τ), (4)

where G is the Green’s function, τ is the specific time of the source points,~x ∈ Rd

are the locations of the field points, and ~ξ are source points corresponding to t and
τ , respectively.

Using Fourier transforms with respect to~x and Laplace transforms in t, and invert-
ing the transform of (4), the fundamental solution of the diffusion equation can be
obtained as the free space Green’s function,

G(~x, t;~ξ ,τ) =
e−(~x−~ξ )2/4ν(t−τ)

[4πν(t− τ)]d/2 H(t− τ), (5)

where H is the Heaviside step function. Because the fundamental solutions must
satisfy the homogeneous heat conduction equation, the solutions can be written as
a linear combination of the fundamental solutions of the heat conduction operator.
Thus, the numerical solution of the heat conduction equation can be presented as
[Young, Tsai, and Fan (2004); Young, Tsai, Murugesan, Fan, and Chen (2004)]

U(~x, t) =
Ni+Nb

∑
j=1

α jG(~x, t;~ξ j,τ j), (6)

where U(~x, t) is the heat distribution obtained by MFS, and Ni and Nb are the num-
ber of the source points specified as initial and boundary points, respectively, and
α are undetermined coefficients which can be obtained using the method of collo-
cation so as to satisfy the initial and boundary conditions.

Based on the successful implementation of the forward problems by Young, Tsai,
and Fan (2004); Young, Tsai, Murugesan, Fan, and Chen (2004), we considered
this time evolution MFS to solve the BHCPs. Because the MFS is used to solve a
backward problem, (6) needs to be changed into the following form

U(~x, t) =
N f +Nb

∑
j=1

α jG(~x, t;~ξ j,τ j), (7)

where N f and Nb are the number of the source points specified as field points at
the given time t = T and boundary points, respectively, and α are undetermined
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t=tn=0

Figure 1: Schematic diagram for the locations of field points and source points on
the space-time domain.

coefficients which also can be determined by the method of collocation satisfying
the field values at the given time and boundary conditions. Obviously, the process,
compared to the forward problem, is to use the given conditions at time t = T
instead of at the initial time. Fig. 1 shows the distributions of the field points and the
source points in detail in the case of space dimension,~x. In terms of the positions of
the field points, the boundary parts of field points are located at the temporal level
of t = t i+1, and the interior domain of field points are located at the temporal level
of t = t i, where i = 1,n−1 and t = tn = 0 is the initial time. The source points and
the field points are placed at the same positions in space but different in time.

For example, as illustrated in Fig. 1, the boundary parts of source points are located
at the temporal level of t = t i+1− λ (t i− t i+1), and the interior domain of source
points are located at the temporal level of t = t i−λ (t i− t i+1), where i = 1,n− 1
and λ (t i− t i+1) is the temporal difference between the source point and field point.
Theoretically, the time increment ∆t i = (t i− t i+1) could be any positive number,
∆t i > 0. For convenience, the value of ∆t i, i = 1,n− 1 would be treated as ∆t =
∆t i, i = 1,n−1 throughout the process of computation.

By substituting field and source points into (5) and (7), a linear matrix can be
formed as

Ai jα j = bi, for i, j = 1, N, (8)
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where N = N f +Nb is the number of total computational points, and

Ai j =


e−(~xi−~ξ j)2/4πν(ti−τ j)

[4πν(ti− τ j)]
d/2 if ti > τ j

0 if ti ≤ τ j

. (9)

The matrix bi is a column vector combined with the field values at the given
time and boundary conditions. After inverting the matrix, we obtain the under-
determined coefficients α , and U (~x, t) is then obtained using (7). The solution at
the initial time is then obtained by time evolution.

4 Numerical results

Three different kinds of one-dimensional BHCPs and one two-dimensional BHCP
are examined to show the feasibility of time evolution MFS for BHCPs. In addition,
in order to test the stability of this method for BHCPs, a random noisy perturbation
is added into the given time condition as follows:√√√√ 1

N f

(
N f

∑
i=1

(g̃(~xi)−g(~xi))
2

)
≤
( s

100

)
max

~x∈{~xk}
Nf
k=1

| g(~x) |, (10)

and√√√√ 1
Nb

(
Nb

∑
i=1

(
f̃ (ti)− f (ti)

)2

)
≤
( s

100

)
max
t≤T
| f (t) |, (11)

where s% is the percentage of additive noise, g̃(~x), and f̃ (t) are the prescribed
functions with random noise. In the following examples, the time evolution MFS
is successfully used to approximate BHCPs without noise, and for noisy problems,
the MFS can still be adopted directly as the noise, s≤ 0.1. But, if the noise, s > 0.1,
a truncated singular value decomposition (TSVD) technique is combined to treat
highly ill-condition BHCPs, where the required parameter is chosen to decrease the
effects of noise. Throughout this paper, the maximum absolute error is defined as
follows,

E = max
~x∈{~xk}N

k=1

|U (~x, t)−u(~x, t) |,

where U (~x, t) and u(~x, t), respectively are the numerical solution and the analytic
solution at the k-th interior points.
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4.1 Example 1

A one-dimensional benchmark BHCP is listed as

PDE: ut(x, t) =νuxx(x, t), 0 < x < 1, 0 < t < T (12)

BC: u(0, t) =u(1, t) = 0, (13)

FC: u(x,T ) =sin(πx)exp(−π
2T ), (14)

where ν = 1, and the analytical solution to this problem is

u(x, t) = sin(πx)exp
(
−π

2t
)
, 0≤ t < T. (15)
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Figure 2: Example 1: (a) Time evolution history of maximum absolute errors for
different time increments; and (b) time evolution history of maximum absolute
errors for different numbers of points.
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Figure 3: Example 1: (a) The absolute errors at the initial time; and (b) the absolute
errors at the initial time.

In order to show the feasibility of the MFS, this BHCP subject to the given time
T = 1.5 is evaluated with different time increments and computational nodes. Fig. 2a
presents the maximum absolute errors with different time increments, ∆t, and Fig. 2b
presents the maximum absolute errors evaluated at different computational nodes.
Increasing the number of computational points or taking smaller time increments
yield better results in the numerical computation, as expected. Therefore, we use
N = 7 computational points to retrieve this BHCP subject to the given time T = 0.7
and T = 0.75. Fig. 3a shows the absolute errors obtained by the time evolution
MFS. Comparing the results with Liu, Chang, and Chang (2006) and Mera (2005),
our solutions are obviously more accurate. By using the time evolution scheme, the
initial time can be recovered even as the give time T up to T = 3.2. The numerical
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results are shown in Fig. 3b. These results demonstrate that good performance of
the method as well as the stability of this approach for a large T .

At the given times from T = 1.5,2,2.2,2.4, to 3.2, the field values of this bench-
mark BHCP are distributed in the range of 10−7 to 10−13, when the values at the
initial time are in the range of 100. It is very difficult to recover the initial data when
the field values at the given time are so tiny. For such a difficult problem, Lesnic,
Elliott, and Ingham (1998) only could obtain solution while T < 1. Therefore, we
investigate these very severely ill-posed cases to show the significant improvements
in the computability of the solutions that are possible using this approach to solve
these problems. As shown in Fig. 3b, the results are obtained with N = 9, and the
solutions demonstrate the improved performance of our method even when solving
such a highly ill-posed problem. With T = 1.5, the maximum absolute error is as
small as 2.661× 10−4. Moreover, even at the case with T = 3.2, the maximum
absolute error still can be kept within 1.383× 10−3. Comparing with the same
case with Liu, Chang, and Chang (2006) and Chang, Liu, and Chang (2007), our
solutions are more accurate and our numerical method is easier to be employed.

In order to test the stability of time evolution MFS, we add some random distribu-
tions of noise to the field values at time T = 1.2, and use N = 9, ∆t = 0.24 to solve
it. In Fig. 4a, the matched results obviously show that all of the numerical results in
the case with three different levels of noise, including s = 5, s = 10 and s = 15, are
close to the exact solution. Meanwhile, the absolute errors in Fig. 4b also present
acceptable results, even with a high level noise of 15%. The results demonstrate
the excellent performance of the method as well as the stability of this approach for
these types of BHCPs.

4.2 Example 2

In this example, another one-dimensional BHCP is considered

PDE: ut(x, t) = νuxx(x, t), 0 < x < 1, 0 < t < T, (16)

BC: u(0, t) = u(1, t) = 0, (17)

FC: u(x,T ) =
200

∑
k=0

8

π2 (2k +1)2 cos
(

π(2k +1)(2x−1)
2

)
×ξ (T ), (18)

IC: u(x,0) =
{

2x, 0≤ x≤ 0.5
2(1− x), 0.5≤ x≤ 1.0

, (19)
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Figure 4: Example 1: (a) The results with different levels of noise compared to the
exact solution at the initial time; and (b) the absolute errors with different levels of
noise at the initial time.

where ν = 1 and ξ (T ) = exp
[
−νπ2(2k +1)2T

]
. The analytic solution to the prob-

lem posed in (16)–(19) is given by

u(x, t) =
∞

∑
k=0

8

π2 (2k +1)2 cos
(

π(2k +1)(2x−1)
2

)
×ξ (t), (20)

where ξ (t) = exp
[
−νπ2(2k +1)2t

]
. The sum in (20) is taken over the first two

hundred terms to assure that the analytic solution is obtained within double preci-
sion accuracy.

This one-dimensional BHCP is called a triangular test [Muniz, de Campos Velho,
and Ramos (1999); Muniz, Ramos, and de Campos Velho (2000); Liu (2004); Liu,
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Figure 5: Example 2: (a) The numerical solution compared to the exact solution
with ν = 1, T = 0.01 at the initial time; and (b) the numerical solution compared to
the exact solution with ν = 0.1, T = 0.5 at the initial time.

Chang, and Chang (2006); Chiwiacowsky and de Campos Velho (2003)]. In gen-
eral, it is very difficult for other numerical computational methods to use smooth
field values at the given time t = T in (18) to recover non-smooth values at the
initial time in (19). In this numerical example, we solve the triangular test prob-
lem with ν = 1, T = 0.01, N = 9 and the time increment, ∆t = 0.002. Despite
these difficulties, accurate results were obtained, and these are presented in Fig. 5a.
Without combining the basic approach with any regularization method, the maxi-
mum absolute error was 9.35×10−3, and this occurred at x = 0.5, i.e., at the apex
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of the triangle, as would be expected. For an even more ill-conditioned problem

0 0.2 0.4 0.6 0.8 1

x

-0.4

0

0.4

0.8

1.2

u
(x

,0
)

T = 0.25

s = 1

s = 3

s = 5

Exact solution

(a)

0 0.2 0.4 0.6 0.8 1

x

0.0E+000

4.0E-002

8.0E-002

1.2E-001

1.6E-001

A
b
s
o
lu

te
e
rr

o
rs

o
f

u
(x

,0
)

T = 0.25

s = 1

s = 3

s = 5

(b)

Figure 6: Example 2: (a) The results with different levels of noise compared to the
exact solution at the initial time; and (b) the absolute errors with different levels of
noise at the initial time.

with ν = 0.1 and T = 0.5, Muniz, de Campos Velho, and Ramos (1999); Muniz,
Ramos, and de Campos Velho (2000) cannot obtain satisfactory results at the given
time, T = 0.008. In Fig. 5b, using N = 10 and ∆t = 0.1 yields our scheme usable
results even at the turning point, x = 0.5, where the maximum absolute error is
1.72×10−2.

As a final challenge in this difficult case, we also added some random perturbations
with s = 1, s = 3 and s = 5 to the solution at time T = 0.25 to test the stability of
the time evolution MFS. In Fig. 6a, N = 10 and ∆t = 0.05 are used, and each of the
numerical results approximates the corresponding exact solution within an accept-
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able range except at the non-smooth point. At the same time, the absolute error in
Fig. 6b shows the results are of sufficiently high quality to assert the superiority of
the approach as a means to solve these types of problems.

4.3 Example 3

An one-dimensional BHCP is considered as

PDE: ut(x, t) = νuxx(x, t), −π < x < π, 0 < t < T, (21)

BC: u(−π, t) = u(π, t) = 0, (22)

FC: u(x,T ) = e−β 2T sinβx, (23)

where ν = 1, β ∈ N and the exact solution is obtained from

u(x, t) = e−β 2t sinβx. (24)

Liu, Chang, and Chang (2006) demonstrated that the solution of this ill-posed prob-
lem does not depend on the final data continuously, and also mentioned that this
kind of BHCP is unstable for a given final data with large β . In another words,
the problem becomes more ill-posed when β is large. In this case, when β = 3 and
T = 1, the desired initial field value is sin3x and value at the given time is e−9 sin3x.
The value of sin3x is on the order of 100, and the value of e−9 sin3x is on the order
of 10−4. For this example, it is very difficult to retrieve the initial value from the
rather small field value as 10−4. Liu, Chang, and Chang (2006) also remarked that
it is impossible to solve this strongly ill-posed problem with classical numerical
methods. In Fig. 7a, we obtain results with N = 12 and ∆t = 0.25 to compare with
the exact solution from (24) at the initial time. The absolute errors are on the order
of 10−3, and as shown in Fig. 7b, the maximum absolute error is less than 5×10−3.

In this problem, N = 12 computational points and ∆t = 0.05 are used, and random
noise is added at T = 0.25 with s = 5, s = 8 and s = 10 to show the time evolution
MFS is stable enough to overcome these different levels of noise. In Fig. 8a, the
results obtained with different levels of noise closely match the solid line of the
exact solution. In Fig. 8b, the absolute errors show acceptable results even with
high levels of noise. These results demonstrate that time evolution is accurate and
stable enough to solve these types of BHCPs.
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Figure 7: Example 3: (a) The numerical solution compared to the exact solution
with T = 1; and (b) the absolute errors with T = 1 at the initial time.

4.4 Example 4

We further consider a two-dimensional BHCP,

PDE: ut(x,y, t) = ν∇
2u(x,y, t), −π < x < π, −π < y < π, 0 < t < T, (25)

BC: u(−π,y, t) = u(π,y, t) = u(x,−π, t) = u(x,π, t) = 0, (26)

FC: u(x,y,T ) = e−2β 2T sinβxsinβy, (27)

where ν = 1, β ∈ N is a positive integer, and the exact solution is

u(x,y, t) = e−β 2t sinβxsinβy. (28)
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Figure 8: Example 3: (a) The results with different levels of noise compared to the
exact solution at the initial time; and (b) the absolute errors with different levels of
noise at the initial time.

In this case, N = 64 and ∆t = 0.2 are used to solve this problem with, β = 1 and T =
1. In Fig. 9, all of the absolute errors between the exact solution and the numerical
results are within 5× 10−5. Moreover, we draw the absolute errors at x = −π +
134π/90 and y =−π +148π/90 to clearly show the accuracy in detail. In Fig. 10a,
each absolute error can reach the accuracy on the order of 10−5. Comparing the
distribution of absolute errors to those cited in Liu, Chang, and Chang (2006), our
solution is more accurate.

In this two-dimensional problem, we also add additional random noise to the solu-
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tion at T = 0.25, and N = 64, ∆t = 0.05 are adopted. In Fig. 10b, we can recover
the solution at the initial time with s = 8 and s = 10 of noise levels. Obtaining ac-
cepted results with such high level of noise in BHCP has been impossible without
using this scheme.

5 Conclusions

The time evolution MFS is successfully used to solve backward heat conduction
problems with diffusion fundamental solutions. Using time evolution provides sig-
nificant numerical advantages. Not only does it help to decrease the computing er-
rors due to ill-conditioning, but also makes it possible to directly obtain numerical
solutions of the BHCPs without regularization. The use of time-stepping formula-
tions has an extensive history in the numerical solution of PDEs, and the approach
has proven to be productive in solving even steady state problems with weak so-
lutions. The excellent numerical results obtained in this study demonstrate the
accuracy and feasibility of extending this numerical technique to solve the BHCPs.

Demonstrating the ability to solve idealized problems with exact analytical solu-
tions is interesting. For engineering utility, however the addition of noise to these
types of problems is of even greater importance, as it can be expected that the nu-
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Figure 9: Example 4: The errors between the exact solution and the numerical
results are plotted showing the distribution of the errors on the domain. Note that
all of the errors are within 5×10−5.
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merical data used to solve backward heat conduction problems will almost certainly
contain noise. The approach which we outlined in this paper seems to provide a
workable solution to a range of problems containing additive noise that we have
investigated. We also successfully combined the TSVD technique to avoid the am-
plified error due to the ill-conditioning of the BHCPs.

The stability of the time evolution MFS is demonstrated, as the method success-
fully recovered solutions at the initial time for BHCPs with at least s = 5 of noise.
Moreover, the method can be used even for some problems with very high levels
of noise, e.g., s = 15. In summary we have shown conclusively that time evolution
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Figure 10: Example 4: (a) The absolute errors are plotted with T = 1 and β = 1;
and (b) the absolute errors with s = 8, s = 10 of noise at the initial time. The solid
lines represents the errors respect to y at x = −π + 134π/90, and the dashed lines
represents the errors respect to x at y =−π +148π/90.
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MFS is a stable, powerful and suitable numerical method for solving a wide variety
of BHCPs. To extend the present algorithm to multi-dimensional BHCPs, such as
3D problems is a straightforward task without extra effort and is undertaking. The
results will be reported in the future.
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